High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity
Abstract
:1. Introduction
2. Methodology
2.1. LES Comparison with Wind Tunnel
2.1.1. Wind Tunnel Simulation
- The full wind tunnel model consisted of around 100 buildings, but the model used here is a cut-down version that was used in an investigation of the response of flow and dispersion in London Road to the extent of the model. The consequence of this is that the LES runs required a smaller computational resource than would be demanded for the full model.
- The source location, shown in Figure 1, is in a position where sensitivity to precise location is expected to have a significant impact on dispersion behaviour, in particular the division of fluxes between the surrounding streets (the location is actually a roundabout). As will become apparent, this is not ideal for evaluating the ability of the LES model to predict dispersion. The specified source location and wind direction, indicated by the arrows in Figure 1, provides a particularly strong test of predictive ability for the tracer concentration along London Road; being perpendicular to the road, the oncoming wind can only generate flow along the road because of the interplay between the approaching flow and the heterogeneous geometry. A number of other data sets were available for the full model but these are not used here in favour of a case which is computationally less intensive. However, previous studies have shown that Fluidity is able to simulate tracer dispersion in urban settings with reasonable accuracy [22,23,24]. This is an additional case which tests the particular meshing method used and provides further assurance of the quality of Fluidity’s predictions.
- We are concerned with Fluidity’s ability to accurately replicate the flow statistics and tracer concentrations within the street canyon specifically. We therefore validate Fluidity against the X and Z direction components of the velocity and turbulence fields. The wind direction, perpendicular to the street, provides the strongest statistics in these two directions making it easier to compare the statistics derived from the two models. Given the sensitivity of the tracer concentrations within the canyon to the exact source location, we use two separate methods to normalise the concentrations. The first is commonly used in wind tunnel and CFD studies:
2.1.2. LES
2.1.3. Mesh Configuration
2.1.4. Performance Criteria for LES
- ≤ 0.3 —The relative Fractional Bias (FB) is less than or equal to 0.3.
- NMSE ≤ 3.0 —The Normalised Mean Square Error (NMSE) is less than or equal to 3.
- FAC2 ≥ 0.5—The fraction of predicted values, P, within a factor of two (FAC2) of the observed values, O, is greater than or equal to 0.5.
- NAD ≤ 0.3—The Normalised Absolute Difference (NAD) is less than or equal to 0.3.
2.2. Full Scale Simulations
2.2.1. Traffic Movement Modelling
2.2.2. Traffic Emissions Model
2.2.3. Full Scale LES Configuration
2.2.4. Dynamic Traffic Emissions Modelling
3. Results and Discussion
3.1. Comparison with Wind Tunnel
3.1.1. Velocities and Turbulent Velocities
3.1.2. Tracer Concentrations
3.2. Full Scale Simulations
Qualitative Comparison of Roadside Measured and Simulated Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, F.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.F.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef]
- Borge, R.; Narros, A.; Artíñano, B.; Yagüe, C.; Gómez-Moreno, F.J.; de la Paz, D.; Román-Cascón, C.; Díaz, E.; Maqueda, G.; Sastre, M.; et al. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmos. Environ. 2016, 140, 432–445. [Google Scholar] [CrossRef]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Beevers, S.D.; Kitwiroon, N.; Williams, M.L.; Carslaw, D.C. One way coupling of CMAQ and a road source dispersion model for fine scale air pollution predictions. Atmos. Environ. 2012, 59, 47–58. [Google Scholar] [CrossRef]
- Hood, C.; MacKenzie, I.; Stocker, J.; Johnson, K.; Carruthers, D.; Vieno, M.; Doherty, R. Air quality simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys. 2018, 18, 11221–11245. [Google Scholar] [CrossRef]
- Santiago, J.; Borge, R.; Sanchez, B.; Quaassdorff, C.; de la Paz, D.; Martilli, A.; Rivas, E.; Martín, F. Estimates of pedestrian exposure to atmospheric pollution using high-resolution modelling in a real traffic hot-spot. Sci. Total. Environ. 2021, 755, 142475. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Clark, R.; Walsh, P.; Arnold, S.; Colvile, R.; Nieuwenhuijsen, M. Exposure visualisation of ultrafine particle counts in a transport microenvironment. Atmos. Environ. 2006, 40, 386–398. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Esparza, D.; Sauer, J.A.; Shin, H.H.; Sharman, R.; Kosović, B.; Meech, S.; García-Sánchez, C.; Steiner, M.; Knievel, J.; Pinto, J.; et al. Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002141. [Google Scholar] [CrossRef]
