Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection
Abstract
:1. Introduction
2. Theory and Methods
2.1. Gas Molecular Collision Model
- The molecular repulsion range is set to a rigid sphere of diameter d;
- The collisions between molecules are elastic;
- The background molecules are approximately stationary;
- The incident molecules move at average speed .
2.2. Surface Material Outgassing
2.3. Attitude Control Jet
2.4. Simulation Model
- The wall condition of the platform surface was set to diffuse scattering, and the wall condition of the collision domain and sensor sampling port was set to frozen;
- The gas molecules of outgassing were N2, oxygen (O2), and argon (Ar), and were set on the surface of the platform (the effective surface area is 3.323 m2) at the ratio of 78:21:1 and at the same speed as the sounding rocket;
- The gas molecules of the jet were N2 and were set at the nozzle outlet with the calculated velocity of the three-dimensional cone distribution during jetting; the jet duration was set to 1 s, and the number of jets was set to 50 to simulate the continuous state;
- The collision nodes were added, and the background parameters were input, such as numerical density, molar mass, temperature, and average collision frequency;
- The simulated molecules in the model were only the particles of outgassing or the jet, not the background atmosphere;
- Due to the limited computing power, the maximum number of simulated molecules in the model was 105.
3. Results and Analysis
3.1. The Influence of Surface Material Outgassing on Detection
3.2. The Influence of Attitude Control Jet on Detection
3.3. The Influence of Nozzle Outlet Cross-Sectional Area on Detection
3.3.1. N2
3.3.2. He
3.3.3. N2 Temperature
3.4. The Influence of Nozzle Rotation Angle and Outlet Angle on Detection
3.4.1. Rotation Angle
3.4.2. Outlet Angle
3.5. The Influence of Nozzle Center Height on Detection
4. Conclusions
- A simulation model based on COMSOL and Monte Carlo was proposed to simulate and analyze the influence of surface material outgassing and attitude control jet on sounding rocket detection under different solar activity, geomagnetic activity, and altitude;
- Regardless of medium or low solar activity or medium or low geomagnetic activity, surface material outgassing has little influence on sounding rocket detection. However, a low-altitude attitude control jet has a greater influence on sounding rocket detection, which can be reduced by reducing the number of low-altitude attitude controls and decreasing the transmission probability;
- According to the simulation, the transmission probability can be reduced by increasing the cross-sectional area of the de Laval nozzle outlet or increasing the gas temperature for attitude control within the allowable range of the project. Increasing the nozzle’s rotation angle, the outlet angle within 36°, and the center height within 250 mm can decrease the transmission probability;
- Since the NRLMSISE-00 model is higher than the actual atmospheric measurement data, the actual transmission probability should be lower than the calculation results of the simulation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Space Agency. Erasmus Experiment Archive. Available online: https://eea.spaceflight.esa.int/portal/?plid=4 (accessed on 1 March 2023).
- European Space Agency. ESA—Search. Available online: https://www.esa.int/esearch?q=sounding+rocket (accessed on 6 March 2023).
- Seibert, G. The History of Sounding Rockets and Their Contribution to European Space Research; ESA Publications Division: Noordwijk, The Netherlands, 2006. [Google Scholar]
- Wade, M. R-1. Available online: http://astronautix.com/r/r-1.html (accessed on 2 March 2023).
- Krebs, G.D. R-11A. Available online: https://space.skyrocket.de/doc_lau/r-11a.htm (accessed on 7 March 2023).
- Adkins, J. Sounding Rockets. Available online: http://www.nasa.gov/mission_pages/sounding-rockets/index.html (accessed on 1 March 2023).
- Japan Aerospace Exploration Agency. Sounding Rockets—ISAS. Available online: https://www.isas.jaxa.jp/en/missions/sounding_rockets/ (accessed on 1 March 2023).
