Spatiotemporal Changes in and Forces Driving Ozone Concentration in the Beijing–Tianjin–Hebei (Jing–Jin–Ji) Region from 2015 to 2022
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Data Preprocessing and Interpolation Analysis
2.2.2. Stepwise Regression Analysis
2.2.3. Geographically Weighted Regression Model
2.2.4. Geographical Detector Analysis
3. Result and Analysis
3.1. Characteristics of Temporal and Spatial Variations in Ozone Concentration in Jing–Jin–Ji
3.1.1. Characteristics of Seasonal Variation
3.1.2. Characteristics of Spatial Variation
3.2. Analysis of Influencing Factors on Seasonal Variation of Ozone Concentration
3.2.1. Correlation Analysis
3.2.2. Factor Explanatory Power Analysis
3.3. Analysis of Factors Influencing Spatial Variation in Ozone Concentration
3.3.1. Monofactor Exploratory Analysis
3.3.2. Two-Factor Interactive Detection Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, X.; Li, K.; Guo, H.; Morawska, L.; Zhou, B.; Zeren, Y.; Jiang, F.; Chen, C.; Goldstein, A.H.; Xu, X.; et al. A synergistic ozone-climate control to address emerging ozone pollution challenges. One Earth 2023, 6, 964–977. [Google Scholar] [CrossRef]
- Qi, J.; Mo, Z.; Yuan, B.; Huang, S.; Huangfu, Y.; Wang, Z.; Li, X.; Yang, S.; Wang, W.; Zhao, Y.; et al. An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown. Atmos. Environ. 2021, 262, 118618. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Guan, Y.; Shao, C.; Niu, R. Assessing the health impacts of PM2.5 and ozone pollution and their comprehensive correlation in Chinese cities based on extended correlation coefficient. Ecotoxicol. Environ. Saf. 2023, 262, 115125. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Custodio, I.S.; Wainer, I.; Dias, P.L.d.S.; Prado, L.F. Assessment of Tropical Atlantic ocean variability and associated rainfall sensibility due to atmospheric ozone changes. Atmos. Environ. 2022, 290, 119344. [Google Scholar] [CrossRef]
- Woller, S.C.; Horne, B.D.; Stevens, S.M.; Lloyd, J.F.; Bride, D.; Snow, G.L.; Bledsoe, J. Association of Ozone and PM2.5 Air Pollution on Short-Term Venous Thromboembolism Risk, Including 10861 Vte Events in an Integrated Health System: 17 Years of Longitudinal Data. Chest 2023, 164 (Suppl. S4), A5105–A5106. [Google Scholar]
- Liu, J.; Wang, M.; Deng, J.; Chen, X.; Tang, X.; Zeng, L. Temporal and spatial evolution patterns of AQl, particulate matter, and ozone in Shandong province and key influencing factors. Res. Environ. Sci. 2023, 36, 273–284. [Google Scholar]
- Yao, H.; Zhou, J.; Yang, J.; Qu, Z.-G.; Cao, Y.-X. Studies on characteristics of PM2.5, PM10 and ozone pollution in Wuhan based on wavelet transform. China Environ. Sci. 2023, 43, 107–114. [Google Scholar]
- Yang, X.; Lu, Y.; Wang, Y.; Qiao, Y.-H.; Zhang, G.-L.; Wang, S.-G.; Zhang, X.-L.; Liu, Z.-H.; Liu, Y.-L.; Zhu, X.-S. Impact of synoptic patterns on regional ozone pollution in Sichuan Basin. China Environ. Sci. 2021, 41, 2526–2539. [Google Scholar]
- Liu, S.; Huang, Q.; Zhang, X.; Dong, W.; Zhang, W.; Wu, S.; Yang, D.; Nan, B.; Zhang, J.; Shen, H.; et al. Cardiorespiratory Effects of Indoor Ozone Exposure Associated with Changes in Metabolic Profiles among Children: A Repeated-Measure Panel Study. Innovation 2021, 2, 100087. [Google Scholar] [CrossRef] [PubMed]
- Yaluk, E.A.; Wang, Y.; Jiang, S.; Huang, L.; Lu, G.; Zhu, A.; Bian, J.; Xue, J.; Du, Y.; Chen, N.; et al. Changes in first- and second-order sensitivities of ozone concentration to its precursors over the Yangtze River Delta region of China due to COVID-19 lockdown: Insights from CMAQ-HDDM modeling study. Atmos. Environ. 2023, 309, 119931. [Google Scholar] [CrossRef]
