Intensive Silvopastoral Systems Mitigate Enteric Methane Emissions from Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Management
2.2. Forage and Feed Analysis
- Forage sampling
- Concentrate and supplements
- Chemical Composition Analysis
2.3. DM, CP, NDF, and ADF Intake
- CPI = DMI × CP%
- ME intake (MJ d−1/animal) = DMI × ME
2.4. Grazing Pressure Index
2.5. Methane Emission Estimates
2.6. Statistical Analysis
3. Results
3.1. Paddock Yield and Chemical Composition of Forages and External Feeding Inputs
3.2. DM and Nutrient Intake
3.3. Grazing Pressure Index and Stocking Rate
3.4. Milk Production, Body Weight, and BCS
3.5. Methane Production
3.6. Multivariate Integration
4. Discussion
4.1. Dry Matter Yield and Chemical Composition of Pasture
4.2. Dry Matter, Crude Protein, and Metabolizable Energy Intake
4.3. Grazing Pressure Index
4.4. Body Weight, Body Condition, and Milk Production
4.5. Methane Emissions
4.6. Integrated Biological Implications of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weisse, M.; Goldman, E. Global Forest Watch. Primary Rainforest Destruction Increased 12% from 2019 to 2020. Available online: https://www.globalforestwatch.org/blog/data-and-research/global-tree-cover-loss-data-2020/ (accessed on 13 January 2023).
- Steinfeld, H. La Larga Sombra Del Ganado: Problemas Ambientales y Opciones; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2009. [Google Scholar]
- Herrero, M.T.; Mason-D’Croz, D.; Thornton, P.K.; Fanzo, J.; Rushton, J.; Godde, C.; Bellows, A.; de Groot, A.; Palmer, J.; Chang, J.; et al. Livestock and Sustainable Food Systems―Status, Trends, and Priority Actions; Food Systems Summit Brief; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Mateo-Sagasta, J.; Marjani, S.; Turral, H. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy; International Water Management Institute: Colombo, Sri Lanka, 2018. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Castelán-Ortega, O.A.; Ku-Vera, J.; Ángeles-Hernández, J.; Benaouda, M.; Hernández-Pineda, G.; Molina, T.; Ramírez-Cancino, L.; Castelán-Jaime, S.; Praga-Ayala, A.; Lazos-Balbuena, F.; et al. Ganadería. In Estado del Ciclo del Carbono en México: Agenda Azul y Verde; Chapter 22; Paz-Pellat, F., Hernández-Ayón, J., Sosa-Ávalos, R., Velázquez-Rodríguez, A., Eds.; Programa Mexicano del Carbono: Texcoco, México, 2019; p. 719. [Google Scholar]
- Pinares-Patiño, C.S.; Waghorn, G.C.; Hegarty, R.S.; Hoskin, S.O. Effects of Intensification of Pastoral Farming on Greenhouse Gas Emissions in New Zealand. N. Z. Vet. J. 2009, 57, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero 1990–2019; Gobierno de México, Secretaría de Medio Ambiente y Recursos Naturales e Instituto Nacional de Ecología y Cambio Climático: Mexico City, México, 2022.
- OECD-FAO Agricultural Outlook 2019–2028; OECD-FAO Agricultural Outlook; OECD Publishing: Paris, France, 2019. [CrossRef]
- Dalibard, C. Livestock’s Contribution to the Protection of the Environment. In World Animal Review; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1995; pp. 104–112. [Google Scholar]
- Rojo-Rubio, R.; Vázquez-Armijo, J.F.; Pérez-Hernández, P.; Mendoza-Martínez, G.; Salem, A.Z.M.; Albarran-Portillo, B.; González-Reyna, A.; Hernández-Martínez, J.; Rebollar-Rebollar, S.; Cardoso-Jiménez, D.; et al. Dual Purpose Cattle Production in Mexico. Trop. Anim. Health Prod. 2009, 41, 715–721. [Google Scholar] [CrossRef]