- Suresh, B.N. History of Indian Launchers. Acta Astronaut. 2008, 63, 428–434. [Google Scholar] [CrossRef]
- Pandey, K.; Gupta, S.P. Altitude of Two-Stream Irregularities in Equatorial E Region Using Sounding Rocket Experiments from Thumba. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027195. [Google Scholar] [CrossRef]
- Abe, T.; Kurihara, J.; Iwagami, N.; Nozawa, S.; Ogawa, Y.; Fujii, R.; Hayakawa, H.; Oyama, K. Dynamics and Energetics of the Lower Thermosphere in Aurora (DELTA)—Japanese Sounding Rocket Campaign. Earth Planets Space 2006, 58, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Lyubimova, T.; Ivantsov, A.; Garrabos, Y.; Lecoutre, C.; Beysens, D. Faraday Waves on Band Pattern under Zero Gravity Conditions. Phys. Rev. Fluids 2019, 4, 064001. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Spicher, A.; Ilyasov, A.A.; Miloch, W.J.; Clausen, L.B.N.; Saito, Y.; Jin, Y.; Moen, J.I. Studies of Small-Scale Plasma Inhomogeneities in the Cusp Ionosphere Using Sounding Rocket Data. Phys. Plasmas 2018, 25, 042902. [Google Scholar] [CrossRef] [Green Version]
- Moshkov, A.V.; Pozhidaev, V.N. Vertical Distribution of a Demodulated Low-Frequency Field in the Disturbed Low-Latitude Ionosphere. J. Commun. Technol. Electron. 2018, 63, 118–122. [Google Scholar] [CrossRef]
- Li, D. Development of The Third Generation Sounding Rockets of China. Spacecr. Recovery Remote Sens. 1997, 18, 46–58. [Google Scholar]
- Jiang, X.; Liu, B.; Yu, S.; Chen, P.; Shi, H. Development Status and Trend of Sounding Rocket. Sci. Technol. Rev. 2009, 27, 101–110. [Google Scholar]
- Wang, C. New Chains of Space Weather Monitoring Stations in China. Space Weather 2010, 8, 1–5. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Lü, D.; Yue, X.; Xue, X.; Chen, G.; Yan, J.; Yan, Y.; Lan, A.; Wang, J.; et al. Construction Progress of Chinese Meridian Project Phase II. Chin. J. Space Sci. 2022, 42, 539–545. [Google Scholar] [CrossRef]
- Liu, W.; Michel, B.; Wang, C.; Xu, J.; Li, H.; Ren, L.; Liu, Z.; Zhu, Y.; Li, G.; Li, L.; et al. Progress of International Meridian Circle Program. Chin. J. Space Sci. 2022, 42, 584–587. [Google Scholar] [CrossRef]
- Wang, C.; Ren, L. Recent Development and Preliminary Results of Chinese Meridian Project. Chin. J. Space Sci. 2013, 33, 1–5. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Xu, J. Research Advances of the Chinese Meridian Project in 2020–2021. Chin. J. Space Sci. 2022, 42, 574–583. [Google Scholar] [CrossRef]
- Khamees, H.T. Average Intensity of SLVGB for Slant Path Propagation in Atmospheric Turbulent. Results Opt. 2021, 5, 100159. [Google Scholar] [CrossRef]
- Khamees, H.T. Laser Gaussian Beam Analysis of Structure Constant Depends on Kolmogorov in Turbulent Atmosphere for a Variable Angle of Wave Propagation. J. Laser Appl. 2022, 34, 022017. [Google Scholar] [CrossRef]
- Ketsdever, A.D.; Gimelshein, S. A Spacecraft’s Own Ambient Environment: The Role of Simulation-Based Research. In Proceedings of the 29th International Symposium on Rarefied Gas Dynamics, Xi’an, China, 13 July 2014; pp. 1394–1401. [Google Scholar]
- Justiz, C.R.; Sega, R.M.; Dalton, C.; Ignatiev, A. DSMC- and BGK-Based Calculations for Return Flux Contamination of an Outgassing Spacecraft. J. Thermophys. Heat Transf. 1994, 8, 802–803. [Google Scholar] [CrossRef]
- Manning, H.L.K.; Frank, N.J.; Bursack, J.; Johnson, B.W.; Benner, S.M.; Chen, P.T.C. Return Flux Experiment; REFLEX: Spacecraft Self-Contamination. In Proceedings of the Optical System Contamination: Effects, Measurements, and Control VII, Seattle, WA, USA, 9 July 2002; pp. 184–198. [Google Scholar]
- Soares, C.E.; Mikatarian, R.R. Mir Contamination Observations and Implications to the International Space Station. In Proceedings of the Optical Systems Contamination and Degradation II: Effects, Measurements, and Control, San Diego, CA, USA, 2 August 2000; pp. 55–65. [Google Scholar]
- Hässig, M. Investigation of Spacecraft Outgassing by Sensitive Mass Spectrometry. Spectrosc. Eur. 2011, 23, 20–23. [Google Scholar]
