The Potential of Green Development and PM2.5 Emission Reduction for China’s Cement Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. PM2.5 by Cement Industry
2.2.2. Geographic Detector Model
3. Results
3.1. Spatial and Temporal Characteristics of PM2.5Cement
3.2. Gravity Center Transfer of the Cement Industry
3.3. Geographical Dtection of Driving Factors
3.3.1. Influence of Detection Factor
3.3.2. Interactive Factors
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branquinho, C.; Gaio-Oliveira, G.; Augusto, S.; Pinho, P.; Maguas, C.; Correia, O. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ. Pollut. 2008, 151, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.H.; Kim, T.W.; Jang, S.; Ryu, H.W. Dust exposure and the risk of cancer in cement industry workers in Korea. Am. J. Ind. Med. 2013, 56, 276–281. [Google Scholar] [CrossRef]
- Lian, L.; Chen, S.; Ma, J.; Li, T.; Yang, Y.; Huang, T.; Wang, Y.; Li, J. Population aging driven slowdown in the reduction of economic cost-Attributed to PM2.5 Pollution after 2013 in China. Environ. Sci. Technol. 2023, 57, 1237–1245. [Google Scholar]
- Cao, W.; Wang, X.; Li, J.L.; Yan, M.; Chang, C.H.; Kim, J.; Jiang, J.H.; Liao, Y.P.; Tseng, S.; Kusumoputro, S.; et al. NLRP3 inflammasome activation determines the fibrogenic potential of PM2.5 air pollution particles in the lung. J. Environ. Sci. 2022, 111, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.L.; Zhao, X.; Liu, S.H.; Yuan, W.P.; Cheng, X.; Xiao, Z.Q.; Zhang, X.T.; Liu, Q.; Cheng, J.; Tang, H.R.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Chen, J.Q.; Zhu, L.; Fan, P.; Tian, L.; Raffaele, L. Do green spaces affect the spatiotemporal changes of PM2.5 in Nanjing? Ecol. Process. 2016, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Wagner, F.; Scovronick, N.; Peng, W.; Yang, J.N.; Zhu, T.; Smith, K.R.; Mauzerall, D.L. Air quality, health, and climate implications of China’s synthetic natural gas development. Proc. Natl. Acad. Sci. USA 2017, 114, 4887–4892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, M.O.A.; Song, W.W.; Ma, W.L.; Li, W.L.; Li, Y.F.; Khan, A.U.; Ibrahim, M.A.E.M.; Maarouf, O.A.; Ahmed, A.A.; Ambuchi, J.J. Potential Toxicological and Cardiopulmonary Effects of PM2.5 Exposure and Related Mortality: Findings of Recent Studies Published during 2003-2013. Biomed. Environ. Sci. 2016, 29, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Hou, W.; Chen, J.; Chen, C.; Pan, X. Spatiotemporal Changes in PM2.5 and Their Relationships with Land-Use and People in Hangzhou. Int. J. Environ. Res. Public Health 2018, 15, 2192. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.H.; Almatroudi, A.; Babiker, A.Y.; Khan, A.A.; Alsahly, M.A. Effect of exposure to cement dust among the workers: An evaluation of health related complications. Open Access Maced. J. Med. Sci. 2018, 6, 1159–1162. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zang, Z.; Chen, D.; Ma, X.; Liang, Y.; You, W.; Pan, X.; Wang, L.; Wang, D.; Zhang, Z. Optimization and evaluation of SO2 emissions based on WRF-Chem and 3DVAR Data assimilation. Remote Sens. 2022, 14, 220. [Google Scholar] [CrossRef]
- Chu, M.J.; Wu, S.S.; Wang, W.; Yu, Y.H.; Zhang, M.J.; Sang, L.L.; Tian, T.; Lu, Y.H.; Yuan, W.W.; Huang, Q.Q.; et al. Functional variant of the carboxypeptidase M (CPM) gene may affect silica- related pneumoconiosis susceptibility by its expression: A multistage case-control study. Occup. Environ. Med. 2019, 76, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahlet, M.; Alemayehu, H.; Tamrat, S.; Seid, A.M. Emission level of PM2.5 and its association with chronic respiratory symptoms among workers in cement industry: A case of mugher cement industry, central ethiopia. Avicenna J. Environ. Healthc. Eng. 2018, 5, 1–7. [Google Scholar]
