Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies
Abstract
:1. Introduction
2. Manure Collection on Dairies
3. Anaerobic Digestion Concepts and Systems Employed on Dairies
4. Effect of Anaerobic Digestion on Methane Emissions
5. Alternative Manure Management Technologies
6. Mechanical Separators
7. Effect of Mechanical Separators on Methane Emissions
8. Weeping Walls
9. Compost-Bedded Pack Barns
10. Emissions from Compost-Bedded Pack Barns
11. Other Technologies for Manure Management
12. Status of the DDRDP
13. Status of the AMMP
14. Economics of Anaerobic Digestion and Alternative Manure Management Practices
15. Conclusions, Future Perspectives and Research Need
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDFA. Agricultural Statistics Review. 2019. Available online: https://www.cdfa.ca.gov/statistics/PDFs/2018-2019AgReportnass.pdf (accessed on 10 February 2021).
- CDFA. California Dairy Statistics Annual 2017 Data. 2018. Available online: https://www.cdfa.ca.gov/dairy/pdf/Annual/2017/2017_Statistics%20Annual.pdf (accessed on 27 September 2018).
- CARB. Greenhouse Gas Emissions Inventory Summary [2000–2020]. 2022. Available online: https://ww2.arb.ca.gov/applications/greenhouse-gas-emission-inventory-0 (accessed on 9 November 2022).
- CDFA. Report of Funded Projects (2015–2022). Available online: https://www.cdfa.ca.gov/oefi/ddrdp/docs/2022_DDRDP_Legislative_Report.pdf (accessed on 3 October 2022).
- CDFA. 2022. Available online: https://www.cdfa.ca.gov/oefi/AMMP/ (accessed on 20 October 2022).
- Meyer, D.; Price, P.L.; Rossow, H.A.; Silva-del-Rio, N.; Karle, B.M.; Robinson, P.H.; DePeters, E.J.; Fadel, J.G. Survey of dairy housing and manure management practices in California. J. Dairy Sci. 2011, 94, 4744–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaffka, S.; Barzee, T.; El-Mashad, H.; Williams, R.; Zicari, S.; Zhang, R. Evaluation of Dairy Manure Management Practices for Greenhouse Gas Emissions Mitigation in California, 2016. Final Technical Report to the State of California Air Resources Board. Available online: https://biomass.ucdavis.edu/wp-content/uploads/ARB-Report-Final-Draft-Transmittal-Feb-26-2016.pdf (accessed on 30 October 2022).
- Ross, E.G.; Peterson, C.B.; Zhao, Y.; Pan, Y.; Mitloehner, F.M. Manure Flushing vs. Scraping in Dairy Freestall Lanes Reduces Gaseous Emissions. Sustainability 2021, 13, 5363. [Google Scholar] [CrossRef]
- Niles, M.T.; Wiltshire, S.; Lombard, J.; Branan, M.; Vuolo, M.; Chintala, R.; Tricarico, J. Manure management strategies are interconnected with complexity across U.S. dairy farms. PLoS ONE 2022, 17, e0267731. [Google Scholar] [CrossRef] [PubMed]
- El Mashad, H.M.; Zhang, R. Biogas Energy from Organic Wastes. In The Introduction to Biosystems Engineering Textbook; ASABE: St. Joseph, MI, USA, 2020. [Google Scholar]
- Lettinga, G.; Rebac, S.; Zeeman, G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001, 19, 363–370. [Google Scholar] [CrossRef]
- El-Mashad, H.M.; Zhang, R. Co-digestion of food waste and dairy manure for biogas production. Trans. ASABE 2007, 50, 1815–1821. [Google Scholar] [CrossRef]
- AcMoody, A.; Sousa, P. Interest in California Dairy Manure Methane Digesters Follows the Money. Available online: https://www.cobank.com/documents/7714906/7715329/Interest-in-California-Dairy-Manure-Methane-Digesters-Follows-the-Money-Aug2020.pdf/be11d7d6-80df-7a7e-0cbd-9f4ebe730b25?t=1603745079998 (accessed on 20 October 2022).