- Isobe, N.; Nakagawa, T.; Okazaki, S.; Sato, Y.; Ando, M.; Baba, S.; Miura, Y.; Miyazaki, E.; Kimoto, Y.; Ishizawa, J.; et al. Contamination Control for the Space Infrared Observatory SPICA. In Proceedings of the Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Montréal, QC, Canada, 22 June 2014; pp. 1–11. [Google Scholar]
- Altwegg, K.; Balsiger, H.; Calmonte, U.; Hässig, M.; Hofer, L.; Jäckel, A.; Schläppi, B.; Wurz, P.; Berthelier, J.J.; De Keyser, J.; et al. In Situ Mass Spectrometry during the Lutetia Flyby. Planet. Space Sci. 2012, 66, 173–178. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, X.; Zheng, Y.; Guo, D. The Effects of Spacecraft Charging and Outgassing on the LADEE Ion Measurements. J. Geophys. Res. Space Phys. 2017, 122, 5825–5834. [Google Scholar] [CrossRef]
- Schläppi, B.; Altwegg, K.; Balsiger, H.; Hässig, M.; Jäckel, A.; Wurz, P.; Fiethe, B.; Rubin, M.; Fuselier, S.A.; Berthelier, J.J.; et al. Influence of Spacecraft Outgassing on the Exploration of Tenuous Atmospheres with in Situ Mass Spectrometry. J. Geophys. Res. Space Phys. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Bird, G.A. Monte Carlo Simulation of Gas Flows. Annu. Rev. Fluid Mech. 1978, 10, 11–31. [Google Scholar] [CrossRef]
- Hall, D.F.; Arnold, G.S.; Simpson, T.R.; Suess, D.R.; Nystrom, P.A. Progresson Spacecraft Contamination Model Development. In Proceedings of the Optical Systems Contamination and Degradation II: Effects, Measurements, and Control, San Diego, CA, USA, 2 August 2000; pp. 138–156. [Google Scholar]
- Brieda, L. Molecular Contamination Modeling with CTSP. In Proceedings of the 30th International Symposium on Rarefied Gas Dynamics, Victoria, BC, Canada, 10 July 2016; pp. 1–8. [Google Scholar]
- Chang, C.W.; Kannenberg, K.; Chidester, M.H. Development of Versatile Molecular Transport Model for Modeling Spacecraft Contamination. In Proceedings of the Optical System Contamination: Effects, Measurements, and Control 2010 (SPIE), San Diego, CA, USA, 2 August 2010; pp. 1–8. [Google Scholar]
- Kimoto, Y. Contamination Control Research Activities for Space Optics in JAXA R&D. In Proceedings of the International Conference on Space Optics—ICSO 2014 (SPIE), Tenerife, Spain, 7 October 2014; pp. 1–6. [Google Scholar]
- Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.; Saggin, B.; Scaccabarozzi, D. A Review of Quartz Crystal Microbalances for Space Applications. Sens. Actuators Phys. 2019, 287, 48–75. [Google Scholar] [CrossRef]
- Abraham, N.S.; Hasegawa, M.M.; Straka, S.A. Development and Testing of Molecular Adsorber Coatings. In Proceedings of the Optical System Contamination: Effects, Measurements, and Control 2012, San Diego, CA, USA, 13 August 2012; Volume 8492, pp. 1–11. [Google Scholar]
- Faye, D.; Jakob, A.; Soulard, M.; Berlioz, P. Zeolite Adsorbers for Molecular Contamination Control in Spacecraft. In Proceedings of the Optical System Contamination: Effects, Measurements, and Control 2010, San Diego, CA, USA, 2 August 2010; pp. 1–14. [Google Scholar]
- Tseng, W.-L.; Lai, I.-L.; Ip, W.-H.; Hsu, H.-W.; Wu, J.-S. The 3D Direct Simulation Monte Carlo Study of Europa’s Gas Plume. Universe 2022, 8, 261. [Google Scholar] [CrossRef]
- Marschall, R.; Su, C.C.; Liao, Y.; Thomas, N.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H.U.; Knollenberg, J.; Kührt, E.; et al. Modelling Observations of the Inner Gas and Dust Coma of Comet 67P/Churyumov-Gerasimenko Using ROSINA/COPS and OSIRIS Data: First Results. Astron. Astrophys. 2016, 589, A90. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues. J. Geophys. Res. Space Phys. 2002, 107, 1–16. [Google Scholar] [CrossRef]
- Emmert, J.T. Thermospheric Mass Density: A Review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
- Chen, M.; Xue, S.; Zhou, Z.; Liu, J.; Li, B. Outgassing Performance Research on CuCrZr. Chin. J. Vac. Sci. Technol. 2021, 41, 766–769. [Google Scholar] [CrossRef]
- Patrick, T.J. Outgassing and the Choice of Materials for Space Instrumentation. Vacuum 1973, 23, 411–413. [Google Scholar] [CrossRef]
- COMSOL Inc. COMSOL: Multiphysics Software for Optimizing Designs. Available online: https://www.comsol.com/ (accessed on 2 March 2023).
