Examining the Spatial and Temporal Variation of PM2.5 and Its Linkage with Meteorological Conditions in Dhaka, Bangladesh
Abstract
:1. Introduction
2. Study Area, Dataset, and Methods
2.1. The Study Area
2.2. Datasets
2.2.1. Global Annual PM2.5 Data
2.2.2. In Situ PM2.5 Data
2.2.3. The Meteorological Variables Used in This Study
2.3. Methods
3. Results
3.1. Annual Variations in PM2.5 Concentrations in Dhaka City from 2001 to 2019
3.2. Seasonal Variations of PM2.5 Concentration in Dhaka City
3.3. Hourly PM2.5 Variation in Pre-COVID, COVID, and Post-COVID Periods
4. Relationship Between Daily PM2.5 and Meteorological Factors
4.1. Relationship Between PM2.5 and Relative Humidity
4.2. Relationship Between PM2.5 and Temperature
4.3. Relationship Between PM2.5 and Rainfall
4.4. Relationship Between PM2.5 and Wind Speed
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rentschler, J.; Leonova, N. Global air pollution exposure and poverty. Nat. Commun. 2023, 14, 4432. [Google Scholar] [CrossRef] [PubMed]
- Ericksen, N.J.; Ahmad, Q.K.; Chowdhury, A.R. Socio-economic Implications of Climate Change for Bangladesh. In The Implications of Climate and Sea–Level Change for Bangladesh; Springer: Dordrecht, The Netherlands, 1996; pp. 205–287. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ogawa, S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A., III. Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Eeftens, M.; Tsai, M.-Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; De Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317. [Google Scholar] [CrossRef]
- Scolio, M.; Borha, C.; Kremer, P.; Shakya, K.M. Spatial Analysis of Intra-Urban Air Pollution Disparities through an Environmental Justice Lens: A Case Study of Philadelphia, PA. Atmosphere 2024, 15, 755. [Google Scholar] [CrossRef]
- Gurley, E.S.; Salje, H.; Homaira, N.; Ram, P.K.; Haque, R.; Petri, W.A.; Bresee, J.; Moss, W.J.; Luby, S.P.; Breysse, P.; et al. Seasonal concentrations and determinants of indoor particulate matter in a low-income community in Dhaka, Bangladesh. Environ. Res. 2013, 121, 11–16. [Google Scholar] [CrossRef]
- Lim, C.H.; Ryu, J.; Choi, Y.; Jeon, S.W.; Lee, W.K. Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environ. Int. 2020, 144, 106011. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.-Q. A review of recent advances in research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.K.H.; Brook, J.R.; Dabek-Zlotorzynska, E.; Mabury, S.A. Identification of the Major Sources Contributing to PM2.5Observed in Toronto. Environ. Sci. Technol. 2003, 37, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Fang, X.; Wen, B.; Shan, A. Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere 2017, 183, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Ji, X.; Yang, H.; Yao, X.; Chan, C.K.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ. 2003, 37, 499–510. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B.; et al. Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives. Particuology 2024, 85, 296–309. [Google Scholar] [CrossRef]
- Desservettaz, M.; Pikridas, M.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Hatzianastassiou, N.; Sciare, J.; Mihalopoulos, N.; Bourtsoukidis, E. Emission of volatile organic compounds from residential biomass burning and their rapid chemical transformations. Sci. Total. Environ. 2023, 903, 166592. [Google Scholar] [CrossRef]
- Rahman, M.; Mahamud, S.; Thurston, G.D. Recent spatial gradients and time trends in Dhaka, Bangladesh, air pollution and their human health implications. J. Air Waste Manag. Assoc. 2019, 69, 478–501. [Google Scholar] [CrossRef]
- Fattah, A.; Zannat, E.U.; Morshed, S.R.; Roni, A.T. Modeling the impact of motorized vehicles’ activities on emissions and economic losses in a fast-growing developing city, Dhaka, Bangladesh. J. Transp. Health 2022, 25, 101377. [Google Scholar] [CrossRef]
- Hien, P.D.; Bac, V.T.; Tham, H.C.; Nhan, D.D.; Vinh, L.D. Influence of meteorological conditions on PM2.5 and PM2.5À10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos. Pollut. Res. 2002, 8, 29–37. [Google Scholar]