- Angelidaki, I.; Ellegaard, L. Co-digestion of manure and organic wastes in centralized biogas plants. Appl. Biochem. Biotech. 2003, 109, 95–105. [Google Scholar] [CrossRef]
- BioCycle. Crystal Creamery Anaerobic Digester Partnership Honored. 2017. Available online: https://www.biocycle.net/anaerobic-digest-71/ (accessed on 10 November 2022).
- California Environmental Associates. Greenhouse Gas Mitigation Strategies for California Dairies. 2015. Available online: https://www.ceaconsulting.com/wp-content/uploads/GHG_Mitigation_for_Dairies_Final_July2015.pdf (accessed on 10 October 2022).
- EPA. Technical Support Document for Manure Management Systems: Proposed Rule for Mandatory Reporting of Greenhouse Gases 2009; Climate Change Division Office of Atmospheric Programs U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- EPA. AgSTAR Digest, 2000. EPA-430/F-00-012. Available online: http://www.epa.gov/agstar (accessed on 11 November 2022).
- Flesch, T.K.; Desjardins, R.L.; Worth, D. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenergy 2011, 35, 3927–3935. [Google Scholar] [CrossRef]
- Baldé, H.; Wagner-Riddle, C.; MacDonald, D.; VanderZaag, A. Fugitive methane emissions from two agricultural biogas plants. Waste Manag. 2022, 151, 123–130. [Google Scholar] [CrossRef]
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- CARB. California Department of Food and Agriculture Alternative Manure Management Program. 2022. Available online: https://ww2.arb.ca.gov/sites/default/files/auction-proceeds/cdfa_ammp_finalqm_3-10-22.pdf (accessed on 20 October 2022).
- CARB. California Department of Food and Agriculture Dairy Digester Research and Development Program. 2020. Available online: https://ww2.arb.ca.gov/sites/default/files/auction-proceeds/cdfa_ddrdp_finalqm_2-3-20.pdf (accessed on 3 October 2022).
- Vergote, T.L.I.; Bodé, S.; De Dobbelaere, A.E.J.; Buysse, J.; Meers, E.; Volcke, E.I.P. Monitoring methane and nitrous oxide emissions from digestate storage following manure mono-digestion. Biosys. Eng. 2020, 196, 159–171. [Google Scholar] [CrossRef]
- Zhang, R.H.; Westerman, P.W. Solid-liquid separation of animal manure for odor control and nutrients management. Trans. ASABE 1997, 13, 657–664. [Google Scholar]
- Hegg, R.O.; Larson, R.E.; Moore, J.A. Mechanical liquid-solid separation in beef, dairy, and swine waste slurries. Trans. ASAE 1981, 24, 159–163. [Google Scholar] [CrossRef]
- Graves, R.E.; Clayton, J.T.; Light, R.G. Renovation and Reuse of Water for Dilution and Hydraulic Transport of Dairy Cattle Manure (PROC-271); ASAE: St. Joseph, MI, USA, 1971. [Google Scholar]
- Chastain, J.P.; Vanotti, M.B.; Wingfield, M.M. Effectiveness of liquid-solid separation for treatment of flushed dairy manure: A case study. Trans. ASAE 2001, 17, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Hills, D.J.; Kayhanian, M. Methane from settled and filtered flushed dairy wastes. Trans. ASAE 1985, 28, 865–869. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Rico, J.L.; García, H.; Rico, C.; Tejero, I. Characterization of solid and liquid fractions of dairy manure with regard to their component distribution and methane production. Biores. Tech. 2007, 98, 971–997. [Google Scholar] [CrossRef]
- El Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Biores. Tech. 2010, 101, 4021–4028. [Google Scholar] [CrossRef]
- Witarsa, F.; Lansing, S. Quantifying methane production from psychrophilic anaerobic digestion of separated and unseparated dairy manure. Ecol. Eng. 2015, 78, 95–100. [Google Scholar] [CrossRef]
- Edalati, A.; Chen, Y.; Barzee, T.J.; El-Mashad, H.M.; Zhang, R. Effect of mechanical solids separators on the mitigation of methane emissions from dairy manure lagoons. Submitt. Trans. ASABE 2022. [Google Scholar]
- Williams, R.; El-Mashad, H.; Kaffka, S. Research and Technical Analysis to Support and Improve the Alternative Manure Management Program Quantification Methodology. Research Report CARB Agreement No. 17TTD010. Available online: https://ww2.arb.ca.gov/sites/default/files/auction-proceeds/ucd_ammp_qm_analysis_final_april2020.pdf (accessed on 13 October 2020).