- Wong, C.M.; Moision, R.M.; Fowler, J.D.; Liu, D.L. Molecular Transport Modeling for Spaceborne Instrument Contamination Prediction. In Proceedings of the Systems Contamination—Prediction, Measurement, and Control 2014, San Diego, CA, USA, 18 August 2014; pp. 1–12. [Google Scholar]
- Qiao, J.; Yang, S.; Li, J.; Guo, X.; Wang, Y. Dynamic Simulation of Deposition Processes of Spacecraft Molecular Contamination. Teh. Vjesn.-Tech. Gaz. 2021, 28, 321–327. [Google Scholar] [CrossRef]
- Wong, C.M.; Labatete-Goeppinger, A.C.; Fowler, J.D.; Easton, M.P.; Liu, D.L. Outgassing Study of Spacecraft Materials and Contaminant Transport Simulations. In Proceedings of the Systems Contamination: Prediction, Control, and Performance 2016, San Diego, CA, USA, 31 August 2016; pp. 1–9. [Google Scholar]
- COMSOL Inc. COMSOL Help Desk. Available online: https://doc.comsol.com/6.1/docserver/VAADIN/themes/docserver/_self/helpdesk/helpdesk.html (accessed on 4 March 2023).
Parameter | Value |
---|---|
Inlet radius | 1.30 mm |
Throat radius | 0.75 mm |
Outlet radius | 2.60 mm |
Outlet angle | 30° |
Domain | Parameter | Value |
---|---|---|
Frustum of a cone of platform | Top radius | 2.50 mm |
Bottom radius | 0.375 m | |
Height | 0.345 m | |
Cylinder of platform | Radius | 0.375 m |
Height | 1.115 m | |
The outlet of the de Laval nozzle of the platform | Radius | 2.60 mm |
Center height | 25 mm | |
Collision | Edge length | 500 m |
Parameter | Value |
---|---|
Altitude | 120, 160, 200, 240, 280, 320 km |
Jet speed | 765 m/s |
Medium/low solar activity index F10.7 | 200/100 sfu |
Medium/low geomagnetic activity index Ap | 48/8 |
Average speed of platform at 120 km in simulation | 1925.5 m/s |
Average speed of platform at 160 km in simulation | 1723.5 m/s |
Average speed of platform at 200 km in simulation | 1498.5 m/s |
Average speed of platform at 240 km in simulation | 1236.5 m/s |
Average speed of platform at 280 km in simulation | 908.5 m/s |
Average speed of platform at 320 km in simulation | 375.5 m/s |
Altitude | Temperature | He | O | N2 | O2 | Ar | H |
---|---|---|---|---|---|---|---|
120 km | 383 K | 3.77 × 1013 m−3 | 7.82 × 1016 m−3 | 2.54 × 1017 m−3 | 3.90 × 1016 m−3 | 1.01 × 1015 m−3 | 5.67 × 1012 m−3 |
160 km | 634 K | 2.06 × 1013 m−3 | 1.21 × 1016 m−3 | 1.46 × 1016 m−3 | 1.33 × 1015 m−3 | 1.78 × 1013 m−3 | 1.02 × 1012 m−3 |
200 km | 680 K | 1.50 × 1013 m−3 | 3.80 × 1015 m−3 | 2.07 × 1015 m−3 | 1.55 × 1014 m−3 | 1.12 × 1012 m−3 | 5.55 × 1011 m−3 |