- Hunter, R.A. Methane Production by Cattle in the Tropics. Br. J. Nutr. 2007, 98, 657. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.; Cajas, Y.; León, J.; Osorio, N. Silvopastoral Systems Enhance Soil Quality in Grasslands of Colombia. Appl. Environ. Soil Sci. 2014, 2014, 359736. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, Efficient Livestock Production with High Biodiversity and Good Welfare for Animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef] [PubMed]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native Trees and Shrubs for the Productive Rehabilitation of Tropical Cattle Ranching Lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Chará, J.; Reyes, E.; Peri, P.; Otte, J.; Arce, E.; Schneider, F. Silvopastoral Systems and Their Contribution to Improved Resource Use and Sustainable Development Goals: Evidence from Latin America; Benchmark, A., Ed.; FAO/CIPAV: Cali, Colombia, 2019. [Google Scholar]
- Murgueitio, E.; Barahona, R.; Chará, J.D.; Flores, M.X.; Mauricio, R.M.; Molina, J.J. The Intensive Silvopastoral Systems in Latin America Sustainable Alternative to Face Climatic Change in Animal Husbandry. Cuba. J. Agric. Sci. 2015, 49, 541–554. [Google Scholar]
- Nahed-Toral, J.; Valdivieso-Pérez, A.; Aguilar-Jiménez, R.; Cámara-Córdova, J.; Grande-Cano, D. Silvopastoral Systems with Traditional Management in Southeastern Mexico: A Prototype of Livestock Agroforestry for Cleaner Production. J. Clean. Prod. 2013, 57, 266–279. [Google Scholar] [CrossRef]
- Montagnini, F.; Ibrahim, M.; Murgueitio, E. Silvopastoral Systems and Climate Change Mitigation in Latin America. Bois For. Trop. 2013, 67, 3–16. [Google Scholar] [CrossRef]
- Aryal, D.R.; Morales-Ruiz, D.E.; López-Cruz, S.; Tondopó-Marroquín, C.N.; Lara-Nucamendi, A.; Jiménez-Trujillo, J.A.; Pérez-Sánchez, E.; Betanzos-Simon, J.E.; Casasola-Coto, F.; Martínez-Salinas, A.; et al. Silvopastoral Systems and Remnant Forests Enhance Carbon Storage in Livestock-Dominated Landscapes in Mexico. Sci. Rep. 2022, 12, 16769. [Google Scholar] [CrossRef]
- Solymosi, K.; Braun, A.; Van Dijk, S.; Grulke, M. Upscaling Silvopastoral Systems in South America; Inter-American Development Bank: Washington, DC, USA, 2016. [Google Scholar]
- Murgueitio, E.; Uribe, F.; Molina, C.; Molina, E.; Galindo, W.; Chará, J.; Flores, M.; Giraldo, C.; Cuartas, C.; Naranjo, J.; et al. Establecimiento y Manejo de Sistemas Silvopastoriles Intensivos Con Leucaena; Murgueitio, E., Galindo, W., Chará J., U.F., Eds.; CIPAV: Cali, Colombia, 2016. [Google Scholar]
- Sarabia-Salgado, L.; Solorio-Sánchez, F.; Ramírez-Avilés, L.; Rodrigues Alves, B.J.; Ku-Vera, J.; Aguilar-Pérez, C.; Urquiaga, S.; Boddey, R.M. Increase in Milk Yield from Cows through Improvement of Forage Production Using the N2-Fixing Legume Leucaena Leucocephala in a Silvopastoral System. Animals 2020, 10, 734. [Google Scholar] [CrossRef]
- Rodrigues, M.O.D.; dos Santos, A.C.; Rodrigues, M.O.D.; Silveira Junior, O.; de Oliveira, L.B.T.; de Leite, R.L.L. Cutting Height of Mombasa Grass Under Silvopastoral and Monoculture Systems. J. Agric. Sci. 2019, 11, 433–442. [Google Scholar] [CrossRef]
- Rivera, J.E.; Cuartas, C.A.; Naranjo, J.F.; Tafur, O.; Hurtado, E.A.; Arenas, F.A.; Chará, J.; Murgueitio, E. Efecto de La Oferta y El Consumo de Tithonia Diversifolia En Un Sistema Silvopastoril Intensivo (SSPi), En La Calidad y Productividad de Leche Bovina En El Piedemonte Amazónico Colombiano. Livest. Res. Rural Dev. 2015, 27, 1–13. [Google Scholar]
- Lemes, A.P.; Garcia, A.R.; Pezzopane, J.R.M.; Brandão, F.Z.; Watanabe, Y.F.; Cooke, R.F.; Sponchiado, M.; de Paz, C.C.P.; Camplesi, A.C.; Binelli, M.; et al. Silvopastoral System Is an Alternative to Improve Animal Welfare and Productive Performance in Meat Production Systems. Sci. Rep. 2021, 11, 14092. [Google Scholar] [CrossRef] [PubMed]
