Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. PurpleAir PA-II Sensor
2.2. Measurement Site
2.3. Dewpoint
2.4. Performance Metrics
3. Results and Discussion
3.1. Temperature
3.2. Relative Humidity
3.3. Dewpoint Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Commodore, A.; Wilson, S.; Muhammad, O.; Svendsen, E.; Pearce, J. Community-based participatory research for the study of air pollution: A review of motivations, approaches, and outcomes. Environ. Monit. Assess. 2017, 189, 378. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Ellenburg, J.A.; Williford, C.J.; Rodriguez, S.L.; Andersen, P.C.; Turnipseed, A.A.; Ennis, C.A.; Basman, K.A.; Hatz, J.M.; Prince, J.C.; Meyers, D.H.; et al. Global ozone (GO3) project and AQTreks: Use of evolving technologies by Students and citizen scientists to monitor air pollutants. Atmos. Environ. X 2019, 4, 100048. [Google Scholar] [CrossRef]
- Jerrett, M.; Donaire-Gonzalez, D.; Popoola, O.; Jones, R.; Cohen, R.C.; Almanza, E.; de Nazelle, A.; Mead, I.; Carrasco-Turigas, G.; Cole-Hunter, T.; et al. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science. Environ. Res. 2017, 158, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Miskell, G.; Salmond, J.; Williams, D.E. Low-cost sensors and crowd-sourced data: Observations of siting impacts on a network of air-quality instruments. Sci. Total Environ. 2017, 575, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Thompson, J.E. Personal monitoring of ozone exposure: A fully portable device for under $150 USD cost. Sens. Actuators B Chem. 2016, 224, 936–943. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Chambliss, S.E.; Preble, C.V.; Caubel, J.J.; Cados, T.; Messier, K.P.; Alvarez, R.A.; LaFranchi, B.; Lunden, M.; Marshall, J.D.; Szpiro, A.A.; et al. Comparison of mobile and fixed-site black carbon measurements for high-resolution urban pollution mapping. Environ. Sci. Technol. 2020, 54, 7848–7857. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Wu, H.; Reis, S.; Lin, C.; Beverland, I.J.; Heal, M.R. Identifying drivers for the intra-urban spatial variability of airborne particulate matter components and their interrelationships. Atmos. Environ. 2015, 112, 306–316. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of low-cost sensors for ambient PM2.5 monitoring. J. Sens. 2018, 2018, 5096540. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Aliaksei, H.; Saha, P.K.; Robinson, A.L.; Presto, A.A. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- South Coast AQMD. Air Quality Sensor Performance Evaluation Center. Available online: http://www.aqmd.gov/aq-spec (accessed on 1 February 2024).
- Williams, R.; Duvall, R.; Kilaru, V.; Hagler, G.; Hassinger, L.; Benedict, K.; Rice, J.; Kaufman, A.; Judge, R.; Pierce, G.; et al. Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmos. Environ. X 2019, 2, 100031. [Google Scholar] [CrossRef] [PubMed]
- Duvall, R.M.; Clements, A.L.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.K.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Sensors; EPA/600/R-20/280; US Environmental Protection Agency: Research Triangle Park, NC, USA, 2021; p. 27711.
- US Environmental Protection Agency. Air Sensor Toolbox. Available online: https://www.epa.gov/air-sensor-toolbox (accessed on 1 February 2024).
- Clements, A.; Duvall, R.; Greene, D.; Dye, T. The Enhanced Air Sensor Guidebook; EPA/600/R-22/213; US Environmental Protection Agency: Research Triangle Park, NC, USA, 2022; p. 27711.
- US Environmental Protection Agency. EPA Research Improves Air Quality Information for the Public on the AirNow Fire and Smoke Map. Available online: https://www.epa.gov/sciencematters/epa-research-improves-air-quality-information-public-airnow-fire-and-smoke-map (accessed on 1 February 2024).