240 km | 689 K | 1.15 × 1013 m−3 | 1.34 × 1015 m−3 | 3.39 × 1014 m−3 | 2.03 × 1013 m−3 | 8.47 × 1010 m−3 | 4.68 × 1011 m−3 |
280 km | 691 K | 8.96 × 1012 m−3 | 4.89 × 1014 m−3 | 5.81 × 1013 m−3 | 2.74 × 1012 m−3 | 6.82 × 109 m−3 | 4.31 × 1011 m−3 |
320 km | 691 K | 6.99 × 1012 m−3 | 1.81 × 1014 m−3 | 1.02 × 1013 m−3 | 3.76 × 1011 m−3 | 5.68 × 108 m−3 | 4.04 × 1011 m−3 |
Altitude | Temperature | He | O | N2 | O2 | Ar | H |
---|---|---|---|---|---|---|---|
120 km | 389 K | 4.00 × 1013 m−3 | 8.56 × 1016 m−3 | 2.59 × 1017 m−3 | 4.02 × 1016 m−3 | 1.09 × 1015 m−3 | 4.84 × 1012 m−3 |
160 km | 659 K | 2.24 × 1013 m−3 | 1.35 × 1016 m−3 | 1.56 × 1016 m−3 | 1.47 × 1015 m−3 | 2.20 × 1013 m−3 | 8.27 × 1011 m−3 |
200 km | 714 K | 1.64 × 1013 m−3 | 4.39 × 1015 m−3 | 2.38 × 1015 m−3 | 1.86 × 1014 m−3 | 1.53 × 1012 m−3 | 4.45 × 1011 m−3 |
240 km | 727 K | 1.27 × 1013 m−3 | 1.63 × 1015 m−3 | 4.24 × 1014 m−3 | 2.68 × 1013 m−3 | 1.31 × 1011 m−3 | 3.74 × 1011 m−3 |
280 km | 730 K | 9.99 × 1012 m−3 | 6.24 × 1014 m−3 | 7.96 × 1013 m−3 | 4.01 × 1012 m−3 | 1.20 × 1010 m−3 | 3.45 × 1011 m−3 |
320 km | 730 K | 7.90 × 1012 m−3 | 2.43 × 1014 m−3 | 1.53 × 1013 m−3 | 6.13 × 1011 m−3 | 1.15 × 109 m−3 | 3.24 × 1011 m−3 |
Altitude | Temperature | He | O | N2 | O2 | Ar | H |
---|---|---|---|---|---|---|---|
120 km | 398 K | 3.97 × 1013 m−3 | 9.01 × 1016 m−3 | 2.65 × 1017 m−3 | 3.46 × 1016 m−3 | 1.03 × 1015 m−3 | 3.28 × 1012 m−3 |
160 km | 758 K | 2.09 × 1013 m−3 | 1.51 × 1016 m−3 | 1.68 × 1016 m−3 | 1.10 × 1015 m−3 | 2.10 × 1013 m−3 | 3.34 × 1011 m−3 |
200 km | 863 K | 1.54 × 1013 m−3 | 5.56 × 1015 m−3 | 3.23 × 1015 m−3 | 1.54 × 1014 m−3 | 2.06 × 1012 m−3 | 1.48 × 1011 m−3 |
240 km | 895 K | 1.24 × 1013 m−3 | 2.41 × 1015 m−3 | 7.71 × 1014 m−3 | 2.92 × 1013 m−3 | 2.68 × 1011 m−3 | 1.20 × 1011 m−3 |
280 km | 906 K | 1.01 × 1013 m−3 | 1.10 × 1015 m−3 | 1.98 × 1014 m−3 | 6.13 × 1012 m−3 | 3.86 × 1010 m−3 | 1.11 × 1011 m−3 |
320 km | 909 K | 8.36 × 1012 m−3 | 5.15 × 1014 m−3 | 5.24 × 1013 m−3 | 1.34 × 1012 m−3 | 5.79 × 109 m−3 | 1.05 × 1011 m−3 |
Altitude | Temperature | He | O | N2 | O2 | Ar | H |
---|---|---|---|---|---|---|---|
120 km | 404 K | 4.21 × 1013 m−3 | 9.87 × 1016 m−3 | 2.70 × 1017 m−3 | 3.57 × 1016 m−3 | 1.12 × 1015 m−3 | 2.80 × 1012 m−3 |
160 km | 779 K | 2.27 × 1013 m−3 | 1.68 × 1016 m−3 | 1.78 × 1016 m−3 | 1.20 × 1015 m−3 | 2.55 × 1013 m−3 | 2.73 × 1011 m−3 |