- Améndola, L.; Solorio, F.J.; Ku-Vera, J.C.; Améndola-Massiotti, R.D.; Zarza, H.; Galindo, F. Social Behaviour of Cattle in Tropical Silvopastoral and Monoculture Systems. Animal 2016, 10, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Cubbage, F.; Balmelli, G.; Bussoni, A.; Noellemeyer, E.; Pachas, A.N.; Fassola, H.; Colcombet, L.; Rossner, B.; Frey, G.; Dube, F.; et al. Comparing Silvopastoral Systems and Prospects in Eight Regions of the World. Agrofor. Syst. 2012, 86, 303–314. [Google Scholar] [CrossRef]
- Torres, B.; Herrera-Feijoo, R.; Torres, Y.; García, A. Global Evolution of Research on Silvopastoral Systems through Bibliometric Analysis: Insights from Ecuador. Agronomy 2023, 13, 479. [Google Scholar] [CrossRef]
- Da Frota, M.N.L.; Carneiro, M.S.S.; Pereira, E.S.; Berndt, A.; Frighetto, R.T.S.; Sakamoto, L.S.; Moreira, M.A.; Cutrim, J.A.A.; Carvalho, G.M.C. Enteric Methane in Grazing Beef Cattle under Full Sun, and in a Silvopastoral System in the Amazon. Pesqui. Agropecuária Bras. 2017, 52, 1099–1108. [Google Scholar] [CrossRef]
- Molina, I.C.; Angarita, E.A.; Mayorga, O.L.; Chará, J.; Barahona-Rosales, R. Effect of Leucaena Leucocephala on Methane Production of Lucerna Heifers Fed a Diet Based on Cynodon Plectostachyus. Livest. Sci. 2016, 185, 24–29. [Google Scholar] [CrossRef]
- Pineiro-Vazquez, A.T.; Canul-Solis, J.R.; Jimenez-Ferrer, G.; Alayon-Gamboa, J.A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Perez, C.F.; Ku-Vera, J.C. Effect of Condensed Tannins from Leucaena Leucocephala on Rumen Fermentation, Methane Production and Population of Rumen Protozoa in Heifers Fed Low-Quality Forage. Asian-Australas J. Anim. Sci. 2018, 31, 1738–1746. [Google Scholar] [CrossRef]
- Albores-Moreno, S.; Alayon-Gamboa, J.A.; Ayala-Burgos, A.J.; Solorio-Sanchez, F.J.; Aguilar-Perez, C.F.; Olivera-Castillo, L.; Ku-Vera, J.C. Effects of Feeding Ground Pods of Enterolobium Cyclocarpum Jacq. Griseb on Dry Matter Intake, Rumen Fermentation, and Enteric Methane Production by Pelibuey Sheep Fed Tropical Grass. Trop. Anim. Health Prod. 2017, 49, 857–866. [Google Scholar] [CrossRef]
- Rivera, J.E.; Chará, J.; Barahona, R. CH4, CO2 and N2O Emissions from Grasslands and Bovine Excreta in Two Intensive Tropical Dairy Production Systems. Agrofor. Syst. 2019, 93, 915–928. [Google Scholar] [CrossRef]
- García, E. Modificaciones Al Sistema de Clasificación Climática de Köppen, 5th ed.; Universidad Nacional Autónoma de México: D.F., México, 2004. [Google Scholar]
- INEGI. Anuario Estadístico y Geográfico de Yucatán 2014; Instituto Nacional de Estadística y Geografía (México): Aguascalientes, México, 2014; p. 638. [Google Scholar]
- INEGI. Prontuario de Información Geográfica Municipal de Los Estados Unidos Mexicanos; INEGI: Aguascalientes, México, 2009; pp. 1–27. [Google Scholar]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Cox, G. General Ecology Laboratory Manual, 8th ed.; McGraw Hill: Boston, MA, USA, 2001. [Google Scholar]
- Sarabia, S.L. Efecto de La Frecuencia de Poda En Leucaena Leucocephala y Panicum Maximum Sobre La Fijación y Transferencia de Nitrógeno Atmosférico En Sistemas Silvopastoriles Intensivos. Master’s Thesis, Universidad Autónoma de Yucatán, Yucatán, México, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International, Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Donker, J.D. Improved Energy Prediction Equations for Dairy Cattle Rations. J. Dairy Sci. 1989, 72, 2942–2948. [Google Scholar] [CrossRef]
- Mininistry of Agriculture, Fisheries and Food. Energy Allowances and Feeding Systems for Ruminants. In Technical Bulletin 33; Her Majesty’s Stationery Office: London, UK, 1978. [Google Scholar]