- García-Sánchez, C.; van Beeck, J.; Gorlé, C. Predictive large eddy simulations for urban flows: Challenges and opportunities. Build. Environ. 2018, 139, 146–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Wang, S.; He, X.; Dong, L.; Zhang, N.; Wang, H.; Wang, Z.; Ma, Y.; Wang, L.; et al. Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: Evaluation against mobile sensors and insights for influencing factors. Atmos. Chem. Phys. 2021, 21, 2917–2929. [Google Scholar] [CrossRef]
- Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere 2018, 9, 65. [Google Scholar] [CrossRef]
- Lundquist, K.A.; Chow, F.K.; Lundquist, J.K. An Immersed Boundary Method Enabling Large-Eddy Simulations of Flow over Complex Terrain in the WRF Model. Mon. Weather Rev. 2012, 140, 3936–3955. [Google Scholar] [CrossRef]
- Wiersema, D.J.; Lundquist, K.A.; Chow, F.K. Mesoscale to Microscale Simulations over Complex Terrain with the Immersed Boundary Method in the Weather Research and Forecasting Model. Mon. Weather Rev. 2020, 148, 577–595. [Google Scholar] [CrossRef]
- Woodward, H.; Stettler, M.; Pavlidis, D.; Aristodemou, E.; ApSimon, H.; Pain, C. A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection. Atmos. Environ. 2019, 215, 116891. [Google Scholar] [CrossRef]
- Le Cornec, C.M.; Molden, N.; van Reeuwijk, M.; Stettler, M.E. Modelling of instantaneous emissions from diesel vehicles with a special focus on NOx: Insights from machine learning techniques. Sci. Total. Environ. 2020, 737, 139625. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Reyes, J.C.; Jeanjean, A.; Leigh, R.; Hernández-Paniagua, I.Y.; Rosas-Pérez, I.; Jazcilevich, A. Studying human exposure to vehicular emissions using computational fluid dynamics and an urban mobility simulator: The effect of sidewalk residence time, vehicular technologies and a traffic-calming device. Sci. Total. Environ. 2019, 687, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Borge, R.; Martin, F.; de la Paz, D.; Martilli, A.; Lumbreras, J.; Sanchez, B. Evaluation of a CFD-based approach to estimate pollutant distribution within a real urban canopy by means of passive samplers. Sci. Total. Environ. 2017, 576, 46–58. [Google Scholar] [CrossRef]
- Borge, R.; Santiago, J.L.; de la Paz, D.; Martín, F.; Domingo, J.; Valdés, C.; Sánchez, B.; Rivas, E.; Rozas, M.T.; Lázaro, S.; et al. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode—Part II: Assessment from multi-scale modelling. Sci. Total. Environ. 2018, 635, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Buccolieri, R.; Jeanjean, A.P.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- EnFlo. 2022. Available online: https://www.ptvgroup.com/en/solutions/products/ptv-vissim/ (accessed on 21 March 2022).
- Pavlidis, D.; Gorman, G.J.; Gones, J.L.M.A.; Pain, C.C.; ApSimon, H. Synthetic-Eddy Method for Urban Atmospheric Flow Modelling. Bound.-Layer Meteorol. 2010, 136, 285–299. [Google Scholar] [CrossRef]
- Aristodemou, E.; Boganegra, L.M.; Mottet, L.; Pavlidis, D.; Constantinou, A.; Pain, C.; Robins, A.; ApSimon, H. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environ. Pollut. 2018, 233, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Mottet, L.; Song, J.; Short, A.C.; Chen, S.; Wu, J.; Yu, W.; Xiong, J.; Zhang, Q.; Ge, J.; Liu, M.; et al. The hot summer-cold winter region in China: Challenges in the low carbon adaptation of residential slab buildings to enhance comfort. Energy Build. 2020, 223, 110181. [Google Scholar] [CrossRef]
- Pain, C.; Umpleby, A.; de Oliveira, C.; Goddard, A. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Eng. 2001, 190, 3771–3796. [Google Scholar] [CrossRef]
- Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 2006, 27, 585–593. [Google Scholar] [CrossRef]
- Hanna, S.; Chang, J. Acceptance criteria for urban dispersion model evaluation. Meteorol. Atmos. Phys. 2012, 116, 133–146. [Google Scholar] [CrossRef]
- Schatzmann, M.; Olesen, H.; Franke, J. (Eds.) Cost 732 Model Evaluation Case Studies: Approach and Results. COST Action 732; Meteorological Institute Centre for Marine and Atmospheric Sciences, University of Hamburg: Hamburg, Germany, 2010. [Google Scholar]
- Baumann-Stanzer, K.; Andronopoulos, S.; Arm, P.; Berbekar, E.; Efthimiou, G.; Fuka, V.; Gariazzo, C.; Gasparac, G.; Harms, F.; Hellsten, A.; et al. (Eds.) Cost ES1006—Model Evaluation Case Studies. COST Action ES1006; University of Hamburg: Hamburg, Germany, 2015. [Google Scholar]
- VDI. VDI Guideline 3783, Part 9, Environmental Meteorology—Prognostic Microscale Wind Field Models—Evaluation for Flow Around Buildings and Obstacle; Commission of Air Pollution Prevention of VDI and DIN: Düsseldorf, Germany, 2005. [Google Scholar]
- Instruments, T. Model 200e Chemiluminescence NO/NO2/NOx Analyser; Teledyne Analytical Instruments: City of Industry, CA, USA, 2015. [Google Scholar]
- Ecotech, A. Serinus 60 NO2 Analyser; Acoem Ecotech: Melbourne, VIC, Australia, 2016. [Google Scholar]
- Popoola, O.A.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.; Saffell, J.R.; Jones, R.L. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- PTV Group. PTV Vissim. Available online: https://www.ptvgroup.com/en/solutions/products/ptv-vissim/ (accessed on 21 March 2022).