- Hassan, S.; Gomes, R.F.L.; Bhuiyan, M.A.H.; Rahman, M.T. Land Use and the Climatic Determinants of Population Exposure to PM2.5 in Central Bangladesh. Pollutants 2023, 3, 381–395. [Google Scholar] [CrossRef]
- Faisal, A.-A.; Al Kafy, A.; Fattah, A.; Jahir, D.M.A.; Al Rakib, A.; Rahaman, Z.A.; Ferdousi, J.; Huang, X. Assessment of temporal shifting of PM2.5, lockdown effect, and influences of seasonal meteorological factors over the fastest-growing megacity, Dhaka. Spat. Inf. Res. 2022, 30, 441–453. [Google Scholar] [CrossRef]
- Meng, C.; Cheng, T.; Bao, F.; Gu, X.; Wang, J.; Zuo, X.; Shi, S. The impact of meteorological factors on fine particulate pollution in Northeast China. Aerosol Air Qual. Res. 2020, 20, 1618–1628. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Liu, H.; Liu, S.; Feng, M.; Song, D.; Tan, Q.; Jiang, H.; Zuoqiu, S.; Yang, F. Disparities in precipitation effects on PM2.5 mass concentrations and chemical compositions: Insights from online monitoring data in Chengdu. J. Environ. Sci. 2024, in press. [CrossRef]
- Mazumder, P.; Bin Kabir, S.; Saju, J.A.; Islam, M.R.; Emon, A.I. Measuring and modeling PM2.5 zonal distributions, assembling geospatial and meteorological variables in the Khulna metropolitan area. Urban Clim. 2023, 49, 101518. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Shaikh, A.A.; Saha, B.; Shahrukh, S.; Jawaa, Z.T.; Khan, F. Seasonal changes and respiratory deposition flux of PM2.5 and PM10 bound metals in Dhaka, Bangladesh. Chemosphere 2022, 309, 136794. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Al Awadh, M.; Mallick, J.; Pal, S.C.; Chakraborty, R.; Fattah, A.; Ghose, B.; Kakoli, M.K.A.; Islam, A.; Naqvi, H.R.; et al. Estimating ground-level PM2.5 using subset regression model and machine learning algorithms in Asian megacity, Dhaka, Bangladesh. Air Qual. Atmos. Health 2023, 16, 1117–1139. [Google Scholar] [CrossRef]
- Sarwar, G.; Hogrefe, C.; Henderson, B.H.; Foley, K.; Mathur, R.; Murphy, B.; Ahmed, S. Characterizing variations in ambient PM2.5 concentrations at the U.S. Embassy in Dhaka, Bangladesh using observations and the CMAQ modeling system. Atmos. Environ. 2023, 296, 119587. [Google Scholar] [CrossRef]
- Kulsum, U.; Moniruzzaman, M.; Kulsum, R.A.U. Quantifying the Relationship of Vegetation Cover and Air Pollution: A Spatiotemporal Analysis of PM2.5 and NDVI in Greater Dhaka, Bangladesh. Jagannath Univ. J. Sci. 2021, 7, 54–63. Available online: https://www.researchgate.net/publication/353609676 (accessed on 1 November 2024).
- Begum, B.A.; Hossain, A.; Nahar, N.; Markwitz, A.; Hopke, P.K. Organic and black carbon in PM2.5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual. Res. 2012, 12, 1062–1072. [Google Scholar] [CrossRef]
- Mukta, T.A.; Hoque, M.M.M.; Sarker, M.E.; Hossain, M.N.; Biswas, G.K. Seasonal variations of gaseous air pollutants (SO2, NO2, O3, CO) and particulates (PM2.5, PM10) in Gazipur: An industrial city in Bangladesh. Adv. Environ. Technol. 2020, 6, 195–209. [Google Scholar] [CrossRef]
- Begum, B.A.; Hopke, P.K. Ambient air quality in Dhaka Bangladesh over two decades: Impacts of policy on air quality. Aerosol Air Qual. Res. 2018, 18, 1910–1920. [Google Scholar] [CrossRef]
- Rahman, M.; Meng, L.; Mathews, A.J.; Bertman, S. Spatiotemporal Analysis of Urban Growth and PM2.5 Concentrations in Sylhet, Bangladesh. Atmosphere 2024, 15, 1305. [Google Scholar] [CrossRef]
- Zarin, T.; Zannat, E.U. Assessing the potential impacts of LULC change on urban air quality in Dhaka city. Ecol. Indic. 2023, 154, 110746. [Google Scholar] [CrossRef]
- Saha, M.; Al Kafy, A.; Bakshi, A.; Nath, H.; Alsulamy, S.; Rahaman, Z.A.; Saroar, M. The urban air quality nexus: Assessing the interplay of land cover change and air pollution in emerging South Asian cities. Environ. Pollut. 2024, 361, 124877. [Google Scholar] [CrossRef]
- Al Nayeem, A.; Hossain, M.S.; Majumder, A.K.; Carter, W.S. Spatiotemporal Variation of Brick Kilns and it’s relation to Ground-level PM2.5 through MODIS Image at Dhaka District, Bangladesh. Int. J. Environ. Pollut. Environ. Model. 2019, 2, 277–284. [Google Scholar]
- Motalib, M.A.; Lasco, R.D. Assessing Air Quality in Dhaka City. 2013. Available online: www.ijsr.net (accessed on 30 October 2024).