- Smart, A.J.; Derner, J.D.; Hendrickson, J.R.; Gillen, R.L.; Dunn, B.H.; Mousel, E.M.; Johnson, P.S.; Gates, R.N.; Sedivec, K.K.; Harmoney, K.R.; et al. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands. Rangel. Ecol. Manag. 2010, 63, 397–406. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-Farm Methane Measurements during Milking Correlate with Total Methane Production by Individual Dairy Cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef]
- N. R.C. Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- Aguirre-Benítez, E.L.; Porras, M.G.; Parra, L.; González-Ríos, J.; Garduño-Torres, D.; Albores-García, D.; Avendaño, A.; Ávila-Rodríguez, M.A.; Melo, A.I.; Jiménez-Estrada, I.; et al. Disruption of Behavior and Brain Metabolism in Artificially Reared Rats. Dev. Neurobiol. 2017, 77, 1413–1429. [Google Scholar] [CrossRef]
- Mancera, K.F.; Zarza, H.; de Buen, L.L.; García, A.A.C.; Palacios, F.M.; Galindo, F. Integrating Links between Tree Coverage and Cattle Welfare in Silvopastoral Systems Evaluation. Agron. Sustain. Dev. 2018, 38, 19. [Google Scholar] [CrossRef]
- Pérez-Lombardini, F.; Mancera, K.F.; Suzán, G.; Campo, J.; Solorio, J.; Galindo, F. Assessing Sustainability in Cattle Silvopastoral Systems in the Mexican Tropics Using the SAFA Framework. Animals 2021, 11, 109. [Google Scholar] [CrossRef]
- Silva-Cassani, N.; Mancera, K.F.; Canul, J.; Ramirez Aviles, L.; Solorio, J.; Güereca, P.; Galindo, F. Evaluation of the Sustainable Performance of Native and Intensive Silvopastoral Systems in the Mexican Tropics Using the Mesmis Framework. Trop. Subtrop. Agroecosyst. 2022, 25. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3556 (accessed on 17 February 2023). [CrossRef]
- Ibarra, A.; Torres, A.; Pérez, A.; Betancur, J.; Arias, A.; Giraldo, L. In-Vitro Methane Production of Tropical Forage Diets under Silvopastoral Systems on a RUSITEC. In 7th GGAA—Greenhouse Gas and Animal Agriculture Conference; EMBRAPA: Iguassu Falls, Brazil, 2019; p. 132. [Google Scholar]
- Peniche-González, I.; González-López, Z.U.; Aguilar-Pérez, C.; Ku-Vera, J.; Ayala-Burgos, A.J.; Sánchez, F.J. Milk Production and Reproduction of Dual-Purpose Cows with a Restricted Concentrate Allowance and Access to an Association of Leucaena Leucocephala and Cynodon Nlemfuensis. J. Appl. Anim. Res. 2014, 42, 345–351. [Google Scholar] [CrossRef]
- Bolan, N.S.; Curtin, D.; Adriano, D.C. Acidity. In Encyclopedia of Soils in the Environment; Hillel, D., Hatfield, J.H., Powlson, D.S., Rosenzweig, C., Scow, K.M., Singer, M.J., Sparks, D.L., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2004; pp. 11–17. [Google Scholar] [CrossRef]
- Reyes Tirado, S.R.; Gopikrishna, K.R.; Smith, P. Greenhouse Gas Emissions and Mitigation Potential from Fertilizer Manufacture and Application in India. Int. J. Agric. Sustain. 2010, 8, 176–185. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Dupont, Y.L.; Strandberg, B.; Damgaard, C. Effects of Herbicide and Nitrogen Fertilizer on Non-Target Plant Reproduction and Indirect Effects on Pollination in Tanacetum Vulgare (Asteraceae). Agric. Ecosyst. Environ. 2018, 262, 76–82. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Shi, W.; Min, J.; Gao, N.; Zhang, H.; Yin, R.; He, X. Higher Rates of Nitrogen Fertilization Decrease Soil Enzyme Activities, Microbial Functional Diversity and Nitrification Capacity in a Chinese Polytunnel Greenhouse Vegetable Land. Plant Soil 2010, 337, 137–150. [Google Scholar] [CrossRef]
- Chakrabarti, P.; Carlson, E.A.; Lucas, H.M.; Melathopoulos, A.P.; Sagili, R.R. Field Rates of SivantoTM (Flupyradifurone) and Transform® (Sulfoxaflor) Increase Oxidative Stress and Induce Apoptosis in Honey Bees (Apis mellifera L.). PLoS ONE 2020, 15, e0233033. [Google Scholar] [CrossRef]
