Identification of Wind-Induced Particle Resuspension in Urban Environment Using CFD Modelling
Abstract
:1. Introduction
1.1. Road Dust Characteristics
1.2. Microworld of Particles
1.2.1. Determining the Threshold Friction Velocity
1.2.2. Emission Factor of Resuspension
1.3. Modelling of the Pollution Dispersion in a City Environment
2. Materials and Methods
2.1. Description of CFD Model
2.1.1. Computational Domain and Grid
2.1.2. Boundary Conditions
2.1.3. Solver
2.2. Particle Resuspension Model
2.3. Descritpion of Multiphase Flow
2.4. Evaluation of the Model
3. Results
3.1. Flow Field Evaluation
3.2. Particle Dispersion after Resuspension
3.3. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno-Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, Characteristics, Toxicity, and Control of Ultrafine Particles: An Overview. Geosci. Front. 2022, 13, 101147. [Google Scholar] [CrossRef]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Clean Air J. 2016, 26, 121. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.M.P.; Calvo, A.I.; Baumgardner, D.; Amato, F.; Querol, X.; Pio, C.; Gustafsson, M. Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmos. Environ. 2020, 224, 117252. [Google Scholar] [CrossRef]
- Zheng, G.; Li, P. Resuspension of Settled Atmospheric Particulate Matter on Plant Leaves Determined by Wind and Leaf Surface Characteristics. Environ. Sci. Pollut. Res. 2019, 26, 19606–19614. [Google Scholar] [CrossRef] [PubMed]
- Linda, J.; Pospíšil, J.; Köbölová, K.; Ličbinský, R.; Huzlík, J.; Karel, J. Conditions Affecting Wind-Induced PM10 Resuspension as a Persistent Source of Pollution for the Future City Environment. Sustainability 2022, 14, 9186. [Google Scholar] [CrossRef]
- Kassomenos, P.; Vardoulakis, S.; Chaloulakou, A.; Grivas, G.; Borge, R.; Lumbreras, J. Levels, Sources and Seasonality of Coarse Particles (PM10–PM2.5) in Three European Capitals-Implications for Particulate Pollution Control. Atmos. Environ. 2012, 54, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H. Variation and Co-Variation of PM10, Particle Number Concentration, NOx and NO2 in the Urban Air-Relationships with Wind Speed, Vertical Temperature Gradient and Weather Type. Atmos. Environ. 2015, 120, 317–327. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J.; Mark, D.; Stedman, J.; Appleby, R.S.; Booker, J.; Moorcroft, S. Studies of the Coarse Particle (2.5–10μm) Component in UK Urban Atmospheres. Atmos. Environ. 2001, 35, 3667–3679. [Google Scholar] [CrossRef]
- Casotti Rienda, I.; Alves, C.A. Road Dust Resuspension: A Review. Atmos. Res. 2021, 261, 105740. [Google Scholar] [CrossRef]
- Bogacki, M.; Oleniacz, R.; Rzeszutek, M.; Szulecka, A.; Mazur, M. The Impact of Street Cleaning on Particulate Matter Air Concentrations: A Case Study of a Street Canyon in Krakow (Poland). In Proceedings of the E3S Web of Conferences, Krakow, Poland, 30 July 2018; EDP Sciences: Les Ulis, France, 2018; Volume 45. [Google Scholar]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and Variability of Inhalable Road Dust Particles in Three European Cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and Road Wear Particles in Road Environment–Quantification and Assessment of Particle Dynamics by Zn Determination after Density Separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Kasimov, N.S.; Vlasov, D.V.; Kosheleva, N.E. Enrichment of Road Dust Particles and Adjacent Environments with Metals and Metalloids in Eastern Moscow. Urban Clim. 2020, 32, 100638. [Google Scholar] [CrossRef]
- Klöckner, P.; Seiwert, B.; Weyrauch, S.; Escher, B.I.; Reemtsma, T.; Wagner, S. Comprehensive Characterization of Tire and Road Wear Particles in Highway Tunnel Road Dust by Use of Size and Density Fractionation. Chemosphere 2021, 279, 130530. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, C.; Chen, M.; Wang, W. Risk Assessment of Heavy Metals in Street Dust Particles to a Stream Network. Soil Sediment Contam. 2009, 18, 173–183. [Google Scholar] [CrossRef]