- Khuda, K.E. Air pollution in the capital city of bangladesh: Its causes and impacts on human health. Pollution 2020, 6, 737–750. [Google Scholar] [CrossRef]
- World’s Most Polluted Cities in 2023-PM2.5 Ranking|IQAir. Available online: https://www.iqair.com/world-most-polluted-cities (accessed on 17 November 2024).
- Rahman, R.; Lateh, H. Climate change in Bangladesh: A spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theor. Appl. Clim. 2015, 128, 27–41. [Google Scholar] [CrossRef]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef]
- Mohtar, Z.A.; Yusof, N.F.F.M.; Yahaya, A.S.; Ramli, N.A.; Yahya, A.S. Comparison of Particulate Matter (PM10) Monitoring Using Beta Attenuation Monitor (BAM) and Simple Instrument. Artic. Int. J. Eng. Technol. 2013, 3, 358. Available online: https://www.researchgate.net/publication/330555668 (accessed on 30 August 2024).
- Chung, A.; Chang, D.P.; Kleeman, M.J.; Perry, K.D.; Cahill, T.A.; Dutcher, D.; McDougall, E.M.; Stroud, K. Comparison of real-time instruments used to monitor airborne particulate matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Pérez, I.A.; García, M.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Key points in air pollution meteorology. Int. J. Environ. Res. Public Health 2020, 17, 8349. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Thurston, G.D.; Virani, S.; Lavie, C.J. PM2.5 and cardiovascular diseases: State-of-the-Art review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200217. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Bi, C.; Jia, J.; Zeng, Y.; Chen, Z. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China. J. Clean. Prod. 2020, 265, 121826. [Google Scholar] [CrossRef]
- Ommi, A.; Emami, F.; Zíková, N.; Hopke, P.K.; Begum, B.A. Trajectory-based models and remote sensing for biomass burning assessment in Bangladesh. Aerosol Air Qual. Res. 2017, 17, 465–475. [Google Scholar] [CrossRef]
- Rahman, M.; Begum, B.A.; Hopke, P.K.; Nahar, K.; Thurston, G.D. Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh. Environ. Pollut. 2020, 264, 114798. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, Y.; Bai, Y.; Zhang, L. Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Adv. Meteorol. 2020, 2020, 2398146. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, J.; Gao, B.; Xu, B.; Dai, S.; He, B.; Xie, X. Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region. Sci. Rep. 2017, 7, 40735. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Wen, T.; Huang, X.; Liu, J.; Tang, G.; Yang, Y.; Li, X.; Shen, R.; Hu, B.; et al. Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Sci. Total. Environ. 2019, 677, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Chang, S.-W.; Chen, Y.-J.; Chen, H.-L. Possible warming effect of fine particulate matter in the atmosphere. Commun. Earth Environ. 2021, 2, 208. [Google Scholar] [CrossRef]
- Chen, L.; Mao, F.; Hong, J.; Zang, L.; Chen, J.; Zhang, Y.; Gan, Y.; Gong, W.; Xu, H. Improving PM2.5 predictions during COVID-19 lockdown by assimilating multi-source observations and adjusting emissions. Environ. Pollut. 2021, 297, 118783. [Google Scholar] [CrossRef] [PubMed]
- Slezakova, K.; Pereira, M.C. 2020 COVID-19 lockdown and the impacts on air quality with emphasis on urban, suburban and rural zones. Sci. Rep. 2021, 11, 21336. [Google Scholar] [CrossRef] [PubMed]