- Balogun, A.A.; Tomlin, A.S.; Wood, C.R.; Barlow, J.F.; Belcher, S.E.; Smalley, R.J.; Lingard, J.J.N.; Arnold, S.J.; Dobre, A.; Robins, A.G.; et al. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London. Bound.-Layer Meteorol. 2010, 136, 489–513. [Google Scholar] [CrossRef]
- O’Driscoll, R.; ApSimon, H.M.; Oxley, T.; Molden, N.; Stettler, M.E.; Thiyagarajah, A. A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmos. Environ. 2016, 145, 81–91. [Google Scholar] [CrossRef]
Day | Date | , ms | Predominant Wind Direction | Mean Hourly Traffic |
---|---|---|---|---|
1 | 20 September 2019 | 8 | 1949 | |
2 | 27 September 2019 | 12 | 1550 |
Meas. | Obs. | FAC2 (≥0.5) | FB (≤0.3) | NMSE (≤3.0) | NAD (≤0.3) | HR (≥0.66) | ||
---|---|---|---|---|---|---|---|---|
All points (N = 148) | u | 0.34 | 0.34 | 0.76 | 0.05 | 0.09 | 0.64 | |
w | 0.03 | 0.03 | 0.56 | 0.04 | 0.60 | 0.29 | 0.42 | |
0.24 | 0.29 | 0.99 | 0.07 | 0.11 | 0.58 | |||
0.20 | 0.19 | 1.0 | 0.06 | 0.03 | 0.08 | 0.85 | ||
0.78 | 0.24 | 0.27 | ||||||
13.88 | 88.81 | 0.0 | 12.08 | 0.73 | 0.00 | |||
0.51 | 0.53 | 0.85 | 0.40 | 0.18 | 0.50 | |||
In- canyon (N = 48) | u | 0.60 | 0.48 | 0.26 | 0.43 | |||
w | 0.056 | 0.034 | 0.45 | 0.29 | 0.69 | 0.35 | 0.19 | |
0.19 | 0.21 | 0.95 | 0.12 | 0.12 | 0.60 | |||
0.16 | 0.13 | 1.0 | 0.24 | 0.08 | 0.13 | 0.55 | ||
0.48 | 0.79 | 0.35 | 0.31 | |||||
24.14 | 169.14 | 0.0 | 9.97 | 0.75 | 0.0 | |||
0.88 | 1.01 | 0.90 | 0.21 | 0.16 | 0.48 |
M200e | CAPS | |||||||
---|---|---|---|---|---|---|---|---|
NO2 | NOx | VS | DTM | NOx | VS | DTM | ||
Day 1 | Mean | 49.1 | 91.9 | 0.6 | 8.5 | 66.2 | 21.1 | 24.6 |
Median | 27.7 | 52.5 | 0.1 | 4.1 | 48.4 | 19.7 | 17.7 | |
Std dev | 68.1 | 114.9 | 1.5 | 11.4 | 104.3 | 10.1 | 26.5 | |
CV | 1.4 | 1.2 | 2.7 | 1.3 | 1.6 | 0.5 | 1.1 | |
Day 2 | Mean | 28.7 | 53.4 | 37.2 | 29.9 | 39.2 | 30.8 | 29.9 |
Median | 20.2 | 37.4 | 34.9 | 25.9 | 31.9 | 30.7 | 18.7 | |
Std dev | 31.0 | 47.5 | 11.1 | 17.0 | 27.5 | 11.2 | 42.8 | |
CV | 1.1 | 0.9 | 0.3 | 0.6 | 0.7 | 0.4 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodward, H.; Schroeder, A.K.; Le Cornec, C.M.A.; Stettler, M.E.J.; ApSimon, H.; Robins, A.; Pain, C.; Linden, P.F. High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity. Atmosphere 2022, 13, 1203. https://doi.org/10.3390/atmos13081203
Woodward H, Schroeder AK, Le Cornec CMA, Stettler MEJ, ApSimon H, Robins A, Pain C, Linden PF. High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity. Atmosphere. 2022; 13(8):1203. https://doi.org/10.3390/atmos13081203
Chicago/Turabian StyleWoodward, Huw, Anna K. Schroeder, Clemence M. A. Le Cornec, Marc E. J. Stettler, Helen ApSimon, Alan Robins, Christopher Pain, and Paul F. Linden. 2022. "High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity" Atmosphere 13, no. 8: 1203. https://doi.org/10.3390/atmos13081203
APA StyleWoodward, H., Schroeder, A. K., Le Cornec, C. M. A., Stettler, M. E. J., ApSimon, H., Robins, A., Pain, C., & Linden, P. F. (2022). High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity. Atmosphere, 13(8), 1203. https://doi.org/10.3390/atmos13081203