- Bai, M.; Flesch, T.; Trouvé, R.; Coates, T.; Butterly, C.; Bhatta, B.; Hill, J.; Chen, D. Gas emissions during cattle manure composting and stockpiling. J. Environ. Qual. 2020, 49, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Vergara, S.E.; Silver, W.L. Greenhouse gas emissions from windrow composting of organic wastes: Patterns and emissions factors. Environ. Res. Lett. 2019, 14, 124027. [Google Scholar] [CrossRef]
- Meyer, D.; Harner, J.P.; Tooman, E.E.; Collar, C. Evaluation of weeping wall efficiency of solid liquid separation. Appl. Eng. Agric. 2004, 20, 349–354. [Google Scholar] [CrossRef]
- Mukhtar, S.; Borhan, M.S.; Beseda, J., II. Evaluation of a weeping wall solid-liquid separation system for flushed dairy manure. Appl. Eng. Agric. 2011, 27, 135–142. [Google Scholar] [CrossRef]
- Sustainable Conservation. Capturing Nutrients in Dairy Manure: Innovative Solid-Liquid Separation Systems. In Cost-Effective and Environmentally Beneficial Dairy Manure Management Practices; Hughes, K., Wilkie, A.C., Eds.; USDA: San Francisco, CA, USA, 2005; Available online: https://www.suscon.org/pdfs/dairies/pdfs/NDESCreportCostEffective.pdf (accessed on 4 September 2009).
- Nooyen. Tri-Bars, 2018. Available online: http://www.nooyenky.com (accessed on 9 July 2018).
- Houlbrooke, D.; Longhurst, B.; Orchiston, T.; Muirhead, R. Characterizing Dairy Manures and Slurries. Envirolink Tools Report AGRX0901; 2011. Available online: https://www.envirolink.govt.nz/assets/Envirolink/R5-4-Characterising-Dairy-Manures-and-Slurries.pdf (accessed on 3 January 2022).
- Laubach, J.; Heubeck, S.; Pratt, C.; Woodward, K.B.; Guieysse, B.; van der Weerden, T.J.; Chung, M.L.; Shilton, N.A.; Craggs, R.J. Review of greenhouse gas emissions from the storage and land application of farm dairy effluent. N. Zealand J. Agric. Res. 2015, 58, 203–233. [Google Scholar] [CrossRef]
- NRCS. Waste Separation Facility—Conservation Practice Standard 632; Natural Resources Conservation Service: Washington, DC, USA, 2014. Available online: https://efotg.sc.egov.usda.gov/references/public/NY/nyps632.pdf (accessed on 3 October 2022).