- Li, K.; Hayes, F.; Chadwick, D.R.; Wang, J.; Zou, J.; Jones, D.L. Changes in microbial community composition drive the response of ecosystem multifunctionality to elevated ozone. Environ. Res. 2022, 214, 114142. [Google Scholar] [CrossRef] [PubMed]
- Kawano, N.; Nagashima, T.; Sugata, S. Changes in seasonal cycle of surface ozone over Japan during 1980–2015. Atmos. Environ. 2022, 279, 119108. [Google Scholar] [CrossRef]
- Villota, N.; Cruz-Alcalde, A.; Ferreiro, C.; Lombraña, J.I.; Esplugas, S. Changes in solution turbidity and color during paracetamol removal in laboratory and pilot-scale semicontinuous ozonation reactors. Sci. Total Environ. 2023, 854, 158682. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Jiang, J.; Chen, T.; Zhang, Z.; Lu, B.; Liu, C.; Xue, L.; Chen, J.; Herrmann, H.; Li, X. Chemical drivers of ozone change in extreme temperatures in eastern China. Sci. Total Environ. 2023, 874, 162424. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Lu, K.; Wang, Q.; Li, T. Climate change will amplify the inequitable exposure to compound heatwave and ozone pollution. One Earth 2022, 5, 677–686. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Ji, Y.; Chen, T.; Li, H.; Gao, R.; Xue, L.; Wang, Y.; Zhao, Y.; Yang, X. Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies. Sci. Total Environ. 2024, 908, 168332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.; Tang, G.; Xin, J.; Li, M.; Li, X.; Xin, F.; Qin, Y.; Wang, Y.; Hu, B. Comprehensively exploring the characteristics and meteorological causes of ozone pollution events in Beijing during 2013–2020. Atmos. Res. 2023, 294, 106978. [Google Scholar] [CrossRef]
- Liu, L.; Gong, H.; Wang, L.; Chen, W.; Wu, R.; Tao, W.; Dong, Z.; Liu, B. Contribution of atmospheric circulations changes to the variations of summertime lower tropospheric ozone over East Asia during recent decades. Atmos. Res. 2023, 292, 106852. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, M.; Gao, M.; Ning, G.; Ge, E.; Chan, T.O.; Wu, S.; Zhang, H.; Tang, Y. Different characteristics of independent and compound extreme heat and ozone pollution events in the Greater Bay Area of China. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103508. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Qiao, Y.; Liu, Y.; Wang, S.; Yang, X.; Wang, H.; Lu, Y.; Zhang, X.; Lei, Y. Drivers of 2013–2020 ozone trends in the Sichuan Basin, China: Impacts of meteorology and precursor emission changes. Environ. Pollut. 2022, 300, 118914. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619–620, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Pistore, L.; Pernigotto, G.; Cappelletti, F.; Gasparella, A.; Romagnoni, P. A stepwise approach integrating feature selection, regression techniques and cluster analysis to identify primary retrofit interventions on large stocks of buildings. Sustain. Cities Soc. 2019, 47, 101438. [Google Scholar] [CrossRef]
- Liu, Y.; Heuvelink, G.B.; Bai, Z.; He, P.; Xu, X.; Ding, W.; Huang, S. Analysis of spatio-temporal variation of crop yield in China using stepwise multiple linear regression. Field Crops Res. 2021, 264, 108098. [Google Scholar] [CrossRef]
- Pourshoaib, S.J.; Ghatrami, E.R.; Shamekhi, M.A. Comparing ultrasonic- and microwave-assisted methods for extraction of phenolic compounds from Kabkab date seed (Phoenix dactylifera L.) and stepwise regression analysis of extracts antioxidant activity. Sustain. Chem. Pharm. 2022, 30, 100871. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, Q.; Li, Z. Analysis of spatial characteristics and influence mechanism of human settlement suitability in traditional villages based on multi-scale geographically weighted regression model: A case study of Hunan province. Ecol. Indic. 2023, 154, 110828. [Google Scholar] [CrossRef]