- Pascal, M.; Wagner, V.; Alari, A.; Corso, C.; Le Tertre, A. Extreme heat and acute air pollution episodes: A need for joint public health warnings? Atmos. Environ. 2021, 249, 118249. [Google Scholar] [CrossRef]
- Burkart, K.; Canário, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H.; Alcoforado, M.J.; Endlicher, W. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 2013, 183, 54–63. [Google Scholar] [CrossRef]
- Chen, K.; Wolf, K.; Breitner, S.; Gasparrini, A.; Stafoggia, M.; Samoli, E.; Andersen, Z.J.; Bero-Bedada, G.; Bellander, T.; Hennig, F.; et al. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban Areas. Environ. Int. 2018, 116, 186–196. [Google Scholar] [CrossRef]
- Rahman, M.M.; McConnell, R.; Schlaerth, H.; Ko, J.; Silva, S.; Lurmann, F.W.; Palinkas, L.; Johnston, J.; Hurlburt, M.; Yin, H.; et al. The effects of coexposure to extremes of heat and particulate air pollution on mortality in California. Am. J. Respir. Crit. Care Med. 2022, 206, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P.L. Synergistic health effects of air pollution, temperature, and pollen exposure: A systematic review of epidemiological evidence. Environ. Health 2020, 19, 130. [Google Scholar] [CrossRef]
- Breitner-Busch, S.; Mücke, H.-G.; Schneider, A.; Hertig, E. Impact of climate change on non-communicable diseases due to increased ambient air pollution. J. Health Monit. 2023, 8, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Mika, J.; Forgo, P.; Lakatos, L.; Olah, A.B.; Rapi, S.; Utasi, Z. Impact of 1.5K global warming on urban air pollution and heat island with outlook on human health effects. Curr. Opin. Environ. Sustain. 2018, 30, 151–159. [Google Scholar] [CrossRef]
- Fever, S.K.; Kahl, J.D.W.; Kalkbrenner, A.E.; Bretón, R.M.C.; Bretón, J.G.C. A new combined air quality and heat index in relation to mortality in Monterrey, Mexico. Int. J. Environ. Res. Public Health 2022, 19, 3299. [Google Scholar] [CrossRef] [PubMed]
- Steeneveld, G.-J.; Klompmaker, J.O.; Groen, R.J.A.; Holtslag, A.A.M. An urban climate assessment and management tool for combined heat and air quality judgements at neighbourhood scales. Resour., Conserv. Recycl. 2018, 132, 204–217. [Google Scholar] [CrossRef]
- Sabrin, S.; Karimi, M.; Nazari, R. Developing vulnerability index to quantify urban heat islands effects coupled with air pollution: A case study of Camden, NJ. Int. J. Geo-Inf. 2020, 9, 349. [Google Scholar] [CrossRef]
- Ardon-Dryer, K.; Dryer, Y.; Williams, J.N.; Moghimi, N. Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmos. Meas. Technol. 2020, 13, 5441–5458. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Holder, A.L.; Frederick, S.G.; Clements, A.L. Correction and accuracy of PurpleAir PM2.5 measurements for extreme wildfire smoke. Sensors 2022, 22, 9669. [Google Scholar] [CrossRef]
- Koehler, K.; Wilks, M.; Green, T.; Rule, A.M.; Zamora, M.L.; Buehler, C.; Datta, A.; Gentner, D.R.; Putcha, N.; Hansel, N.N.; et al. Evaluation of calibration approaches for indoor deployments of PurpleAir monitors. Atmos. Environ. 2023, 310, 119944. [Google Scholar] [CrossRef]
- Robinson, D.L.; Goodman, N.; Vardoulakis, S. Five years of accurate PM2.5 measurements demonstrate the value of low-cost PurpleAir monitors in areas affected by woodsmoke. Int. J. Environ. Res. Public Health 2023, 20, 7127. [Google Scholar] [CrossRef] [PubMed]
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke. Sensors 2020, 20, 4796. [Google Scholar] [CrossRef] [PubMed]
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.M.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field evaluation of low-cost PM sensors (PurpleAir PA-II) under variable urban air quality conditions in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
- PurpleAir. PurpleAir Sensors Functional Overview. Available online: https://community.purpleair.com/t/purpleair-sensors-functional-overview/150 (accessed on 1 February 2024).
- Wallace, L.; Bi, J.; Ott, W.R.; Sarnat, J.; Liu, Y. Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5. Atmos. Environ. 2021, 256, 118432. [Google Scholar] [CrossRef]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a federal equivalent method beta attenuation monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
- North Carolina State University. Environment & Climate Observing Network. Available online: https://econet.climate.ncsu.edu/ (accessed on 1 February 2024).
