Network Theory to Reveal Ionospheric Anomalies over North America and Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
3. Ionospheric Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cannon, P.S. Mitigation and exploitation of the ionosphere: A military perspective. Radio Sci. 2009, 44, RS0A20. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and more; Springer: Wien, Austria, 2008; p. 518. ISBN 978-3-211-73012-6. [Google Scholar] [CrossRef]
- Rishbeth, H. Some problems of the F region. Radio Sci. 1974, 9, 183–187. [Google Scholar] [CrossRef]
- Giraud, A.; Petit, M. Ionospheric Techniques and Phenomena; Springer: Dordrecht, The Netherlands, 1987; p. 265. [Google Scholar] [CrossRef]
- Rishbeth, H. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmos. Sol. Terr. Phys. 1998, 60, 1385–1402. [Google Scholar] [CrossRef]
- Rishbeth, H.; Mendillo, M. Patterns of F2-Layer Variability. J. Atmos. Sol-Terr. Phys. 2001, 63, 1661–1680. [Google Scholar] [CrossRef]
- Karpachev, A.; Gasilov, N.; Karpachev, O. Morphology and causes of the Weddell Sea anomaly. Geomagn. Aeron. 2011, 51, 812–824. [Google Scholar] [CrossRef]
- Klimenko, M.; Klimenko, V.; Ratovsky, K.; Zakharenkova, I.; Yasyukevich, Y.V.; Korenkova, N.; Cherniak, I.; Mylnikova, A. Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum. Adv. Space Res. 2015, 56, 1951–1960. [Google Scholar] [CrossRef]
- Bilitza, D.; McKinnell, L.-A.; Reinisch, B.; Fuller-Rowell, T. The International Reference Ionosphere (IRI) today and in the future. J. Geod. 2011, 85, 909–920. [Google Scholar] [CrossRef]
- Ovodenko, V.B.; Trekin, V.V.; Korenkova, N.A.; Klimenko, M.V. Investigating range error compensation in UHF radar through IRI-2007 real-time. Adv. Space Res. 2015, 56, 900–906. [Google Scholar] [CrossRef]
- Abraham, S.; Le Vine, D.M. Use of IRI to model the effect of ionosphere emission on earth remote sensing at L-band. Adv. Space Res. 2004, 34, 2059–2066. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, 23, 325–331. [Google Scholar] [CrossRef]
- European Union. European GNSS (Galileo) Open Service-Ionospheric Correction Algorithm for Galileo Single Frequency Users. 1.2. 2016. Available online: http://www.gsc-europa.eu/system/files/galileo_documents/Galileo_Ionospheric_Model.pdf (accessed on 13 July 2022).
- Wang, N.; Li, Z.; Yuan, Y.; Huo, X. BeiDou Global Ionospheric delay correction Model (BDGIM): Performance analysis during different levels of solar conditions. GPS Solut. 2021, 25, 97. [Google Scholar] [CrossRef]
- Angrisano, A.; Gioia, C.; Gaglione, S.; del Core, G. GNSS Reliability Testing in Signal-Degraded Scenario. Int. J. Navig. Obs. 2013, 2013, 870365. [Google Scholar] [CrossRef][Green Version]
- McGranaghan, R.M.; Mannucci, A.J.; Verkhoglyadova, O.; Malik, N. Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content. J. Geophys. Res. Space Phys. 2017, 122, 7683–7697. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, H.; Li, X.; Li, Y.; Niu, C.; Yang, X.; Liu, D. Complex network description of the ionosphere. Nonlin. Processes Geophys. 2018, 25, 233–240. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Rothacher, M. Mapping and predicting the ionosphere. In Proceedings of the 1998 IGS Analysis Center Workshop, Darmstadt, Germany, 9–11 February 1998; pp. 307–320. [Google Scholar]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.M.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric TEC measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Mervart, L.; Rothacher, M.; Wild, U. Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the IGS Workshop on Special Topics and new Directions, Potsdam, Germany, 15–17 May 1995; pp. 77–92. [Google Scholar]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The IONosphere Map Exchange Format; Version 1. In Proceedings of the 1998 IGS Analysis Center Workshop, Darmstadt, Germany, 9–11 February 1998; pp. 233–247. Available online: http://ftp.aiub.unibe.ch/ionex/draft/ionex11.pdf (accessed on 13 July 2022).
- Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]
- Stolbova, V.; Martin, P.; Bookhagen, B.; Marwan, N.; Kurths, J. Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlin. Processes Geophys. 2014, 21, 901–917. [Google Scholar] [CrossRef]
- Timchenko, A.V.; Bessarab, F.S.; Klimenko, M.V.; Radievsky, A.V.; Klimenko, V.V. Correlation Analysis of Global Ionospheric Total Electron Content Maps in March 2015. Geomagn. Aeron. 2022, 62, 217–226. [Google Scholar] [CrossRef]
- Schunk, R.W.; Nagy, A.F. Ionospheres: Physics, Plasma Physics, and Chemistry; Cambridge University Press: Cambridge, UK, 2009; p. 628. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Juan, J.; Sanz, J. New approaches in global ionospheric determination using ground GPS data. J. Atmos. Sol. Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.; Liu, L.; Mao, T.; Ren, Z.; Wang, M.; Christensen, A.B. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content. Ann. Geophys. 2007, 25, 2513–2527. [Google Scholar] [CrossRef]
- Torr, M.R.; Torr, D. The seasonal behaviour of the f2-layer of the ionosphere. J. Atmos. Terr. Phys. 1973, 35, 2237–2251. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Yasyukevich, A.S.; Ratovsky, K.G.; Klimenko, M.V.; Klimenko, V.V.; Chirik, N.V. Winter anomaly in NmF2 and TEC: When and where it can occur. J. Space Weather Space Clim. 2018, 8, A45. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Met Office. Cartopy: A Cartographic Python Library with a Matplotlib Interface. Exeter, Devon, 2010–2015. Available online: http://scitools.org.uk/cartopy (accessed on 13 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhivetiev, I.V.; Yasyukevich, Y.V. Network Theory to Reveal Ionospheric Anomalies over North America and Australia. Atmosphere 2022, 13, 1333. https://doi.org/10.3390/atmos13081333
Zhivetiev IV, Yasyukevich YV. Network Theory to Reveal Ionospheric Anomalies over North America and Australia. Atmosphere. 2022; 13(8):1333. https://doi.org/10.3390/atmos13081333
Chicago/Turabian StyleZhivetiev, Ilya V., and Yury V. Yasyukevich. 2022. "Network Theory to Reveal Ionospheric Anomalies over North America and Australia" Atmosphere 13, no. 8: 1333. https://doi.org/10.3390/atmos13081333
APA StyleZhivetiev, I. V., & Yasyukevich, Y. V. (2022). Network Theory to Reveal Ionospheric Anomalies over North America and Australia. Atmosphere, 13(8), 1333. https://doi.org/10.3390/atmos13081333