- Vázquez, D.E.; Balbuena, M.S.; Chaves, F.; Gora, J.; Menzel, R.; Farina, W.M. Sleep in Honey Bees Is Affected by the Herbicide Glyphosate. Sci. Rep. 2020, 10, 10516. [Google Scholar] [CrossRef] [PubMed]
- Lira, M.A., Jr.; Fracetto, F.J.C.; da Ferreira, J.S.; Silva, M.B.; Fracetto, G.G.M. Legume-Based Silvopastoral Systems Drive C and N Soil Stocks in a Subhumid Tropical Environment. CATENA 2020, 189, 104508. [Google Scholar] [CrossRef]
- Cubillos-Hinojosa, J.G.; Da Silva-Araujo, F.; Saccol-De Sá, E.L. Rizobios Nativos Eficientes En La Fijación de Nitrógeno En Leucaena Leucocephala En Rio Grande Do Sul, Brasil. Biotecnol. Sect. Agropecu. Agroind. 2021, 19, 128–138. [Google Scholar] [CrossRef]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil Carbon Sequestration by Root Exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef]
- Alvarado-Figueroa, L. Servicios, Externalidades y Multifuncionalidad en Sistemas de Producción Ganadera del Estado de Yucatán. Master’s Thesis, Instituto de Ecología, UNAM, Mexico City, Mexico, 2017. [Google Scholar]
- Orefice, J.; Smith, R.G.; Carroll, J.; Asbjornsen, H.; Howard, T. Forage Productivity and Profitability in Newly-Established Open Pasture, Silvopasture, and Thinned Forest Production Systems. Agrofor. Syst. 2019, 93, 51–65. [Google Scholar] [CrossRef]
- Feldhake, C.M.; Belesky, D.P. Photosynthetically Active Radiation Use Efficiency of Dactylis Glomerata and Schedonorus Phoenix along a Hardwood Tree-Induced Light Gradient. Agrofor. Syst. 2009, 75, 189–196. [Google Scholar] [CrossRef]
- Obispo, N.E.; Espinoza, Y.; Luis Gil, J.; Ovalles, F.; Cabrera, E.; Pérez, M.J. Relationship of Shade Proportion in the Pasture with Yield, Quality of Forage and Daily Weight Gain in Steers. Rev. Cient. Fac. Ciencias Vet. Univ. Zulia 2013, XXIII, 531–536. [Google Scholar]
- Lima, M.A.; Paciullo, D.S.C.; Silva, F.F.; Morenz, M.J.F.; Gomide, C.A.M.; Rodrigues, R.A.R.; Bretas, I.L.; Chizzotti, F.H.M. Evaluation of a Long-Established Silvopastoral Brachiaria Decumbens System: Plant Characteristics and Feeding Value for Cattle. Crop Pasture Sci. 2019, 70, 814–825. [Google Scholar] [CrossRef]
- Shelton, M.; Dalzell, S. Production, Economic and Environmental Benefits of Leucaena Pastures. Trop. Grasslands 2007, 41, 174–190. [Google Scholar]
- Bottini-Luzardo, M.; Aguilar-Pérez, C.; Centurión-Castro, F.G.; Solorio, F.; Ku-Vera, J. Milk Yield and Blood Urea Nitrogen in Crossbred Cows Grazing Leucaena Leucocephala in a Silvopastoral System in the Mexican Tropics. Trop. Grasslands—Forrajes Trop. 2016, 4, 159–167. [Google Scholar] [CrossRef]
- Bacab-Pérez, H.M.; Solorio-Sánchez, F.J. Oferta y Consumo de Forraje y Producción de Leche En Ganado de Doble Propósito Manejado En Sistemas Silvopastoriles En Tepalcatepec, Michoacán. Trop. Subtrop. Agroecosyst. 2011, 13, 271–278. [Google Scholar]
- Aguilar-Pérez, C.; Ku-Vera, J.; Centurión-Castro, F.; Garnsworthy, P.C. Energy Balance, Milk Production and Reproduction in Grazing Crossbred Cows in the Tropics with and without Cereal Supplementation. Livest. Sci. 2009, 122, 227–233. [Google Scholar] [CrossRef]
- López-Vigoa, O.; Sánchez-Santana, T.; Iglesias-Gómez, M.; Lamela-López, L.; Soca-Pérez, M.; Arece-García, J.; De La, M.; Milera-Rodríguez, C. Silvopastoral Systems as Alternative for Sustainable Animal Production in the Current Context of Tropical Livestock Production. Pastos Forrajes 2017, 40, 83–95. Available online: https://www.redalyc.org/articulo.oa?id=269158172001 (accessed on 20 January 2023).
