Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methane Estimation, Rumen Fluid and Faeces Collection Digestibility, and Volatile Fatty Acid Determination
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savsani, H.H.; Padodara, R.J.; Bhadaniya, A.R.; Kalariya, V.A.; Javia, B.B.; Ghodasara, S.N.; Ribadiya, N.K. Impact of climate on feeding, production and reproduction of animals-a review. Agric. Rev. 2015, 36, 26–36. [Google Scholar] [CrossRef]
- Beede, D.; Collier, R. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Prathap, P.; DiGiacomo, K.; Cottrell, J.J.; Leury, B.J.; Chauhan, S.S.; Dunshea, F.R. Reducing rumen starch fermentation of wheat with 3% naoh does not reduce whole tract starch digestibility and increases energy utilization in wethers during heat stress. Small Rumin. Res. 2021, 204, 106523. [Google Scholar] [CrossRef]
- Vanlierde, A.; Soyeurt, H.; Gengler, N.; Colinet, F.G.; Froidmont, E.; Kreuzer, M.; Grandl, F.; Bell, M.; Lund, P.; Olijhoek, D.W.; et al. Short communication: Development of an equation for estimating methane emissions of dairy cows from milk fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. J. Dairy Sci. 2018, 101, 7618–7624. [Google Scholar] [CrossRef] [Green Version]
- Silveira, S.R.; Terry, S.A.; Biffin, T.E.; Maurício, R.M.; Pereira, L.G.R.; Ferreira, A.L.; Ribeiro, R.S.; Sacramento, J.P.; Tomich, T.R.; Machado, F.S.; et al. Replacement of soybean meal with soybean cake reduces methane emissions in dairy cows and an assessment of a face-mask technique for methane measurement. Front. Vet. Sci. 2019, 6, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopherson, R.J.; Kennedy, P.M. Effect of the thermal environment on digestion in ruminants. Can. J. Anim. Sci. 1983, 63, 477–496. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Danieli, P.P.; Bani, P.; Nardone, A.; Ronchi, B. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int. J. Biometeorol. 2009, 53, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Yu, J.; Hartanto, R.; Zhang, J.; Yang, A.; Qi, D. Effects of heat challenge on growth performance, ruminal, blood and physiological parameters of chinese crossbred goats. Small Rumin. Res. 2019, 174, 125–130. [Google Scholar] [CrossRef]
- Maloiy, G.M.O.; Kanui, T.I.; Towett, P.K.; Wambugu, S.N.; Miaron, J.O.; Wanyoike, M.M. Effects of dehydration and heat stress on food intake and dry matter digestibility in east african ruminants. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, 185–190. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Nejad, J.G.; Lohakare, J.D.; West, J.W.; Sung, K.I. Effects of water restriction after feeding during heat stress on nutrient digestibility, nitrogen balance, blood profile and characteristics in corriedale ewes. Anim. Feed Sci. Technol. 2014, 193, 1–8. [Google Scholar] [CrossRef]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in holstein heifers. Anaerobe 2007, 13, 57–64. [Google Scholar] [CrossRef]
- Pragna, P.; Sejian, V.; Soren, N.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Bhatta, R. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (osmanabadi, malabari and salem black) goat breeds. Biol. Rhythm Res. 2018, 49, 551–565. [Google Scholar] [CrossRef]
- Nonaka, I.; Takusari, N.; Tajima, K.; Suzuki, T.; Higuchi, K.; Kurihara, M. Effects of high environmental temperatures on physiological and nutritional status of prepubertal holstein heifers. Livest. Sci. 2008, 113, 14–23. [Google Scholar] [CrossRef]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Dunshea, F.R. Towards sustainable livestock production: Estimation of methane emissions and dietary interventions for mitigation. Sustainability 2021, 13, 6081. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. 2020. Available online: https://ourworldindata.org/ (accessed on 23 May 2022).
- Chung, T. Global Assessment: Urgent Steps Must Be Taken to Reduce Methane Emissions This Decade; United Nations Climate Change: Bonn, Germany, 2021. [Google Scholar]
- Chen, J.; Guo, K.; Song, X.; Lan, L.; Liu, S.; Hu, R.; Luo, J. The anti–heat stress effects of chinese herbal medicine prescriptions and rumen-protected γ-aminobutyric acid on growth performance, apparent nutrient digestibility, and health status in beef cattle. Anim. Sci. J. 2020, 91, e13361. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- RealisticAgri. Bioprotect. Available online: https://www.realisticagri.com/nutrition/bioprotect/ (accessed on 22 April 2020).