- Henry, C.; Minier, J.P. Colloidal Particle Resuspension: On the Need for Refined Characterisation of Surface Roughness. J. Aerosol Sci. 2018, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F. The Modelling of Particle Resuspension in a Turbulent Boundary Layer. Ph.D. Dissertation, School of Mechanical and System Engineering Newcastle University, Newcastle upon Tyne, UK, 2011. [Google Scholar]
- Habchi, C.; Ghali, K.; Ghaddar, N. Coupling CFD and Analytical Modeling for Investigation of Monolayer Particle Resuspension by Transient Flows. Build. Environ. 2016, 105, 1–2. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.H.; Liu, C. Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Reeks, M.W.; Hall, D. Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement. J. Aerosol Sci. 2001, 32, 1–31. [Google Scholar] [CrossRef]
- Henry, C. Particle Resuspension from Complex Surfaces: Current Knowledge and Limitations. arXiv 2018, arXiv:1802.06448. [Google Scholar]
- Li, Y.; Zhang, X.; Li, M.; Yin, S.; Zhang, Z.; Zhang, T.; Meng, H.; Gong, J.; Zhang, W. Particle Resuspension from Leaf Surfaces: Effect of Species, Leaf Traits and Wind Speed. Urban For. Urban Green. 2022, 77, 127740. [Google Scholar] [CrossRef]
- Del Bello, E.; Taddeucci, J.; Merrison, J.P.; Rasmussen, K.R.; Andronico, D.; Ricci, T.; Scarlato, P.; Iversen, J.J. Field-Based Measurements of Volcanic Ash Resuspension by Wind. Earth Planet. Sci. Lett. 2021, 554, 116684. [Google Scholar] [CrossRef]
- Liu, C.; Shan, Y.; Nepf, H. Impact of Stem Size on Turbulence and Sediment Resuspension Under Unidirectional Flow. Water Resour. Res. 2021, 57, e2020WR028620. [Google Scholar] [CrossRef]
- Loosmore, G.A. Evaluation and Development of Models for Resuspension of Aerosols at Short Times after Deposition. Atmos. Environ. 2003, 37, 639–647. [Google Scholar] [CrossRef]
- Nicholson, K.W. Wind Tunnel Experiments on the Resuspension of Particulate Material. Atmos. Environ. Part A Gen. Top. 1993, 27, 181–188. [Google Scholar] [CrossRef]
- Giess, P.; Goddard, A.J.H.; Shaw, G. Factors Affecting Particle Resuspension from Grass Swards. J. Aerosol Sci. 1997, 28, 1331–1349. [Google Scholar] [CrossRef]
- Garland, J.A. Some Recent Studies of the Resuspension of Deposited Material from Soil and Grass; Elsevier Science Publishing Co, Inc.: Berkeley, CA, USA, 1983. [Google Scholar]
- Del Bello, E.; Taddeucci, J.; Merrison, J.P.; Alois, S.; Iversen, J.J.; Scarlato, P. Experimental Simulations of Volcanic Ash Resuspension by Wind under the Effects of Atmospheric Humidity. Sci. Rep. 2018, 8, 14509. [Google Scholar] [CrossRef] [Green Version]
- Etyemezian, V.; Gillies, J.A.; Mastin, L.G.; Crawford, A.; Hasson, R.; Van Eaton, A.R.; Nikolich, G. Laboratory Experiments of Volcanic Ash Resuspension by Wind. J. Geophys. Res. Atmos. 2019, 124, 9534–9560. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, H. A Simple Expression for Wind Erosion Threshold Friction Velocity. J. Geophys. Res. Atmos. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Cornelis, W.M.; Gabriels, D. The Effect of Surface Moisture on the Entrainment of Dune Sand by Wind: An Evaluation of Selected Models. Sedimentology 2003, 50, 771–790. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Zhang, Y.; Gao, Z.; Ying, N.; Gao, J.; Zhang, K.; Zhu, S. Dust Emissions from Urban Roads Using the AP-42 and TRAKER Methods: A Case Study. Atmos. Pollut. Res. 2021, 12, 101051. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical Profiling of PM10 from Urban Road Dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Padoan, E.; Ajmone-Marsan, F.; Querol, X.; Amato, F. An Empirical Model to Predict Road Dust Emissions Based on Pavement and Traffic Characteristics. Environ. Pollut. 2018, 237, 713–720. [Google Scholar] [CrossRef]