- Saia, S.M.; Heuser, S.P.; Neill, M.D.; LaForce IV, W.A.; McGuire, J.A.; Dello, K.D. A technical overview of the North Carolina ECONet. J. Atmos. Ocean Technol. 2023, 40, 701–717. [Google Scholar] [CrossRef]
- MetPy. User Guide. Available online: https://unidata.github.io/MetPy/v1.5/userguide/index.html (accessed on 1 February 2024).
Correction Type | Temperature Bin (°C) | Mean Bias (°C) | RMSE (°C) | r | Slope | Intercept | n |
---|---|---|---|---|---|---|---|
uncorrected | All | 2.6 | 2.8 | 0.99 | 1.07 | 1.60 | 148,230 |
(−∞, −5] | 1.8 | 2.0 | 0.98 | 1.01 | 1.89 | 2239 | |
(−5, 5] | 1.9 | 2.1 | 0.96 | 1.03 | 1.86 | 26,589 | |
(5, 15] | 2.2 | 2.3 | 0.96 | 1.04 | 1.71 | 52,162 | |
(15, 25] | 3.0 | 3.2 | 0.94 | 1.17 | −0.31 | 57,574 | |
(25, ∞] | 4.2 | 4.4 | 0.80 | 1.07 | 2.36 | 9666 | |
simple linear regression correction | All | 0.0 | 1.0 | 0.99 | 1.00 | 0.00 | 148,230 |
(−∞, −5] | 0.8 | 1.1 | 0.98 | 0.94 | 0.27 | 2239 | |
(−5, 5] | 0.2 | 0.8 | 0.96 | 0.96 | 0.24 | 26,589 | |
(5, 15] | −0.2 | 0.8 | 0.96 | 0.97 | 0.11 | 52,162 | |
(15, 25] | 0.0 | 1.0 | 0.94 | 1.09 | −1.78 | 57,574 | |
(25, ∞] | 0.6 | 1.3 | 0.80 | 0.99 | 0.71 | 9666 | |
PurpleAir suggested correction | All | −1.9 | 2.2 | 0.99 | 1.07 | −2.85 | 148,230 |
(−∞, −5] | −2.6 | 2.8 | 0.98 | 1.01 | −2.55 | 2239 | |
(−5, 5] | −2.6 | 2.7 | 0.96 | 1.03 | −2.59 | 26,589 | |
(5, 15] | −2.3 | 2.4 | 0.96 | 1.04 | −2.73 | 52,162 | |
(15, 25] | −1.4 | 1.9 | 0.94 | 1.17 | −4.76 | 57,574 | |
(25, ∞] | −0.2 | 1.3 | 0.80 | 1.07 | −2.08 | 9666 |
Study | T (°C) | RH (%) | Location | Dates |
---|---|---|---|---|
This study | 2.6 | −17.4 | Asheville, NC (USA) | 15 Dec 2021–30 June 2023 |
Malings et al. [15] 1 | 2.7 | −9.7 | Pittsburgh, PA (USA) | 30 Mar 2018–4 June 2018 |
Holder et al. [38] 1 | 5.2 | −24.3 | Research Triangle Park, NC (USA) | 10 Aug 2018–30 Apr 2019 |
Wallace et al. [41] 1,2 | 4.4 | −15 | Santa Rosa, CA (USA) | unknown |
PurpleAir [40] 1 | 4.4 | −4 | Unknown | unknown |
Correction Type | RH Bin (%) | Mean Bias (%) | RMSE (%) | r | Slope | Intercept | n |
---|---|---|---|---|---|---|---|
uncorrected | All | −17.4 | 18.5 | 0.98 | 0.75 | 0.12 | 148,230 |
[0, 20] | −2.1 | 2.5 | 0.84 | 0.74 | 2.21 | 1323 | |
(20, 40] | −6.0 | 6.4 | 0.92 | 0.74 | 2.01 | 16,506 | |
(40, 60] | −13.0 | 13.4 | 0.79 | 0.63 | 6.10 | 29,269 | |
(60, 80] | −18.6 | 19.0 | 0.79 | 0.78 | −2.95 | 39,682 | |
(80, 100] | −22.0 | 22.3 | 0.82 | 0.92 | −14.56 | 61,450 | |
simple linear regression correction | All | 0.00 | 4.5 | 0.98 | 1.00 | 0.00 | 148,230 |