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Reducing the fermentability of wheat with a starch binding agent reduces some of the negative effects of heat stress in sheep. Animals 2022, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Shipandeni, M.N.T.; Cruywagen, C.W.; Raffrenato, E. Effects of a starch binding agent on in vitro rumen degradability of maize and sorghum starch. S. Afr. J. Anim. Sci. 2020, 50, 814–818. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Sullivan, M.; Cottrell, J.J.; Leury, B.J.; Gaughan, J.B.; Dunshea, F.R. Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Trop. Anim. Health Prod. 2018, 50, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; McMeniman, N. Effect of nutrition level and diets on creatinine excretion by sheep. Small Rumin. Res. 2006, 63, 265–273. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Leury, B.; Liu, F.; Dunshea, F.R. Exhaled breath condensate hydrogen peroxide concentration, a novel biomarker for assessment of oxidative stress in sheep during heat stress. Anim. Prod. Sci. 2015, 56, 1105–1112. [Google Scholar] [CrossRef]
- Oss, D.B.; Marcondes, M.I.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; Ribeiro, G.O.; Chizzotti, M.L.; Ferreira, A.L.; Campos, M.M.; Maurício, R.M.; et al. An evaluation of the face mask system based on short-term measurements compared with the sulfur hexafluoride (sf6) tracer, and respiration chamber techniques for measuring ch4 emissions. Anim. Feed Sci. Technol. 2016, 216, 49–57. [Google Scholar] [CrossRef]
- AFIA. AFIA—Laboratory Methods Manual; Australian Fodder Industry Association Inc.: Ascot Vale, Australia, 2011; Volume 7. [Google Scholar]
- Abeni, F.; Stefanini, L.; Calamari, L.; Maianti, M.G.; Cappa, V. Effects of heat stress on lactating dairy cows and feeding strategy to reduce its impact on milk yield and quality. Ann. Della Fac. Agrar.—Univ. Del Sacro Cuore Milano (Italy) 1993, 33, 151–170. [Google Scholar]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Papadomichelakis, G.; Fegeros, K. Reliability of acid-insoluble ash as internal marker for the measurement of digestibility in rabbits. World Rabbit Sci. 2020, 28, 1–12. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P. Effect of Feeding Slowly Fermentable Grains as Protection against Heat Stress in Ruminants; The University of Melbourne: Melbourne, Australia, 2017; p. 282. [Google Scholar]
- Moate, P.J.; Williams, S.R.O.; Jacobs, J.L.; Hannah, M.C.; Beauchemin, K.A.; Eckard, R.J.; Wales, W.J. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows. J. Dairy Sci. 2017, 100, 7139–7153. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Deighton, M.H.; Hannah, M.C.; Ribaux, B.E.; Morris, G.L.; Jacobs, J.L.; Hill, J.; Wales, W.J. Effects of feeding wheat or corn and of rumen fistulation on milk production and methane emissions of dairy cows. Anim. Prod. Sci. 2018, 59, 891–905. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Russo, V.M.; Sawyer, I.; Leury, B.J. A starch-binding agent decreases the in vitro rate of fermentation of wheat. J. Dairy Sci. 2012, 95, 199. [Google Scholar]