- Sierra-Montoya, E.; Barahona-Rosales, R.; Ruiz-Cortés, Z.T. Reproductive Behavior of Crossbred Dairy Cows Grazing an Intensive Silvopastoral System under Tropical Dry Forest Conditions. Arq. Bras. Med. Vet. Zootec. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Jennings, J.S.; Meyer, B.E.; Guiroy, P.J.; Cole, N.A. Energy Costs of Feeding Excess Protein from Corn-Based by-Products to Finishing Cattle. J. Anim. Sci. 2018, 96, 653–669. [Google Scholar] [CrossRef]
- Hammond, K.J.; Muetzel, S.; Waghorn, G.C.; Pinares-Patino, C.S.; Burke, J.L.; Hoskin, S.O. The Variation in Methane Emissions from Sheep and Cattle Is Not Explained by the Chemical Composition of Ryegrass. Proc. N. Z. Soc. Anim. Prod. 2009, 69, 174–178. [Google Scholar]
- Boadi, D.A.; Wittenberg, K.M. Methane Production from Dairy and Beef Heifers Fed Forages Differing in Nutrient Density Using the Sulphur Hexafluoride (SF6) Tracer Gas Technique. Can. J. Anim. Sci. 2002, 82, 201–206. [Google Scholar] [CrossRef]
- Relling, A.; Mattioli, G. Fisiología Digestiva y Metabólica de Los Rumiantes, 2nd ed.; EDULP: Mar del Plata, Argentina, 2003. [Google Scholar]
- Colmenero, J.J.O.; Broderick, G.A. Effect of Dietary Crude Protein Concentration on Milk Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef]
- Bencini, R.; Pulina, G. The Quality of Sheep Milk: A Review. Aust. J. Exp. Agric. 1997, 37, 485–504. [Google Scholar] [CrossRef]
- Ocak, N.; Cam, M.A.; Kuran, M. The Effect of High Dietary Protein Levels during Late Gestation on Colostrum Yield and Lamb Survival Rate in Singleton-Bearing Ewes. Small Rumin. Res. 2005, 56, 89–94. [Google Scholar] [CrossRef]
- Imaizumi, H.; Santos, F.A.P.; Bittar, C.M.M.; Correia, P.S.; Martinez, J.C. Diet Crude Protein Content and Sources for Lactating Dairy Cattle. Sci. Agric. 2010, 67, 16–22. [Google Scholar] [CrossRef]
- Nemecek, T.; Huguenin, O.; Dubois, D.; Gaillard, G. Life Cycle Assessment of Low-Input Farming Systems. In Proceedings of the JRC Summer University Ranco, Low Input Farming Systems: An Opportunity to Develop Sustainable Agriculture; Office for Official Publications of the European Communities: Luxembourg, 2008; pp. 22–27. [Google Scholar] [CrossRef]
- Solorio, F.J.; Basu, S.K.; Sarabia, L.; Ayala, A.; Ramírez, L.; Aguilar, C.; Erales, J.A.; Ku, J.C.; Wright, J. The Potential of Silvopastoral Systems for Milk and Meat Organic Production in the Tropics. In Organic Farming for Sustainable Agriculture; Nanwani, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 169–182. [Google Scholar] [CrossRef]
- Spratt, E.; Jordan, J.; Winsten, J.; Huff, P.; van Schaik, C.; Jewett, J.G.; Filbert, M.; Luhman, J.; Meier, E.; Paine, L. Accelerating Regenerative Grazing to Tackle Farm, Environmental, and Societal Challenges in the Upper Midwest. J. Soil Water Conserv. 2021, 76, 15A–23A. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland Management Impacts on Soil Carbon Stocks: A New Synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Huertas, S.M.; Bobadilla, P.E.; Alcántara, I.; Akkermans, E.; van Eerdenburg, F.J.C.M. Benefits of Silvopastoral Systems for Keeping Beef Cattle. Animals 2021, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.F.; Bonfá, H.C.; Dijkstra, J.; Casper, D.P.; Kebreab, E. Estimating the Energetic Cost of Feeding Excess Dietary Nitrogen to Dairy Cows. J. Dairy Sci. 2017, 100, 7116–7126. [Google Scholar] [CrossRef] [PubMed]
- Cardozo-Herrán, M.; Ayala-Burgos, A.; Aguilar-Pérez, C.; Ramírez-Avilés, L.; Ku-Vera, J.; Solorio-Sánchez, F.J. Productivity of Lactating Goats under Three Grazing Systems in the Tropics of Mexico. Agrofor. Syst. 2019, 95, 33–41. [Google Scholar] [CrossRef]
- McManus, C.; Louvandini, H.; Carneiro, H.C.; Lima, P.R.M.; Neto, J.B. Production Indices for Dual Purpose Cattle in Central Brazil. Rev. Bras. Zootec. 2011, 40, 1576–1586. [Google Scholar] [CrossRef]