- Benchrif, A.; Wheida, A.; Tahri, M.; Shubbar, R.M.; Biswas, B. Air quality during three COVID-19 lockdown phases: AQI, PM2.5 and NO2 assessment in cities with more than 1 million inhabitants. Sustain. Cities Soc. 2021, 74, 103170. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Kong, S.; Zheng, H.; Chen, N.; Zhu, B.; Xu, K.; Cao, W.; Zhang, Y.; Zheng, M.; Cheng, Y.; et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. NPJ Clim. Atmos. Sci. 2021, 4, 40. [Google Scholar] [CrossRef]
- Li, S.; Xie, G.; Ren, J.; Guo, L.; Yang, Y.; Xu, X. Urban PM2.5 concentration prediction via attention-based CNN–LSTM. Appl. Sci. 2020, 10, 1953. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Zhu, Y.; Yang, L.; Bi, P. Analysis of the impact of multiscale green landscape on urban PM2.5. Air Qual. Atmos. Health 2022, 15, 1319–1332. [Google Scholar] [CrossRef]
- Gao, G.; Pueppke, S.G.; Tao, Q.; Wei, J.; Ou, W.; Tao, Y. Effect of urban form on PM2.5 concentrations in urban agglomerations of China: Insights from different urbanization levels and seasons. J. Environ. Manag. 2022, 327, 116953. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.-P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological influences on PM2.5 and O3 trends and associated health burden since China’s clean air actions. Sci. Total. Environ. 2020, 744, 140837. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wu, R.; Cen, Y. Spatio-temporal fusion of meteorological factors for multi-site PM2.5 prediction: A deep learning and time-variant graph approach. Environ. Res. 2023, 239, 117286. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Ma, Y.; Feng, F.; Zhang, Y.; Shen, J.; Wang, H.; Guo, Y.; Cheng, Y. Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine. Atmos. Environ. 2021, 255, 118437. [Google Scholar] [CrossRef]
- Ahmed, F.; Bayazid, A.Z.M.; Islam, M.; Rahaman, Z.; Al Muntasir, F. The terrible air pollution in Dhaka city is getting worse. GSC Adv. Res. Rev. 2024, 19, 42–52. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Petetin, H.; Turrubiates, R.F.M.; Achebak, H.; García-Pando, C.P.; Ballester, J. Population exposure to multiple air pollutants and its compound episodes in Europe. Nat. Commun. 2024, 15, 2094. [Google Scholar] [CrossRef]
- de Hoogh, K.; Chen, J.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe—Evaluation of spatiotemporal stability. Environ. Int. 2018, 120, 81–92. [Google Scholar] [CrossRef]
- Chen, J.; de Hoogh, K.; van Donkelaar, A.; Ketzel, M.; Hertel, O.; Gulliver, J.; Martin, R.; Brunekreef, B.; Hoek, G. Assessing spatial variation of PM2.5 and NO2 across Europe using Geographically Weighted Regression. Environ. Epidemiol. 2019, 3 (Suppl. S1), 65. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, Y. Spatio-temporal variations of PM2.5 concentrations and related premature deaths in Asia, Africa, and Europe from 2000 to 2018. Environ. Impact Assess. Rev. 2023, 99, 107046. [Google Scholar] [CrossRef]
- Hael, A. Modeling spatial–temporal variability of PM2.5 concentrations in Belt and Road Initiative (BRI) region via functional adaptive density approach. Environ. Sci. Pollut. Res. 2023, 30, 110931. [Google Scholar] [CrossRef]
- Yang, S.; Fang, D.; Chen, B. Human health impact and economic effect for PM2.5 exposure in typical cities. Appl. Energy 2019, 249, 316–325. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Guan, Y.; Shao, C.; Niu, R. Assessing the health impacts of PM2.5 and ozone pollution and their comprehensive correlation in Chinese cities based on extended correlation coefficient. Ecotoxicol. Environ. Saf. 2023, 262, 115125. [Google Scholar] [CrossRef] [PubMed]
- Nan, N.; Yan, Z.; Zhang, Y.; Chen, R.; Qin, G.; Sang, N. Overview of PM2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. Chemosphere 2023, 323, 138181. [Google Scholar] [CrossRef]