- Dunshea, F.; Pate, S.A.; Russo, V.M.; Leury, B.J. A starch binding agent decreases the in vitro rate of fermentation of wheat in a dose-dependent manner. In Proceedings of the 64th European Federation of Animal Science, Nantes, France, 26–30 August 2013. [Google Scholar]
- Lamba, J.S.; Wadhwa, M.; Bakshi, M.P.S. Impact of level of rumen undegradable protein on in-vitro methane production and in-sacco degradability of concentrate mixtures. Cellulose 2019, 8, 15–70. [Google Scholar]
- Lamba, J.S.; Hundal, J.S.; Wadhwa, M.; Bakshi, M.P.S. In-vitro methane production potential and in-sacco degradability of conventional and non-conventional protein supplements. Indian J. Anim. Sci. 2014, 84, 539–543. [Google Scholar]
- Yadav, B.; Singh, G.; Wankar, A.; Dutta, N.; Chaturvedi, V.; Verma, M.R. Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian-Australas. J. Anim. Sci. 2016, 29, 1585. [Google Scholar] [CrossRef]
- Pinto, A.; Yin, T.; Reichenbach, M.; Bhatta, R.; Malik, P.K.; Schlecht, E.; König, S. Enteric methane emissions of dairy cattle considering breed composition, pasture management, housing conditions and feeding characteristics along a rural-urban gradient in a rising megacity. Agriculture 2020, 10, 628. [Google Scholar] [CrossRef]
- Jefferson, A.; Costa-Campos, A.; Nascimento-Coutinho, D.; Soares-Freitas, C.A.; dos-Anjos, A.J.; Rocha-Bezerra, L. Effect of the diet on ruminal parameters and rumen microbiota: Review: Effect of the diet on rumen fermentation. Rev. Colomb. De Cienc. Anim.—RECIA 2022, 14, e886. [Google Scholar]
- Khorrami, B.; Kheirandish, P.; Zebeli, Q.; Castillo-Lopez, E. Variations in fecal ph and fecal particle size due to changes in dietary starch: Their potential as an on-farm tool for assessing the risk of ruminal acidosis in dairy cattle. Res. Vet. Sci. 2022, 152, 678–686. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Schmitz-Esser, S.; Klevenhusen, F.; Podstatzky-Lichtenstein, L.; Wagner, M.; Zebeli, Q. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe 2013, 20, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.; Price, M.; Digiaconomo, K.; Henry, M.L.; Leury, B.; Russo, V.; Cakebread, P.; Dunshea, F. Rumen protection of wheat with a starch binding agent does not reduce whole tract digestibility in sheep. proc. Aust. Soc. Anim. Prod. 2014, 30, 107. [Google Scholar]
- Philippeau, C.; Martin, C.; Michalet-Doreau, B. Influence of grain source on ruminal characteristics and rate, site, and extent of digestion in beef steers. J. Anim. Sci. 1999, 77, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Kirleis, A.W. Influence of protein on starch gelatinization in sorghum. Cereal Chem. 1988, 65, 457–462. [Google Scholar]
- Garry, B.; McGovern, F.M.; Kennedy, E.; Baumont, R.; Boland, T.M.; Wright, M.M.; O’Donovan, M.; Lewis, E. Comparison of sheep and dairy cows for in vivo digestibility of perennial ryegrass. Animal 2021, 15, 100258. [Google Scholar] [CrossRef]
- Fraley, S.E.; Hall, M.B.; Nennich, T.D. Effect of variable water intake as mediated by dietary potassium carbonate supplementation on rumen dynamics in lactating dairy cows. J. Dairy Sci. 2015, 98, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, L.; Dong, R.Y.; Liang, M.Y.; Lu, Y.; Sun, X.Q.; Zhao, X. Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- West, J.W.; Coppock, C.E.; Milam, K.Z.; Nave, D.H.; Labore, J.M.; Rowe, L.D., Jr. Potassium carbonate as a potassium source and dietary buffer for lactating holstein cows during hot weather. J. Dairy Sci. 1987, 70, 309–320. [Google Scholar] [CrossRef]