[0, 20] | 2.6 | 3.0 | 0.84 | 0.99 | 2.77 | 1323 | |
(20, 40] | 2.2 | 3.1 | 0.92 | 0.99 | 2.51 | 16,506 | |
(40, 60] | −0.6 | 3.8 | 0.79 | 0.83 | 7.96 | 29,269 | |
(60, 80] | −1.7 | 4.9 | 0.79 | 1.03 | −4.09 | 39,682 | |
(80, 100] | 0.7 | 4.8 | 0.82 | 1.22 | −19.5 | 61,450 | |
PurpleAir suggested correction | All | −13.4 | 14.8 | 0.98 | 0.75 | 4.12 | 148,230 |
[0, 20] | 1.9 | 2.3 | 0.84 | 0.74 | 6.21 | 1323 | |
(20, 40] | −2.0 | 3.0 | 0.92 | 0.74 | 6.01 | 16,506 | |
(40, 60] | −9.0 | 9.6 | 0.79 | 0.63 | 10.10 | 29,269 | |
(60, 80] | −14.6 | 15.1 | 0.79 | 0.78 | 1.05 | 39,682 | |
(80, 100] | −18.0 | 18.4 | 0.82 | 0.92 | −10.56 | 61,450 |
Correction Type | DP Bin (°C) | Mean Bias (°C) | RMSE (°C) | r | Slope | Intercept | n |
---|---|---|---|---|---|---|---|
uncorrected | All | −1.6 | 1.7 | 0.99 | 1.00 | −1.58 | 148,236 |
[−∞, 15] | −1.6 | 1.8 | 0.99 | 1.00 | −1.59 | 113,091 | |
(15, 20] | −1.5 | 1.6 | 0.94 | 1.01 | −1.73 | 29,944 | |
(20, 22] | −1.6 | 1.7 | 0.67 | 0.91 | 0.33 | 4813 | |
(22, 24] | −1.9 | 2.0 | 0.43 | 0.68 | 5.26 | 385 | |
(24, ∞] | −2.6 | 2.6 | 0.67 | 1.59 | −17.00 | 3 | |
simple linear regression correction | All | 0.1 | 0.6 | 0.99 | 0.98 | 0.27 | 148,236 |
[−∞, 15] | 0.2 | 0.7 | 0.99 | 0.97 | 0.27 | 113,091 | |
(15, 20] | −0.1 | 0.6 | 0.93 | 0.98 | 0.23 | 29,944 | |
(20, 22] | −0.3 | 0.7 | 0.60 | 0.83 | 3.16 | 4813 | |
(22, 24] | −0.7 | 1.0 | 0.40 | 0.65 | 7.06 | 385 | |
(24, ∞] | −1.5 | 1.6 | 0.73 | 1.48 | −13.22 | 3 | |
PurpleAir suggested correction | All | 0.6 | 0.9 | 0.99 | 1.00 | 0.64 | 148,236 |
[−∞, 15] | 0.6 | 1.0 | 0.99 | 1.00 | 0.63 | 113,091 | |
(15, 20] | 0.7 | 0.8 | 0.94 | 1.01 | 0.49 | 29,944 | |
(20, 22] | 0.6 | 0.8 | 0.67 | 0.91 | 2.55 | 4813 | |
(22, 24] | 0.3 | 0.7 | 0.43 | 0.68 | 7.49 | 385 | |
(24, ∞] | −0.4 | 0.5 | 0.67 | 1.59 | −14.78 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couzo, E.; Valencia, A.; Gittis, P. Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements. Atmosphere 2024, 15, 415. https://doi.org/10.3390/atmos15040415
Couzo E, Valencia A, Gittis P. Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements. Atmosphere. 2024; 15(4):415. https://doi.org/10.3390/atmos15040415
Chicago/Turabian StyleCouzo, Evan, Alejandro Valencia, and Phoebe Gittis. 2024. "Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements" Atmosphere 15, no. 4: 415. https://doi.org/10.3390/atmos15040415
APA StyleCouzo, E., Valencia, A., & Gittis, P. (2024). Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements. Atmosphere, 15(4), 415. https://doi.org/10.3390/atmos15040415