- Ku-Vera, J.; Valencia-Salazar, S.; Piñeiro-Vázquez, A.; Arroyave-Jaramillo, J.; Montoya-Flores, M.; Lazos-Balbuena, F.; Canul Solis, J.; Arceo-Castillo, J.; Laura, R.-C.; Escobar-Restrepo, C.; et al. Determination of Methane Yield in Cattle Fed Tropical Grasses as Measured in Open-Circuit Respiration Chambers. Agric. For. Meteorol. 2018, 258, 3–7. [Google Scholar] [CrossRef]
- Warner, D.; Podesta, S.C.; Hatew, B.; Klop, G.; van Laar, H.; Bannink, A.; Dijkstra, J. Effect of Nitrogen Fertilization Rate and Regrowth Interval of Grass Herbage on Methane Emission of Zero-Grazing Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 3383–3393. [Google Scholar] [CrossRef]
- Lage, H.F.; Da Borges, A.L.C.C.; e Silva, R.R.; Ruas, J.R.M.; De Carvalho, A.U.; De Araujo, C.P.H.; Saliba, E.O.S.; Gonçalves, L.C.; Borges, I.; Arujo, P.R.L.; et al. Methane Production by Two Breeds of Cattle in Tropical Conditions. J. Anim. Sci. Res. 2017, 1. Available online: https://sciforschenonline.org/journals/animal-science-research/JASR-1-102.php (accessed on 11 February 2023). [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A Universal Equation to Predict Methane Production of Forage-Fed Cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. Variation among Individual Dairy Cows in Methane Measurements Made on Farm during Milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Koolaard, J.; Muetzel, S. Methane Emissions from Lactating and Non-Lactating Dairy Cows and Growing Cattle Fed Fresh Pasture. Anim. Prod. Sci. 2017, 57, 643–648. [Google Scholar] [CrossRef]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Barahona-Rosales, R.; Aguilar-Pérez, C.F.; Ayala-Burgos, A.; Arango, J.; Ku-Vera, J.C. Effects of Tannins and Saponins Contained in Foliage of Gliricidia Sepium and Pods of Enterolobium Cyclocarpum on Fermentation, Methane Emissions and Rumen Microbial Population in Crossbred Heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Romano-Muñoz, J.L.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effect of Dried Leaves of Leucaena Leucocephala on Rumen Fermentation, Rumen Microbial Population, and Enteric Methane Production in Crossbred Heifers. Animals 2020, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Pineiro-Vazquez, A.T.; Jimenez-Ferrer, G.; Alayon-Gamboa, J.A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Perez, C.F.; Ku-Vera, J.C. Effects of Quebracho Tannin Extract on Intake, Digestibility, Rumen Fermentation, and Methane Production in Crossbred Heifers Fed Low-Quality Tropical Grass. Trop. Anim. Health Prod. 2018, 50, 29–36. [Google Scholar] [CrossRef]
- Valencia Salazar, S.S.; Piñeiro Vázquez, A.T.; Molina Botero, I.C.; Lazos Balbuena, F.J.; Uuh Narváez, J.J.; Segura Campos, M.R.; Ramírez Avilés, L.; Solorio Sánchez, F.J.; Ku Vera, J.C. Potential of Samanea Saman Pod Meal for Enteric Methane Mitigation in Crossbred Heifers Fed Low-Quality Tropical Grass. Agric. For. Meteorol. 2018, 258, 108–116. [Google Scholar] [CrossRef]
- Molina-Botero, I.C.; Montoya-Flores, M.D.; Zavala-Escalante, L.M.; Barahona-Rosales, R.; Arango, J.; Ku-Vera, J.C. Effects of Long-Term Diet Supplementation with Gliricidia Sepium Foliage Mixed with Enterolobium Cyclocarpum Pods on Enteric Methane, Apparent Digestibility, and Rumen Microbial Population in Crossbred Heifers. J. Anim. Sci. 2019, 97, 1619–1633. [Google Scholar] [CrossRef]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global Food-Miles Account for Nearly 20% of Total Food-Systems Emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Motta-Delgado, P.A.; Ocaña Martínez, H.E.; Rojas-Vargas, E.P. Indicadores asociados a la sostenibilidad de pasturas: Una revisión. Cienc. Tecnol. Agropecu. 2019, 20, 387–408. [Google Scholar] [CrossRef]
- Haile, S.G.; Nair, V.D.; Nair, P.K.R. Contribution of Trees to Carbon Storage in Soils of Silvopastoral Systems in Florida, USA. Glob. Chang. Biol. 2010, 16, 427–438. [Google Scholar] [CrossRef]