- Chaidanya, K.; Soren, N.M.; Sejian, V.; Bagath, M.; Manjunathareddy, G.B.; Kurien, K.E.; Varma, G.; Bhatta, R. Impact of heat stress, nutritional stress and combined (heat and Nutritional) stresses on rumen enzymes and fermentation metabolites in Osmanabadi bucks. In Proceedings of the Climate Change Adaptation and Biodiversity: Ecological Sustainability and Resource Management for Livelihood Security, Portblair, India, 8–10 December 2016; Andaman Science Association: Portblair, India, 2016. [Google Scholar]
- Amini, A.; Pirmohammadi, R.; Khalilvandi-Behroozyar, H.; Mazaheri-Khameneh, R. Effects of heat stress on in vivo and in vitro ruminal metabolism in fat-tailed ewes. Anim. Prod. Sci. 2022, 62, 860–869. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. De Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Wu, S.; Liu, S.; Sun, L.; Feng, Y.; Cao, Y.; Chai, S.; Zhang, G.; Yao, J. From maternal grazing to barn feeding during pre-weaning period: Altered gastrointestinal microbiota contributes to change the development and function of the rumen and intestine of yak calves. Front. Microbiol. 2020, 11, 485. [Google Scholar] [CrossRef]
- Moate, P.J.; Jacobs, J.L.; Hannah, M.C.; Morris, G.L.; Beauchemin, K.A.; Hess, P.S.A.; Eckard, R.J.; Liu, Z.; Rochfort, S.; Wales, W.J. Adaptation responses in milk fat yield and methane emissions of dairy cows when wheat was included in their diet for 16 weeks. J. Dairy Sci. 2018, 101, 7117–7132. [Google Scholar] [CrossRef] [Green Version]
WD | BD | MD | |
---|---|---|---|
Diet Composition, % | |||
Cracked wheat | 50 | 0 | 0 |
Cracked wheat with 2% BP | 0 | 50 | 0 |
Cracked maize | 0 | 0 | 50 |
Lucerne chaff | 25 | 25 | 25 |
Oaten chaff | 25 | 25 | 25 |
Chemical Composition of the Diet | |||
Dry matter, % | 89.0 | 89.0 | 88.2 |
Organic matter, % | 95.0 | 95.0 | 95.5 |
Crude protein, % | 14.7 | 14.1 | 13.1 |
Neutral detergent fibre, % | 29 | 30 | 28.5 |
Acid detergent fibre, % | 16.3 | 16.3 | 16.3 |
Metabolisable energy, MJ/kg DM | 11.5 | 11.6 | 11.7 |
Total starch, % | 38.0 | 39.5 | 40.5 |
Parameters | WD | BD | MD | SED | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | Diet | Period | Diet × Period | ||
Total methane production (CH4, g/day) | 27.8 | 23.0 | 24.2 | 20.6 | 18.1 | 19.0 | 37.1 | 27.9 | 32.2 | 3.66 | <0.001 | 0.04 | 0.77 |
Methane yield (CH4, g/kg of DMI) | 23.9 | 20.6 | 19.2 | 17.6 | 16.4 | 14.8 | 30.7 | 23.5 | 24 | 3.10 | <0.001 | 0.01 | 0.73 |
Emission intensity (CH4, g/kg of /BW) | 0.67 | 0.54 | 0.57 | 0.49 | 0.43 | 0.44 | 0.87 | 0.64 | 0.73 | 0.09 | <0.001 | 0.02 | 0.76 |
Parameters | WD | BD | MD | SED | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | Diet | Period | Diet × Period | ||
DMI, kg/day | 1.17 | 1.12 | 1.29 | 1.17 | 1.11 | 1.30 | 1.22 | 1.19 | 1.37 | 0.05 | 0.29 | <0.001 | 0.84 |
DMI, g/kg/day | 27.7 | 26.4 | 30.6 | 27.5 | 25.9 | 30.7 | 28.4 | 27.6 | 31.6 | 0.94 | 0.36 | <0.001 | 0.89 |