- Edalati, A.; Chen, Y.; Barzee, T.J.; El-Mashad, H.M.; Zhang, R. Solid separation and methane emissions reduction from dairy manure using weeping walls. Unpublished data. 2022. [Google Scholar]
- Barberg, A.E.; Endres, M.I.; Janni, K.A. Compost dairy barns in Minnesota: A descriptive study. Appl. Eng. Agric. 2007, 23, 231–238. [Google Scholar] [CrossRef]
- Shane, E.M.; Endres, M.I.; Johnson, D.G.; Reneau, J.K. Bedding options for an alternative housing system for dairy cows: A descriptive study. Appl. Eng. Agric. 2010, 26, 659–666. [Google Scholar] [CrossRef]
- Black, R.A.; Taraba, J.L.; Day, G.B.; Damasceno, F.A.; Bewley, J.M. Compost bedded pack dairy barn management, performance, and producer satisfaction. J. Dairy Sci. 2013, 96, 8060–8074. [Google Scholar] [CrossRef]
- Eckelkamp, E.A.; Taraba, J.L.; Akers, K.A.; Harmon, R.J.; Bewley, J.M. Understanding compost bedded pack barns: Tractions among environmental factors, bedding characteristics, and udder health. Livest. Sci. 2016, 190, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- Ayadi, F.Y.; Cortus, E.L.; Spiehs, M.J.; Miller, D.N.; Djira, G.D. Ammonia and greenhouse gas concentrations at surfaces of sim-ulated beef cattle bedded manure packs. Trans. ASABE 2015, 58, 783–795. [Google Scholar]
- Van Dooren, H.J.C.; Galama, P.J.; Blanken, K. On Farm Development of Bedded Pack Dairy Barns in The Netherlands, Gaseous Emissions from Bedding. In Wageningen Livestock Research, Report 710; Wageningen Livestock Research: Wageningen, The Netherlands, 2016. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K. A Portable Sensor for Measuring Gas Emissions from Dairy Compost Bedded Pack Barns. Master’s Thesis, University of Kentucky, Lexington, Kentucky, 2017. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1053&context=bae_etds (accessed on 4 September 2022).
- Külling, D.R.; Menzi, H.; Kröber, T.F.; Neftel, A.; Sutter, F.; Lischer, P.; and Kreuzer, M. Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. J. Agric. Sci. 2001, 137, 235–250. [Google Scholar] [CrossRef]
- Gilhespy, S.L.; Webb, J.; Chadwick, D.R.; Misselbrook, T.H.; Kay, R.; Camp, V.; Retter, A.L.; Bason, A. Will additional straw bedding in buildings housing cattle and pigs reduce ammonia emissions? Biosyst. Eng. 2009, 102, 180–189. [Google Scholar] [CrossRef]
- Galama, P.J.; de Boer, H.C.; van Dooren, H.J.C.; Ouweltjes, W.; Driehuis, F. Sustainability Aspects of Ten Bedded Pack Dairy Barns in The Netherlands. Wageningen UR (University & Research Centre) Livestock Research, Livestock Research Report 873. 2015. Available online: https://edepot.wur.nl/350932 (accessed on 10 October 2022).
- Ayadi, F.Y. A Process-Based Nutrient Model for the Bedded Manure Pack of Confined Beef Systems. Ph.D. Thesis, South Dakota State University, Brookings, SD, USA, 2015. [Google Scholar]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Bonifacio, F.B.; Coiner, C.U. The Integrated Farm System Model. Reference Manual Version 4.7. Available online: https://www.ars.usda.gov/ARSUserFiles/80700500/Reference%20Manual.pdf (accessed on 11 November 2022).
- Rotz, C.A.; Chianese, D.S.; Montes, F.; Hafner, S.; Bonifacio, H.F. Dairy Gas Emission Model, Reference Manual. 2016. Available online: https://www.ars.usda.gov/ARSUserFiles/80700500/dairygemreferencemanual.pdf (accessed on 23 October 2022).
- IPCC. Guidelines for National Greenhouse Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 3, p. 3.75. Available online: http://www.ipccnggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_3_Ch3_Chemical_Industry.pdf (accessed on 24 November 2020).