- Ekinci, E.; Kazancoglu, Y.; Mangla, S.K. Using system dynamics to assess the environmental management of cement industry in streaming data context. Sci. Total Environ. 2020, 715. [Google Scholar] [CrossRef] [PubMed]
- Sleight, R.B.; Tiffin, J. Industrial noise and hearing. J. Appl. Psychol. 1948, 32, 476. [Google Scholar] [CrossRef]
- Caravaca, F.; Lozano, Z.; Rodriguez-Caballero, G.; Roldan, A. Spatial Shifts in Soil Microbial Activity and Degradation of Pasture Cover Caused by Prolonged Exposure to Cement Dust. Land Degrad. Dev. 2017, 28, 1329–1335. [Google Scholar] [CrossRef]
- Marques, M.; Neves-Silva, R. Decision support for energy savings and emissions trading in industry. J. Clean. Prod. 2015, 88, 105–115. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yu, B.Y.; Chen, J.M.; Wei, Y.M. Green transition pathways for cement industry in China. Resour. Conserv. Recycl. 2021, 166, 105355. [Google Scholar] [CrossRef]
- Chopping, M.; North, M.; Chen, J.Q.; Schaaf, C.B.; Blair, J.B.; Martonchik, J.V.; Bull, M.A. Forest Canopy Cover and Height From MISR in Topographically Complex Southwestern US Landscapes Assessed With High Quality Reference Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 44–58. [Google Scholar] [CrossRef]
- Mbelambela, E.P.; Eitoku, M.; Muchanga, S.M.J.; Villanueva, A.F.; Hirota, R.; Pulphus, T.Y.; Sokolo, G.J.; Yasumitsu-Lovell, K.; Komori, K.; Suganuma, N. Prevalence of chronic obstructive pulmonary disease (COPD) among Congolese cement workers exposed to cement dust, in Kongo Central Province. Environ. Sci. Pollut. Res. 2018, 25, 35074–35083. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.H.; He, K.B.; Lu, Z.F.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.H.; Worrell, E.; Crijns-Graus, W.; Krol, M.; de Bruine, M.; Geng, G.P.; Wagner, F.; Cofala, J. Modeling energy efficiency to improve air quality and health effects of China’s cement industry. Appl. Energy 2016, 184, 574–593. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Fleiter, T.; Fan, Y.; Eichhammer, W. CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050. Appl. Energy 2014, 130, 592–602. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, Q.A.; Nielsen, C.; He, K.B. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020. Atmos. Environ. 2011, 45, 147–154. [Google Scholar] [CrossRef]
- Meng, J.; Liu, J.F.; Xu, Y.; Tao, S. Tracing Primary PM2.5 emissions via Chinese supply chains. Environ. Res. Lett. 2015, 10, 054005. [Google Scholar] [CrossRef]
- Li, M.G.; Wang, L.L.; Liu, J.D.; Gao, W.K.; Song, T.; Sun, Y.; Li, L.; Li, X.R.; Wang, Y.H.; Liu, L.L.; et al. Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013-2017. Environ. Int. 2020, 134, 105283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xie, Y.; Robet, S.; Yue, H.; Shu, Y. Potentials of energy efficiency improvement and energy–emission–health nexus in Jing-Jin-Ji’s cement industry. J. Clean. Prod. 2021, 278, 123335. [Google Scholar] [CrossRef]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Li, J. Spatial Pattern and Spillover of Abatement Effect of Chinese Environmental Protection Tax Law on PM2.5 Pollution. Int. J. Environ. Res. Public Health 2022, 19, 1440. [Google Scholar] [CrossRef]
- Huang, J.; Pan, X.; Guo, X.; Li, G. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Cai, Y.; Feng, B.; Cao, G.; Lin, H.; Xiao, J.; Li, X.; Liu, S.; Pei, L.; Fu, L. Long-term mortality benefits of air quality improvement during the twelfth five-year-plan period in 31 provincial capital cities of China. Atmos. Environ. 2018, 173, 53–61. [Google Scholar] [CrossRef]
- Sun, D.; Fang, J.; Sun, J. Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region. Resour. Conserv. Recycl. 2018, 129, 416–423. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef] [PubMed]
- The State Council of China. China’s National Action Plan on Air Pollution Control. State Counc China. 2013. Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 12 March 2021).