Rumen fluid pH | 6.60 | 6.73 | 6.60 | 6.59 | 6.58 | 6.73 | 6.68 | 6.84 | 6.73 | 0.17 | 0.61 | 0.58 | 0.72 |
Faecal pH | 8.20 | 8.03 | 7.93 | 8.22 | 8.11 | 8.14 | 7.72 | 7.49 | 7.05 | 0.23 | <0.001 | 0.05 | 0.51 |
DM digestibility, % | 82.8 | 83.4 | 82.8 | 83.3 | 84.6 | 84.8 | 82.1 | 82.1 | 80.1 | 0.58 | <0.001 | <0.001 | <0.001 |
OM digestibility, % | 83.3 | 84.3 | 84.4 | 83.9 | 85.1 | 85.5 | 82.8 | 82.7 | 80.5 | 0.70 | <0.001 | 0.06 | <0.001 |
Starch digestibility, % | 97.2 | 96.7 | 97.3 | 98.7 | 97.9 | 97.3 | 94.8 | 91.3 | 85.2 | 1.60 | <0.001 | <0.001 | <0.001 |
NDF digestibility, % | 68.5 | 71.4 | 72.0 | 69.3 | 73.0 | 73.0 | 72.8 | 72.2 | 71.4 | 1.62 | 0.38 | 0.06 | 0.13 |
ADF digestibility, % | 68.1 | 70.7 | 71.6 | 67.6 | 72.1 | 71.6 | 73.6 | 73.8 | 73.6 | 1.71 | 0.01 | 0.01 | 0.28 |
WD | BD | MD | SED | p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | Diet | Period | Diet × Period | ||
Acetate, mmol/L | 11.7 | 9.20 | 7.88 | 9.47 | 9.98 | 7.42 | 10.7 | 9.03 | 8.82 | 1.97 | 0.79 | 0.12 | 0.83 |
Acetate, % total VFA | 20.7 | 25.8 | 21.0 | 21.8 | 22.6 | 23.2 | 24.1 | 28.5 | 26.9 | 4.20 | 0.18 | 0.39 | 0.89 |
Propionate, mmol/L | 29.7 | 15.6 | 21.1 | 20.7 | 15.6 | 12.7 | 16.3 | 11.9 | 11.8 | 3.18 | 0.002 | <0.001 | 0.12 |
Propionate, % VFA | 51.9 | 44.1 | 48.8 | 46.7 | 39.5 | 37.7 | 38.7 | 35.8 | 38.7 | 5.80 | 0.057 | 0.16 | 0.76 |
Iso-butyrate, mmol/L | 0.40 | 0.57 | 0.78 | 0.39 | 0.80 | 0.81 | 0.60 | 0.55 | 0.67 | 0.14 | 0.29 | 0.006 | 0.21 |
Iso-butyrate, % VFA | 0.72 | 1.57 | 1.92 | 0.96 | 2.02 | 2.54 | 1.61 | 1.81 | 2.19 | 0.34 | 0.078 | <0.001 | 0.27 |
Butyrate, mmol/L | 13.8 | 8.65 | 9.23 | 12.9 | 14.0 | 11.0 | 13.9 | 10.2 | 9.45 | 2.57 | 0.29 | 0.06 | 0.54 |
Butyrate, % VFA | 23.4 | 24.0 | 23.9 | 27.1 | 33.3 | 33.3 | 33.3 | 31.9 | 29.7 | 4.34 | 0.017 | 0.77 | 0.56 |
Iso-valerate, mmol/L | 0.21 | 0.35 | 0.59 | 0.52 | 0.45 | 0.51 | 0.36 | 0.33 | 0.42 | 0.15 | 0.57 | 0.10 | 0.30 |
Iso-valerate, % VFA | 0.41 | 0.99 | 1.95 | 1.26 | 1.12 | 1.64 | 0.97 | 1.07 | 1.37 | 0.56 | 0.86 | 0.028 | 0.49 |
Valerate, mmol/L | 1.46 | 1.28 | 0.92 | 0.90 | 0.62 | 0.54 | 0.44 | 0.33 | 0.35 | 0.23 | 0.001 | 0.02 | 0.45 |
Valerate, % VFA | 2.54 | 3.51 | 2.40 | 2.22 | 1.46 | 1.61 | 1.15 | 1.02 | 1.13 | 0.53 | <0.001 | 0.54 | 0.13 |
Total VFAs, mmol/L | 57.4 | 35.6 | 40.5 | 44.6 | 41.5 | 32.9 | 42.3 | 32.4 | 31.5 | 5.02 | 0.01 | <0.001 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs. Atmosphere 2023, 14, 605. https://doi.org/10.3390/atmos14030605
Prathap P, Chauhan SS, Leury BJ, Cottrell JJ, Joy A, Zhang M, Dunshea FR. Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs. Atmosphere. 2023; 14(3):605. https://doi.org/10.3390/atmos14030605
Chicago/Turabian StylePrathap, Pragna, Surinder S. Chauhan, Brian J. Leury, Jeremy J. Cottrell, Aleena Joy, Minghao Zhang, and Frank R. Dunshea. 2023. "Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs" Atmosphere 14, no. 3: 605. https://doi.org/10.3390/atmos14030605
APA StylePrathap, P., Chauhan, S. S., Leury, B. J., Cottrell, J. J., Joy, A., Zhang, M., & Dunshea, F. R. (2023). Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs. Atmosphere, 14(3), 605. https://doi.org/10.3390/atmos14030605