Year | Month | Mean | Median | Std_De | Min | Max | Year | Month | Mean | Median | Std_Dev | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | January | 255.8 | 249 | 62.26 | 160 | 581 | 2020 | January | 236.1 | 226 | 66.2 | 92 | 447 |
2018 | February | 221.9 | 194 | 72.94 | 123 | 603 | 2020 | February | 218.0 | 199.5 | 55.8 | 92 | 482 |
2018 | March | 181.9 | 170 | 48.41 | 71 | 520 | 2020 | March | 173.8 | 168 | 41.4 | 66 | 367 |
2018 | April | 146.2 | 153 | 41.45 | 22 | 416 | 2020 | April | 124.2 | 123 | 37.6 | 54 | 233 |
2018 | May | 112.0 | 111 | 36.51 | 28 | 197 | 2020 | May | 115.9 | 114 | 41.3 | 25 | 270 |
2018 | June | 99.27 | 95 | 33.16 | 8 | 185 | 2020 | June | 94.41 | 85 | 32.1 | 16 | 194 |
2018 | July | 88.27 | 83 | 31.55 | 24 | 198 | 2020 | July | 91.61 | 82 | 33.7 | 36 | 210 |
2018 | August | 100.5 | 100.5 | 35.37 | 29 | 188 | 2020 | August | 81.76 | 74 | 36.2 | 12 | 190 |
2018 | September | 2020 | September | 95.11 | 86 | 38.5 | 18 | 187 | |||||
2018 | October | 2020 | October | 129.4 | 142 | 42.3 | 15 | 263 | |||||
2018 | November | 197.5 | 183 | 53.59 | 66 | 452 | 2020 | November | 166.4 | 168 | 49.5 | 23 | 334 |
2018 | December | 212.2 | 204 | 50.07 | 70 | 408 | 2020 | December | 233.3 | 223 | 50.3 | 158 | 434 |
Year | Month | Mean | Median | Std_De | Min | Max | Year | Month | Mean | Median | Std_Dev | Min | Max |
2022 | January | 228.4 | 214 | 55.5 | 159 | 489 | 2023 | January | 283.9 | 272 | 71.1 | 160 | 539 |
2022 | February | 207.9 | 193 | 48.8 | 109 | 446 | 2023 | February | 225.1 | 198 | 73.2 | 128 | 598 |
2022 | March | 199.6 | 185 | 50.1 | 127 | 518 | 2023 | March | 194.7 | 178 | 56.6 | 85 | 569 |
2022 | April | 147.4 | 153 | 18.9 | 86 | 211 | 2023 | April | 177.9 | 162 | 62.9 | 87 | 487 |
2022 | May | 146.1 | 154 | 28.2 | 77 | 279 | 2023 | May | 150.6 | 154 | 27.3 | 58 | 250 |
2022 | June | 137.3 | 145 | 24.9 | 73 | 185 | 2023 | June | 130.5 | 146.5 | 36.3 | 33 | 204 |
2022 | July | 108.5 | 104 | 24.1 | 61 | 161 | 2023 | July | 93.7 | 88 | 22.2 | 49 | 172 |
2022 | August | 102.7 | 95 | 32.8 | 35 | 193 | 2023 | August | 132.4 | 136.5 | 35.9 | 38 | 275 |
2022 | September | 122.1 | 117.5 | 37.5 | 45 | 282 | 2023 | September | 116.9 | 113 | 35.5 | 45 | 217 |
2022 | October | 134.6 | 151 | 42.9 | 13 | 307 | 2023 | October | 152.1 | 161 | 40.1 | 55 | 267 |
2022 | November | 177.9 | 175 | 35.8 | 79 | 316 | 2023 | November | 176.8 | 176 | 55.2 | 18 | 360 |
2022 | December | 249.8 | 231 | 69.8 | 150 | 510 | 2023 | December | 226.4 | 217.5 | 63.4 | 63 | 423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; Meng, L. Examining the Spatial and Temporal Variation of PM2.5 and Its Linkage with Meteorological Conditions in Dhaka, Bangladesh. Atmosphere 2024, 15, 1426. https://doi.org/10.3390/atmos15121426
Rahman M, Meng L. Examining the Spatial and Temporal Variation of PM2.5 and Its Linkage with Meteorological Conditions in Dhaka, Bangladesh. Atmosphere. 2024; 15(12):1426. https://doi.org/10.3390/atmos15121426
Chicago/Turabian StyleRahman, Mizanur, and Lei Meng. 2024. "Examining the Spatial and Temporal Variation of PM2.5 and Its Linkage with Meteorological Conditions in Dhaka, Bangladesh" Atmosphere 15, no. 12: 1426. https://doi.org/10.3390/atmos15121426
APA StyleRahman, M., & Meng, L. (2024). Examining the Spatial and Temporal Variation of PM2.5 and Its Linkage with Meteorological Conditions in Dhaka, Bangladesh. Atmosphere, 15(12), 1426. https://doi.org/10.3390/atmos15121426