- Senyel Kurkcuoglu, M.A. Analysis of the energy justice in natural gas distribution with Multiscale Geographically Weighted Regression (MGWR). Energy Rep. 2023, 9, 325–337. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, C.; Zuo, Y.; Luo, X.; Wang, L.; Chen, H.; Xie, X.; Yan, D.; Liang, T. Analysis of water quality indexes and their relationships with vegetation using self-organizing map and geographically and temporally weighted regression. Environ. Res. 2023, 216, 114587. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, M.; Salvati, L. Assessing path-dependent urban growth with geographically weighted regressions. Environ. Impact Assess. Rev. 2023, 98, 106920. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Malashock, D.A.; Delang, M.N.; Becker, J.S.; Serre, M.L.; West, J.J.; Chang, K.-L.; Cooper, O.R.; Anenberg, S.C. Global trends in ozone concentration and attributable mortality for urban, peri-urban, and rural areas between 2000 and 2019: A modelling study. Lancet Planet. Health 2022, 6, e958–e967. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Kang, P.; Jaffe, D.A.; Li, C.; Zhang, X.; Wu, K.; Zhou, M. Understanding the impact of meteorology on ozone in 334 cities of China. Atmos. Environ. 2021, 248, 118221. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Zhang, M.; Liu, H.; Han, X.; Cai, X.; Xu, Y. Model analysis of meteorology and emission impacts on springtime surface ozone in Shandong. Sci. Total Environ. 2021, 771, 144784. [Google Scholar] [CrossRef] [PubMed]
- Pratap, V.; Kumar, A.; Singh, A.K. Overview of solar eclipse of 21st June 2020 and its impact on solar irradiance, surface ozone and different meteorological parameters over eight cities of India. Adv. Space Res. 2021, 68, 4039–4049. [Google Scholar] [CrossRef]
- Gao, Z.; Ivey, C.E.; Blanchard, C.L.; Do, K.; Lee, S.-M.; Russell, A.G. Separating emissions and meteorological impacts on peak ozone concentrations in Southern California using generalized additive modeling. Environ. Pollut. 2022, 307, 119503. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Kobayashi, K.; Li, P.; Xu, Y.; Tang, H.; Guo, A.; Paoletti, E.; Calatayud, V. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmos. Environ. 2019, 217, 116945. [Google Scholar] [CrossRef]
- Cleary, P.A.; Dickens, A.; McIlquham, M.; Sanchez, M.; Geib, K.; Hedberg, C.; Hupy, J.; Watson, M.W.; Fuoco, M.; Olson, E.R.; et al. Impacts of lake breeze meteorology on ozone gradient observations along Lake Michigan shorelines in Wisconsin. Atmos. Environ. 2022, 269, 118834. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Griffith, S.M.; Lin, N. Impacts of land-surface forcing on local meteorology and ozone concentrations in a heavily industrialized coastal urban area. Urban Clim. 2022, 45, 101257. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, Z.; Li, Z.; Wu, J.; Guo, H.; Yin, X.; Ma, X.; Qiao, L. Impacts of meteorological conditions on nocturnal surface ozone enhancement during the summertime in Beijing. Atmos. Environ. 2020, 225, 117368. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Gao, L.; Ma, D.; Song, R.; Zhao, J.; Yang, X.; Li, S.; Zhuang, B.; Li, M.; et al. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060. Environ. Pollut. 2023, 317, 120715. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ccoyllo, O.R.; Ynoue, R.Y.; Martins, L.D.; Andrade, M.d.F. Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil. Atmos. Environ. 2006, 40, 552–562. [Google Scholar] [CrossRef]