- Shaffer, M.J.; Halvorson, A.D.; Pierce, F.J. Nitrate leaching and economic analysis packager (NLEAP): Model description and application. In Managing Nitrogen for Groundwater Quality and Farm Profitability; Follett, R.F., Deeney, D.R., Cruse, R.M., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1991; pp. 285–298. [Google Scholar]
- Natural Resource Ecology Laboratory, Colorado State University. DAYCENT. DAYCENT; Version 4.5; Natural Resource Ecology Laboratory, Colorado State University: Fort Collins, CO, USA, 2007. [Google Scholar]
- Bonifacio, H.F.; Rotz, C.A.; Leytem, A.B.; Waldrip, H.M.; Todd, R.W. Process-based modeling of ammonia and nitrous oxide emissions from open-lot beef and dairy facilities. Trans. ASABE 2015, 58, 827–846. [Google Scholar]
- Cekmecelioglu, D.; Heinemann, P.H.; Demirci, A.; Graves, R.E. Modeling of compost temperate and inactivation of Salmonella and E. Coli O157:H7 during windrow food waste composting. Trans. ASAE 2005, 48, 849–858. [Google Scholar] [CrossRef]
- Conrad, R. Control of methane production in terrestrial ecosystems. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; Biddles Ltd.: Guildford, UK, 1989. [Google Scholar]
- Liu, X.; Yan, Z.; Yue, Z.B. Biogas. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Mitloehner, F.M.; Marcillac, N.M.; Eslinger, K.M.; Schnitz, A.L.; Zhang, R.H. Effects of dairy liquid manure aeration on air quality and nutrient cycling. In Proceedings of the 43rd Annual Dairy Cattle Day, University of California Department of Animal Science Davis, Davis, CA, USA; 2004. [Google Scholar]
- Prenafeta-Boldú, F.X.; Fernández, B.; Viñas, M.; Noguerol, J.; Soler, J.; Illa, J. Combined Acidification and Solar Drying of Pig Slurries for Nutrient Recovery and Controlled Atmospheric Emissions. Agronomy 2021, 11, 222. [Google Scholar] [CrossRef]
Type of Separator | Screen Size (mm) | Flow Rate (m3/min) | TS * of Inflow (%) | TS Removal (%) | Reference |
---|---|---|---|---|---|
Rotary screen | 0.75 | 0.41–0.75 | 0.52 | 5 | [26] 1 |
0.45–0.97 | 0.81 | 10 | |||
0.78–0.91 | 1.14 | 4 | |||
0.08–0.34 | 2.95 | 14 | |||
Sloped screen | 67 | [27] | |||
Inclined stationary screen | 1.5 | 3.83 | 60.9 (62.8 **) | [28] 1 |
Parameter | Single-Stage Horizontal Scraped Screen Separator | Single-Stage Sloped Screen Separator | Single-Stage Sloped Dual-Screen Separator | Two-Stage Sloped Dual-Screen Separator | Advanced a Multistage Rotary Drum System | |
---|---|---|---|---|---|---|
Screen size (mm) | 1st stage | 2.39 | Top 1/3: 0.381 Middle 1/3: 0.635 Bottom 1/3: 0.889 | Top 2/3: 0.508 Bottom 1/3: 0.635 | Top 2/3: 0.508 Bottom 1/3: 0.635 | Separation zone: 3.175 Dewatering zone: 3.175 |
2nd stage | NA | NA | NA | Top 2/3: 0.254 Bottom 1/3: 0.381 | Separation zone: 0.533 Dewatering zone: 3.175 | |
Influent flow rate (m3/m) | 2.99–5.7 | 1.12–2.57 | 3.18–4.12 | 2.63–3.53 | 3.55–5.74 | |
TS removal efficiency (%) | 4.7–8.0 | 20.1–38.4 | 27.7–48.9 | 37.6–60.2 | 64.2–78.8 | |
VS removal efficiency (%) | 6.5–12.1 | 26.4–48.8 | 35.5–58.4 | 41.4–72.8 | 62.7–79.6 | |
CH4 potential reduction (%) | 1.4–8.4 | 28.9–42.2 | 38.2–61.2 | 28.2–73.1 | 69.0–83.4 | |