- Mei, S.J.; Luo, Z.; Zhao, F.Y.; Wang, H.Q. Street Canyon Ventilation and Airborne Pollutant Dispersion: 2-D versus 3-D CFD Simulations. Sustain. Cities Soc. 2019, 50, 101700. [Google Scholar] [CrossRef]
- Yazid, A.W.M.; Sidik, N.A.C.; Salim, S.M.; Saqr, K.M. A Review on the Flow Structure and Pollutant Dispersion in Urban Street Canyons for Urban Planning Strategies. Simulation 2014, 90, 892–916. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Xue, F.; Li, X. The Impact of Roadside Trees on Traffic Released PM10 in Urban Street Canyon: Aerodynamic and Deposition Effects. Sustain. Cities Soc. 2017, 30, 195–204. [Google Scholar] [CrossRef]
- Nosek, Š.; Kukačka, L.; Jurčáková, K.; Kellnerová, R.; Jaňour, Z. Impact of Roof Height Non-Uniformity on Pollutant Transport between a Street Canyon and Intersections. Environ. Pollut. 2017, 227, 125–138. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J. CFD Simulations of Wind Flow and Pollutant Dispersion in a Street Canyon with Traffic Flow: Comparison between RANS and LES. Sustain. Cities Soc. 2021, 75, 103307. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, T.; Yang, H. Effects of Ground Heating on Ventilation and Pollutant Transport in Three-Dimensional Urban Street Canyons with Unit Aspect Ratio. Atmosphere 2019, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Šimić, I.; Lovrić, M.; Godec, R.; Kröll, M.; Bešlić, I. Applying Machine Learning Methods to Better Understand, Model and Estimate Mass Concentrations of Traffic-Related Pollutants at a Typical Street Canyon. Environ. Pollut. 2020, 263, 114587. [Google Scholar] [CrossRef]
- Perret, L.; Blackman, K.; Fernandes, R.; Savory, E. Relating Street Canyon Vertical Mass-Exchange to Upstream Flow Regime and Canyon Geometry. Sustain. Cities Soc. 2017, 30, 49–57. [Google Scholar] [CrossRef]
- Mei, S.J.; Hu, J.T.; Liu, D.; Zhao, F.Y.; Li, Y.; Wang, Y.; Wang, H.Q. Wind Driven Natural Ventilation in the Idealized Building Block Arrays with Multiple Urban Morphologies and Unique Package Building Density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD Modeling of Pollution Dispersion in a Street Canyon: Comparison between LES and RANS. J. Wind Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, Y.; Stathopoulos, T. CFD Simulation of Near-Field Pollutant Dispersion in the Urban Environment: A Review of Current Modeling Techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Carlo, O.S.; Rivas, E.; Santiago, J.L. Urban Obstacles Influence on Street Canyon Ventilation: A Brief Review. Environ. Sci. Proc. 2021, 8, 11. [Google Scholar]
- Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. Guidelines for Passive Control of Traffic-Related Air Pollution in Street Canyons: An Overview for Urban Planning. Landsc. Urban Plan. 2021, 207, 103980. [Google Scholar] [CrossRef]
- Chew, L.W.; Glicksman, L.R.; Norford, L.K. Buoyant Flows in Street Canyons: Comparison of RANS and LES at Reduced and Full Scales. Build. Environ. 2018, 146, 77–87. [Google Scholar] [CrossRef]
- Ziskind, G.; Fichman, M.; Gutfinger, C. Effects of Shear on Particle Motion near a Surface-Application to Resuspension. J. Aerosol Sci. 1998, 29, 323–338. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B.; Grawe, D.; Goricsán, I.; Jaňour, Z.; Karppinen, A. Best Practice Guideline for the Cfd Simulation of Flows in the Urban Environment. In 11th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, July 2007; Cambridge Environmental Research Consultants: Cambridge, UK, 2007. [Google Scholar]