- Godowitch, J.M.; Gilliam, R.C.; Roselle, S.J. Investigating the impact on modeled ozone concentrations using meteorological fields from WRF with an updated four–dimensional data assimilation approach. Atmos. Pollut. Res. 2015, 6, 305–311. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Ying, F.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M.; et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Wang, M.; Wright, J.; Brownlee, A.; Buswell, R. A comparison of approaches to stepwise regression on variables sensitivities in building simulation and analysis. Energy Build. 2016, 127, 313–326. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, L.; Chen, D.; Luo, L.; Xiao, K.; Chen, Y.; Liu, H.; Tan, Q.; Yang, F. Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China. Sci. Total Environ. 2023, 901, 166259. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanloo, M.; Choi, Y.; Lops, Y. Deep learning mapping of surface MDA8 ozone: The impact of predictor variables on ozone levels over the contiguous United States. Environ. Pollut. 2023, 326, 121508. [Google Scholar] [CrossRef] [PubMed]
Data Type | Factor | Source | Time Range of Data |
---|---|---|---|
Air quality datasets The natural factor | PM2.5, NO2, O3, CO | China National Urban air quality real-time publishing platform: “http://106.37.208.228:8082/ (accessed on 20 June 2023)” | 2015–2022 |
Temperature, Precipitation, Wind speed, Relative humidity | The National Meteorological Science Data Center: “http://data.cma.cn/metadata/#/ (accessed on 20 June 2023)” | 2015–2022 | |
Solar radiation data and vegetation index (NDVI) | LAADS DAAC: “https://ladsweb.modaps.eosdis.nasa.gov (accessed on 20 June 2023)” | 2015–2022 | |
The social factor | Population density | WorldPop: “https://www.worldpop.org/project/categories (accessed on 20 June 2023)” | 2015–2022 |
Night light index | Harvard Dataverse: “https://dataverse.harvard.edu (accessed on accessed on 20 June 2023)” | 2015–2022 | |
Land-use type | Due to the small annual changes in various land-use types in the study area, the Landsat-8 remote sensing images of 2022 is selected for this research and used the CNLUCC method to calculate land use types. | 2022 |
Items | Regression Coefficient | 95% CI | Collinearity Diagnosis | |
---|---|---|---|---|
VIF | Tolerance | |||
Constant | −1.936 | −19.798~15.926 | - | - |
Temperature | 1.607 ** | 0.933~2.281 | 2.635 | 0.379 |
Solar radiation | 0.000 ** | 0.000~0.000 | 2.635 | 0.379 |
R2 | 0.679 | |||
F-value | F (2.93) = 98.221, p = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, G.-S.; Liu, X.-Z.; Li, Y.; Ren, Y.-Z.; Tang, Q.-Z.; Tang, X.-W. Spatiotemporal Changes in and Forces Driving Ozone Concentration in the Beijing–Tianjin–Hebei (Jing–Jin–Ji) Region from 2015 to 2022. Atmosphere 2024, 15, 416. https://doi.org/10.3390/atmos15040416
Xiong G-S, Liu X-Z, Li Y, Ren Y-Z, Tang Q-Z, Tang X-W. Spatiotemporal Changes in and Forces Driving Ozone Concentration in the Beijing–Tianjin–Hebei (Jing–Jin–Ji) Region from 2015 to 2022. Atmosphere. 2024; 15(4):416. https://doi.org/10.3390/atmos15040416
Chicago/Turabian StyleXiong, Guang-Sen, Xue-Zheng Liu, Yong Li, Yi-Zhuo Ren, Quan-Zhong Tang, and Xi-Wang Tang. 2024. "Spatiotemporal Changes in and Forces Driving Ozone Concentration in the Beijing–Tianjin–Hebei (Jing–Jin–Ji) Region from 2015 to 2022" Atmosphere 15, no. 4: 416. https://doi.org/10.3390/atmos15040416
APA StyleXiong, G. -S., Liu, X. -Z., Li, Y., Ren, Y. -Z., Tang, Q. -Z., & Tang, X. -W. (2024). Spatiotemporal Changes in and Forces Driving Ozone Concentration in the Beijing–Tianjin–Hebei (Jing–Jin–Ji) Region from 2015 to 2022. Atmosphere, 15(4), 416. https://doi.org/10.3390/atmos15040416