Inlet TS (%) | 1.47–1.72 | 1.19–2.38 | 1.57–2.59 | 2.53–3.73 | 1.49–1.88 | |
Outlet TS (%) | 1.12–1.60 | 0.89–1.44 | 1.14–1.98 | 1.55–2.85 | -------- | |
Solids (TS) | 17.00–20.22 | 23.06–25.64 | 18.32–20.62 | 20.96–24.22 b 22.82–26.03 c | 20.88–23.47 b 19.60–22.11 c |
Dissolved Oxygen (mg DO/L) | Redox Potential (Emv) | Biochemical Reactions | Biological Processes |
---|---|---|---|
Very low | −400 to −150 | H2 + CO2 to CH4 CH3COOH to CH4 | Anaerobic |
Low | −300 | SO4 to H2S, HS− | Anaerobic |
Intermediate | 0 | Facultative | Anaerobic/aerobic |
Medium high | +200 | NH4+ to NO2− | Aerobic |
High (>1 mg/L) | +250 | NH4+ to NO3−, NO2− | Aerobic |
Scenario Description | ≥300 Milk Cows/Dairy (Representing 1110 Dairies, ~1.65 Million Cows in California) | ≥2000 Milk Cows/Dairy (Representing 225 Large Dairies, ~800,000 Cows in California) | |||||
---|---|---|---|---|---|---|---|
Mitigation Potential (Tg/y) | Average Cost ($/Mg) | 10-yr Cost (Billion $) | Mitigation Potential (Tg/y) | Average Cost ($/Mg) | 10-yr Cost (Billion $) | ||
Scrape to open solar drying (6 mo.) | 2.2 | 89 | 2.00 | 1.1 | 68 | 0.75 | |
Scrape to open solar drying (8 mo.) | 3.0 | 103 | 3.00 | 1.4 | 86 | 1.25 | |
Scrape to closed solar drying (12 mo.) | 4.3 | 290 | 12.50 | 2.1 | 224 | 4.63 | |
Scrape to forced hot air drying (natural gas fuel) (12 mo.) | 5.4 | 145 | 7.88 | 2.6 | 123 | 3.25 | |
Scrape to compost with bulking (12 mo.) | 4.9 | 244 | 11.88 | 2.4 | 229 | 5.38 | |
Aeration (low effectiveness) | 4.1 | 85 | 3.38 | 2.0 | 81 | 1.63 | |
Aeration (high effectiveness) | 7.3 | 48 | 3.38 | 3.5 | 45 | 1.63 | |
Solid–liquid separation | 1.2 | 69 | 0.75 | 0.6 | 49 | 0.25 | |
Tier 1 upgrade with cover and flare | 8.1 | 44 | 3.50 | 4.0 | 36 | 1.38 | |
Lagoon digester—uncovered effluent pond * | Reciprocal engine | 7.3 | 51 | 3.75 | 3.5 | 39 | 1.38 |
Microturbine | 58 | 4.25 | 45 | 1.63 | |||
Fuel cell | 74 | 5.38 | 56 | 2.00 | |||
RNG fuel | 68 | 4.88 | 41 | 1.50 | |||
Tank/plug flow digester—covered effluent pond ** | Reciprocal engine | 8.3 | 69 | 5.75 | 4.1 | 51 | 2.13 |
Microturbine | 75 | 6.25 | 58 | 2.38 | |||
Fuel cell | 90 | 7.50 | 69 | 2.75 | |||
RNG fuel | 81 | 6.88 | 53 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mashad, H.M.; Barzee, T.J.; Franco, R.B.; Zhang, R.; Kaffka, S.; Mitloehner, F. Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies. Atmosphere 2023, 14, 120. https://doi.org/10.3390/atmos14010120
El Mashad HM, Barzee TJ, Franco RB, Zhang R, Kaffka S, Mitloehner F. Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies. Atmosphere. 2023; 14(1):120. https://doi.org/10.3390/atmos14010120
Chicago/Turabian StyleEl Mashad, Hamed M., Tyler J. Barzee, Roberta Brancher Franco, Ruihong Zhang, Stephen Kaffka, and Frank Mitloehner. 2023. "Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies" Atmosphere 14, no. 1: 120. https://doi.org/10.3390/atmos14010120
APA StyleEl Mashad, H. M., Barzee, T. J., Franco, R. B., Zhang, R., Kaffka, S., & Mitloehner, F. (2023). Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies. Atmosphere, 14(1), 120. https://doi.org/10.3390/atmos14010120