200 km | 894 K | 1.68 × 1013 m−3 | 6.31 × 1015 m−3 | 3.56 × 1015 m−3 | 1.76 × 1014 m−3 | 2.65 × 1012 m−3 | 1.19 × 1011 m−3 |
240 km | 931 K | 1.36 × 1013 m−3 | 2.81 × 1015 m−3 | 8.91 × 1014 m−3 | 3.52 × 1013 m−3 | 3.70 × 1011 m−3 | 9.65 × 1010 m−3 |
280 km | 943 K | 1.12 × 1013 m−3 | 1.32 × 1015 m−3 | 2.40 × 1014 m−3 | 7.82 × 1012 m−3 | 5.72 × 1010 m−3 | 8.92 × 1010 m−3 |
320 km | 947 K | 9.29 × 1012 m−3 | 6.35 × 1014 m−3 | 6.71 × 1013 m−3 | 1.82 × 1012 m−3 | 9.26 × 109 m−3 | 8.47 × 1010 m−3 |
Altitude | Density | Average Molar Mass | Pressure | Pumping Speed | Actual Number of Outgassing Particles | Proportion |
---|---|---|---|---|---|---|
100 km | — | — | 2.99 × 10−2 Pa | — | — | — |
120 km | 1.60 × 10−8 kg/m3 | 25.921 g/mol | 1.97 × 10−3 Pa | 6.33 × 10−1 m3/s | 2.36 × 1017 | 0.230 |
160 km | 1.07 × 10−9 kg/m3 | 22.992 g/mol | 2.46 × 10−4 Pa | 1.03 × 101 m3/s | 2.89 × 1017 | 0.282 |
200 km | 2.06 × 10−10 kg/m3 | 20.509 g/mol | 5.68 × 10−5 Pa | 9.37 × 101 m3/s | 5.67 × 1017 | 0.553 |
240 km | 5.27 × 10−11 kg/m3 | 18.512 g/mol | 1.63 × 10−5 Pa | 4.38 × 102 m3/s | 7.51 × 1017 | 0.732 |
280 km | 1.59 × 10−11 kg/m3 | 17.163 g/mol | 5.34 × 10−6 Pa | 1.61 × 103 m3/s | 9.03 × 1017 | 0.880 |
320 km | 5.37 × 10−12 kg/m3 | 16.244 g/mol | 1.90 × 10−6 Pa | 5.15 × 103 m3/s | 1.03 × 1018 | 1.000 |
Altitude | Density | Average Molar Mass | Pressure | Pumping Speed | Actual Number of Outgassing Particles | Proportion |
---|---|---|---|---|---|---|
100 km | — | — | 2.85 × 10−2 Pa | — | — | — |
120 km | 1.65 × 10−8 kg/m3 | 25.775 g/mol | 2.07 × 10−3 Pa | 6.69 × 10−1 m3/s | 2.58 × 1017 | 0.247 |
160 km | 1.16 × 10−9 kg/m3 | 22.881 g/mol | 2.79 × 10−4 Pa | 9.89 × 100 m3/s | 3.03 × 1017 | 0.290 |
200 km | 2.38 × 10−10 kg/m3 | 20.510 g/mol | 6.88 × 10−5 Pa | 8.45 × 101 m3/s | 5.89 × 1017 | 0.564 |
240 km | 6.46 × 10−11 kg/m3 | 18.602 g/mol | 2.10 × 10−5 Pa | 3.71 × 102 m3/s | 7.75 × 1017 | 0.742 |
280 km | 2.06 × 10−11 kg/m3 | 17.293 g/mol | 7.23 × 10−6 Pa | 1.29 × 103 m3/s | 9.25 × 1017 | 0.885 |
320 km | 7.29 × 10−12 kg/m3 | 16.408 g/mol | 2.70 × 10−6 Pa | 3.91 × 103 m3/s | 1.05 × 1018 | 1.000 |
Altitude | Density | Average Molar Mass | Pressure | Pumping Speed | Actual Number of Outgassing Particles | Proportion |
---|---|---|---|---|---|---|
100 km | — | — | 2.96 × 10−2 Pa | — | — | — |
120 km | 1.66 × 10−8 kg/m3 | 25.607 g/mol | 2.15 × 10−3 Pa | 6.47 × 10−1 m3/s | 2.52 × 1017 | 0.227 |