- Wang, Y.H.; Gao, W.K.; Wang, S.; Song, T.; Gong, Z.Y.; Ji, D.S.; Wang, L.L.; Liu, Z.R.; Tang, G.Q.; Huo, Y.F.; et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. EPA. EPA’s Incident Waste Management Planning and Response Tool; US Environmental Protection Agency: Washington, DC, USA, 2017; Report Number EPA/600/S-17/184.31.
- Zhang, R.; Ma, Y.; Ren, J. Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China. Int. J. Environ. Res. Public Health 2022, 19, 9306. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Zheng, G.H.; Jiang, D.F.; Luan, Y.F.; Yao, Y. GIS-based spatial differentiation of ethnic minority villages in Guizhou Province, China. J. Mt. Sci. 2022, 19, 987–1000. [Google Scholar] [CrossRef]
- Wang, J.f.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Lu, J.Y.; Cao, X. PM2.5 Pollution in Major Cities in China: Pollution Status, Emission Sources and Control Measures. Fresenius Environ. Bull. 2015, 24, 1338–1349. [Google Scholar]
- Talaei, A.; Pier, D.; Iyer, A.V.; Ahiduzzaman, M.; Kumar, A. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy 2019, 170, 1051–1066. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Xue, T.; Zhang, Q.; Geng, G.N.; Tong, D.; Li, X.; He, K.B. Air quality improvements and health benefits from China’s clean air action since 2013. Environ. Res. Lett. 2017, 12, 114020. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zheng, Y.X.; Tong, D.; Shao, M.; Wang, S.X.; Zhang, Y.H.; Xu, X.D.; Wang, J.N.; He, H.; Liu, W.Q.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Tong, D.; Zheng, Y.X.; Cheng, J.; Qin, X.Y.; Shi, Q.R.; Yan, L.; Lei, Y.; Zhang, Q. Carbon and air pollutant emissions from China’s cement industry 1990-2015: Trends, evolution of technologies, and drivers. Atmos. Chem. Phys. 2021, 21, 1627–1647. [Google Scholar] [CrossRef]
- Liu, Y.S.; Cao, Y.; Hou, J.J.; Zhang, J.T.; Yang, Y.O.; Liu, L.C. Identifying common paths of CO2 and air pollutants emissions in China. J. Clean. Prod. 2020, 256, 120599. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, S.X.; Wu, Q.R.; Liu, K.Y.; Wang, L.; Li, S.; Gao, W.; Zhang, L.; Zheng, H.T.; Li, Z.J.; et al. Recent decrease trend of atmospheric mercury concentrations in East China: The influence of anthropogenic emissions. Atmos. Chem. Phys. 2018, 18, 8279–8291. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mauzerall, D.L.; Chen, Q.; Zhang, Q.; Song, Y.; Peng, W.; Klimont, Z.; Qiu, X.H.; Zhang, S.Q.; Hu, M.; et al. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proc. Natl. Acad. Sci. USA 2016, 113, 7756–7761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.F.; Xing, J.; Zhou, Y.; Wang, S.X.; Zhao, B.; Zheng, H.T.; Zhao, X.; Chang, H.Z.; Jang, C.; Zhu, Y.; et al. Estimation of abatement potentials and costs of air pollution emissions in China. J. Environ. Manag. 2020, 260, 110069. [Google Scholar] [CrossRef]