- Rakkar, M.K.; Blanco-Canqui, H. Grazing of Crop Residues: Impacts on Soils and Crop Production. Agric. Ecosyst. Environ. 2018, 258, 71–90. [Google Scholar] [CrossRef]
- Díaz de Otálora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
Parameter | MS | ISPS | Season Effect | ||
---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | p Value * | |
DM yield (kg ha−1) | 1144.8 ± 234 b | 3707.2 ± 619 a | 1631.3 ± 345 b | 3443.1 ± 281 a | <0.0001 |
CP (g kg−1 DM) | 108.3 ± 10 a | 80.9 ± 7 c | 102.1 ± 14 a,b | 85.7 ± 8 b,c | <0.0001 |
NDF (g kg−1 DM) | 720.7 ± 74 a,b | 765.9 ± 53 a | 640.8 ± 39 b | 739.9 ± 59 a,b | 0.012 |
ADF (g kg−1 DM) | 374.7 ± 35 a | 380.7 ± 174 a | 365.5 ± 29 a | 474.4 ± 98 a | 0.19 |
System | Season | Ingredient | CP % | NDF % | ADF % | Ash % |
---|---|---|---|---|---|---|
MS | Dry | Concentrate * | 13.1 ± 1.7 | 31.3 ± 6.4 | 22.2 ± 11.6 | 5.5 ± 1.4 |
Stargrass hay | 3.5 ± 1.9 | 72.0 ± 5.5 | 62.5 ± 0.5 | 8.6 ± 0.0 | ||
Rainy | Concentrate * | 13.8 ± 1.2 | 45.6 ± 3.0 | 27.0 ± 6.1 | 4.1 ± 0.1 | |
Orange by-product silage | 6.9 ± 0.1 | 34.8 ± 2.3 | 26.4 ± 6.1 | 5.1 ± 0.3 | ||
Dry turkey manure | 22.8 | 79.3 | 32.4 | 15.9 | ||
ISPS | Dry | Concentrate * | 12.6 | 45.8 | 36.1 | 9.1 |
Rainy | Concentrate * | 15.4 | 34.0 | 15.8 | 10.1 |
Parameter | MS | ISPS | Season Effect | |||
---|---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | p Value * | ||
DMI (kg d−1/ animal) | Total | 11.94 ± 1.3 b | 12.0 ± 0.5 b | 15.5 ± 0.2 a | 15.4 ± 0.5 a | 0.937 |
Forage | 6.5 ± 0.7 b | 7.1 ± 0.8 b | 12.4 ± 0.2 a | 11.6 ± 0.6 a | 0.681 | |
Concentrate | 4.7 ± 1.0 a | 3.7 ± 0.3 b | 3.1 ± 0.3 b | 3.8 ± 0.4 b | 0.604 | |
Other | 0.7 ± 0.2 b | 1.1 ± 0.4 a | - | - | - | |
CPI (g d−1/ animal) | Total | 1357.0 ± 110.0 b | 1264.0 ± 93.0 b | 1703.0 ± 185.0 a | 1571.0 ± 76.0 a | <0.001 |
Forage | 700.6 ± 109.1 c | 577.6 ± 94.1 d | 1316.9 ± 173.8 a | 983.7 ± 26.6 b | <0.001 | |
Concentrate | 634.3 ± 174.7 a | 523.0 ± 77.4 b | 386.9 ± 37.7 c | 587.6 ± 74.2 a,b | 0.174 | |
Other | 21.7 ± 9.1 b | 164.0 ± 46.2 a | - | - | - | |
MEI (MJ d−1/ animal) | Total | 114.1 ± 8.4 c | 103.9 ± 7.6 d | 138.9 ± 4.7 a | 126.6 ± 6.6 b | <0.001 |
Parameter | MS | ISPS | Season Effect | ||
---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | p Value * | |
AU·pad−1·d−1 | 4.84 ± 0.57 b | 14.6 ± 6.43 a | 9.3 ± 0.35 b | 16.96 ± 6.54 a | <0.001 |
AU·ha−1·d−1 | 24.20 ± 11.76 b | 48.36 ± 11.82 a | 18.97 ± 0.72 b | 34.6 ± 13.35 b | <0.001 |
Item | MS | ISPS | Season Effect | ||
---|---|---|---|---|---|
Dry (20) | Rainy (20) | Dry (10) | Rainy (10) | p Value | |
BW | 506.5 ± 43.2 | 515.7 ± 40.3 | 528.3 ± 61.1 | 541.3 ± 72.0 | 0.431 |
BCS | 2.7 ± 0.6 | 3.2 ± 0.5 | 2.8 ± 0.6 | 2.7 ± 0.6 | 0.265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Coello, G.; Hernández-Medrano, J.H.; Ku-Vera, J.; Diaz, D.; Solorio-Sánchez, F.J.; Sarabia-Salgado, L.; Galindo, F. Intensive Silvopastoral Systems Mitigate Enteric Methane Emissions from Cattle. Atmosphere 2023, 14, 863. https://doi.org/10.3390/atmos14050863
Flores-Coello G, Hernández-Medrano JH, Ku-Vera J, Diaz D, Solorio-Sánchez FJ, Sarabia-Salgado L, Galindo F. Intensive Silvopastoral Systems Mitigate Enteric Methane Emissions from Cattle. Atmosphere. 2023; 14(5):863. https://doi.org/10.3390/atmos14050863
Chicago/Turabian StyleFlores-Coello, Gustavo, Juan H. Hernández-Medrano, Juan Ku-Vera, Daniel Diaz, Francisco J. Solorio-Sánchez, Lucero Sarabia-Salgado, and Francisco Galindo. 2023. "Intensive Silvopastoral Systems Mitigate Enteric Methane Emissions from Cattle" Atmosphere 14, no. 5: 863. https://doi.org/10.3390/atmos14050863
APA StyleFlores-Coello, G., Hernández-Medrano, J. H., Ku-Vera, J., Diaz, D., Solorio-Sánchez, F. J., Sarabia-Salgado, L., & Galindo, F. (2023). Intensive Silvopastoral Systems Mitigate Enteric Methane Emissions from Cattle. Atmosphere, 14(5), 863. https://doi.org/10.3390/atmos14050863