160 km | 1.24 × 10−9 kg/m3 | 22.651 g/mol | 3.46 × 10−4 Pa | 9.84 × 100 m3/s | 3.25 × 1017 | 0.293 |
200 km | 3.07 × 10−10 kg/m3 | 20.604 g/mol | 1.07 × 10−4 Pa | 7.41 × 101 m3/s | 6.64 × 1017 | 0.598 |
240 km | 1.02 × 10−10 kg/m3 | 19.006 g/mol | 3.99 × 10−5 Pa | 2.65 × 102 m3/s | 8.54 × 1017 | 0.769 |
280 km | 3.90 × 10−11 kg/m3 | 17.831 g/mol | 1.65 × 10−5 Pa | 7.57 × 102 m3/s | 9.97 × 1017 | 0.898 |
320 km | 1.63 × 10−11 kg/m3 | 17.005 g/mol | 7.25 × 10−6 Pa | 1.92 × 103 m3/s | 1.11 × 1018 | 1.000 |
Altitude | Density | Average Molar Mass | Pressure | Pumping Speed | Actual Number of Outgassing Particles | Proportion |
---|---|---|---|---|---|---|
100 km | — | — | 2.82 × 10−2 Pa | — | — | — |
120 km | 1.71 × 10−8 kg/m3 | 25.451 g/mol | 2.26 × 10−3 Pa | 6.84 × 10−1 m3/s | 2.77 × 1017 | 0.246 |
160 km | 1.34 × 10−9 kg/m3 | 22.510 g/mol | 3.86 × 10−4 Pa | 9.45 × 100 m3/s | 3.39 × 1017 | 0.301 |
200 km | 3.43 × 10−10 kg/m3 | 20.531 g/mol | 1.24 × 10−4 Pa | 6.77 × 101 m3/s | 6.81 × 1017 | 0.605 |
240 km | 1.18 × 10−10 kg/m3 | 19.003 g/mol | 4.81 × 10−5 Pa | 2.33 × 102 m3/s | 8.73 × 1017 | 0.775 |
280 km | 4.69 × 10−11 kg/m3 | 17.873 g/mol | 2.06 × 10−5 Pa | 6.42 × 102 m3/s | 1.01 × 1018 | 0.901 |
320 km | 2.02 × 10−11 kg/m3 | 17.073 g/mol | 9.33 × 10−6 Pa | 1.58 × 103 m3/s | 1.13 × 1018 | 1.000 |
Altitude | LL | LM | ML | MM |
---|---|---|---|---|
120 km | 0.047% | 0.038% | 0.033% | 0.029% |
160 km | 0.006% | 0.007% | 0.010% | 0.010% |
200 km | 0% | 0.003% | 0.004% | 0.003% |
240 km | 0% | 0% | 0% | 0.001% |
280 km | 0% | 0% | 0% | 0% |
320 km | 0% | 0% | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Sun, Y.; Li, Y.; Ai, J.; Zheng, X.; Wang, W. Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection. Atmosphere 2023, 14, 603. https://doi.org/10.3390/atmos14030603
Zhang Z, Sun Y, Li Y, Ai J, Zheng X, Wang W. Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection. Atmosphere. 2023; 14(3):603. https://doi.org/10.3390/atmos14030603
Chicago/Turabian StyleZhang, Zhiliang, Yueqiang Sun, Yongping Li, Jiangzhao Ai, Xiaoliang Zheng, and Wei Wang. 2023. "Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection" Atmosphere 14, no. 3: 603. https://doi.org/10.3390/atmos14030603
APA StyleZhang, Z., Sun, Y., Li, Y., Ai, J., Zheng, X., & Wang, W. (2023). Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection. Atmosphere, 14(3), 603. https://doi.org/10.3390/atmos14030603