- Gao, T.M.; Shen, L.; Shen, M.; Liu, L.T.; Chen, F.N.; Gao, L. Evolution and projection of CO2 emissions for China’s cement industry from 1980 to 2020. Renew. Sustain. Energy Rev. 2017, 74, 522–537. [Google Scholar] [CrossRef]
Type | Indicator | Factor | Unit | Effect | The Data Source |
---|---|---|---|---|---|
Natural factors | Annual precipitation | X1 | mm | − | China Meteorological Data Network (http://data.cma.cn/, accessed on 1 June 2021) |
Mean annual temperature | X2 | °C | + | ||
Annual sunshine hours | X3 | 0.1 h | − | ||
Wind speed | X4 | 0.1 m/s | − | ||
The green area | X5 | ha | − | China Urban Statistical Yearbook (2011, 2016), China Provincial Statistical Yearbook (2011, 2016), China Environmental Statistical Yearbook (2011, 2016), China Environmental Statistical Yearbook (2011, 2016), China Urban and Rural Construction Statistical Yearbook (2011, 2016) | |
social economic factors | Gross regional Product (GDP) | X6 | ×104 Yuan (¥) | + | |
The proportion of secondary industry in GDP | X7 | % | + | ||
Labor force | X8 | ×104 (pers) | + | ||
The length of the road | X9 | km | + | ||
Industrial smoke (powder) dust emission | X10 | Tons | + | ||
Comprehensive utilization rate of general industrial solid waste | X11 | % | − | ||
Green development factors | Science and technology spending | X12 | ×104 Yuan (¥) | − | |
Green patent grant | X13 | - | − | http://www.cnipa.gov.cn/, accessed on 1 June 2021 | |
Green patent filings | X14 | - | − |
Criterion | Interaction |
---|---|
q (Xa ⋂ Xb) < Min (q (Xa), q (Xb)) | Nonlinear weakening |
Min(q(Xa), q(Xb))< Q(Xa∩ Xb)< Max(q(Xa), q(Xb)) | One factor nonlinear attenuation |
q (Xa ∩ Xb) > Max (q (Xa), q (Xb)) | Two factor enhancement |
q (Xa ∩ Xb) = q (Xa) + q (Xb) | independent |
q (Xa ∩ Xb) > q (Xa) + q (Xb) | Nonlinear enhancement |
Indicators (I) | Indicators (II) | Factors | Effect | q Value of Factors in Different PM2.5Cenment Value Class | |||||
---|---|---|---|---|---|---|---|---|---|
<40,000 | 40,000–60,000 | >60,000 | |||||||
2010 | 2017 | 2010 | 2017 | 2010 | 2017 | ||||
Natural factors | Annual precipitation | X1 | − | 0.2 | 0.31 | 0.18 | 0.18 | 0.31 | 0.17 |
Mean annual temperature | X2 | + | 0.24 | 0.19 | 0.13 | 0.52 | 0.16 | 0.24 | |
Annual sunshine hours | X3 | − | 0.01 | 0.18 | 0.28 | 0.13 | 0.43 | 0.05 | |
Wind speed | X4 | − | 0.51 | 0.64 | 0.32 | 0.17 | 0.13 | 0.27 | |
The green area | X5 | − | 0.62 | 0.73 | 0.74 | 0.6 | 0.31 | 0.46 | |
Social economic factors | Gross regional Product (GDP) | X6 | + | 0.85 | 0.89 | 0.82 | 0.7 | 0.53 | 0.48 |
The proportion of secondary industry in GDP | X7 | + | 0.52 | 0.65 | 0.36 | 0.34 | 0.44 | 0.55 | |
Labor force | X8 | + | 0.61 | 0.83 | 0.68 | 0.3 | 0.43 | 0.51 | |
The length of the road | X9 | + | 0.71 | 0.95 | 0.76 | 0.27 | 0.07 | 0.58 | |
Industrial smoke (powder) dust emission | X10 | + | 0.84 | 0.95 | 0.55 | 0.27 | 0.72 | 0.59 | |
Comprehensive utilization rate of general industrial solid waste | X11 | − | 0.63 | 0.41 | 0.52 | 0.69 | 0.36 | 0.49 | |
Green development factors | Science and technology spending | X12 | − | 0.61 | 0.83 | 0.36 | 0.39 | 0.28 | 0.21 |
Green patent grant | X13 | − | 0.21 | 0.27 | 0.48 | 0.53 | 0.36 | 0.39 | |
Green patent filings | X14 | − | 0.21 | 0.26 | 0.34 | 0.61 | 0.33 | 0.47 |
Natural Factors | 2010 | 2017 | ||||||||
X1 | X1 | |||||||||
X1 | 0.29 | X2 | 0.28 | X2 | ||||||
X2 | 0.44 | 0.37 | X3 | 0.43 | 0.45 | X3 | ||||
X3 | 0.46 | 0.48 | 0.35 | X4 | 0.57 | 0.55 | 0.43 | X4 | ||
X4 | 0.42 | 0.46 | 0.48 | 0.2 | X5 | 0.59 | 0.55 | 0.59 | 0.4 | X5 |
X5 | 0.48 | 0.55 | 0.57 | 0.49 | 0.32 | 0.47 | 0.51 | 0.54 | 0.72 | 0.42 |
Green Development Factors | 2010 | 2017 | ||||
X12 | X12 | |||||
X12 | 0.27 | X13 | 0.3 | X13 | ||
X13 | 0.72 | 0.32 | X14 | 0.6 | 0.5 | X14 |
X14 | 0.65 | 0.48 | 0.34 | 0.58 | 0.52 | 0.51 |
Social Economic Factors | 2010 | 2017 | ||||||||||
X6 | X6 | |||||||||||
X6 | 0.57 | X7 | 0.44 | X7 | ||||||||
X7 | 0.65 | 0.47 | X8 | 0.75 | 0.34 | X8 | ||||||
X8 | 0.56 | 0.71 | 0.36 | X9 | 0.54 | 0.79 | 0.33 | X9 | ||||
X9 | 0.85 | 0.82 | 0.54 | 0.43 | X10 | 0.59 | 0.82 | 0.53 | 0.38 | X10 | ||
X10 | 0.7 | 0.66 | 0.76 | 0.71 | 0.37 | X11 | 0.68 | 0.71 | 0.73 | 0.78 | 0.2 | X11 |
X11 | 0.59 | 0.35 | 0.72 | 0.6 | 0.46 | 0.13 | 0.65 | 0.86 | 0.62 | 0.73 | 0.86 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L. The Potential of Green Development and PM2.5 Emission Reduction for China’s Cement Industry. Atmosphere 2023, 14, 482. https://doi.org/10.3390/atmos14030482
Tian L. The Potential of Green Development and PM2.5 Emission Reduction for China’s Cement Industry. Atmosphere. 2023; 14(3):482. https://doi.org/10.3390/atmos14030482
Chicago/Turabian StyleTian, Li. 2023. "The Potential of Green Development and PM2.5 Emission Reduction for China’s Cement Industry" Atmosphere 14, no. 3: 482. https://doi.org/10.3390/atmos14030482
APA StyleTian, L. (2023). The Potential of Green Development and PM2.5 Emission Reduction for China’s Cement Industry. Atmosphere, 14(3), 482. https://doi.org/10.3390/atmos14030482