- Madalozzo, D.M.S.; Braun, A.L.; Awruch, A.M.; Morsch, I.B. Numerical Simulation of Pollutant Dispersion in Street Canyons: Geometric and Thermal Effects. Appl. Math. Model. 2014, 38, 5883–5909. [Google Scholar] [CrossRef]
- Kim, J.J.; Baik, J.J. Urban Street-Canyon Flows with Bottom Heating. Atmos. Environ. 2001, 35, 3395–3404. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, J.J.; Choi, W.; Kim, E.R.; Song, C.K.; Pardyjak, E.R. Flow Characteristics Around Step-Up Street Canyons with Various Building Aspect Ratios. Boundary-Layer Meteorol. 2020, 174, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Thangam, S.; Speziale, C.G. Turbulent Flow Past a Backward-Facing Step: A Critical Evaluation of Two-Equation Models. AIAA J. 1992, 30, 1314–1320. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Repetto, M.P. Impact of Turbulence Models and Roughness Height in 3D Steady RANS Simulations of Wind Flow in an Urban Environment. Build. Environ. 2020, 171, 106617. [Google Scholar] [CrossRef]
- Xu, W.; Li, G.; Zheng, X.; Li, Y.; Li, S.; Zhang, C.; Wang, F. High-Resolution Numerical Simulation of the Performance of Vertical Axis Wind Turbines in Urban Area: Part I, Wind Turbines on the Side of Single Building. Renew. Energy 2021, 177, 461–474. [Google Scholar] [CrossRef]
- Valger, S.A.; Fedorova, N.N. CFD Methods in Architecture and City Planning. In Proceedings of the Journal of Physics: Conference Series, Moscow, Russian, 13–15 November 2019; IOP Publishing: Bristol, UK, 2020; Volume 1425. [Google Scholar]
- Brambilla, S.; Speckart, S.; Brown, M.J. Adhesion and Aerodynamic Forces for the Resuspension of Non-Spherical Particles in Outdoor Environments. J. Aerosol Sci. 2017, 112, 52–67. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban Air Quality: The Challenge of Traffic Non-Exhaust Emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Ziskind, G. Particle Resuspension from Surfaces: Revisited and Re-Evaluated. Rev. Chem. Eng. 2006, 22, 1–123. [Google Scholar] [CrossRef]
- Henry, C.; Minier, J.P. Progress in Particle Resuspension from Rough Surfaces by Turbulent Flows. Prog. Energy Combust. Sci. 2014, 45, 1–53. [Google Scholar] [CrossRef]
- Schiller, L. Uber Die Grundlegenden Berechnungen Bei Der Schwerkraftaufbereitung. Z. Ver. Dtsch. Inge 1933, 77, 318–321. [Google Scholar]
- Saffman, P.G. The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech. 1965, 22, 385–400. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Hoque, M.M.; Evans, G.; Mitra, S. Effect of Turbulence Dispersion on Bubble-Particle Collision Efficiency. Miner. Eng. 2022, 177, 107374. [Google Scholar] [CrossRef]
- Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. Application of Improved CFD Modeling for Prediction and Mitigation of Traffic-Related Air Pollution Hotspots in a Realistic Urban Street. Atmos. Environ. 2021, 246, 118127. [Google Scholar] [CrossRef]
- Pantusheva, M.; Mitkov, R.; Hristov, P.O.; Petrova-Antonova, D. Air Pollution Dispersion Modelling in Urban Environment Using CFD: A Systematic Review. Atmosphere 2022, 13, 1640. [Google Scholar] [CrossRef]
- Ahmad, K.; Khare, M.; Chaudhry, K.K. Wind Tunnel Simulation Studies on Dispersion at Urban Street Canyons and Intersections—A Review. J. Wind Eng. Ind. Aerodyn. 2005, 93, 697–717. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Yao, J. Large Eddy Simulation of Particle Deposition and Resuspension in Turbulent Duct Flows. Adv. Powder Technol. 2019, 30, 656–671. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Gu, Z.L.; Lee, S.C.; Fu, T.M.; Ho, K.F. Numerical Simulation and in Situ Investigation of Fine Particle Dispersion in an Actual Deep Street Canyon in Hong Kong. Indoor Built Environ. 2011, 20, 206–216. [Google Scholar] [CrossRef]
- Lu, K.-F.; Peng, Z.-R. Impacts of Viaduct and Geometry Configurations on the Distribution of Traffic-Related Particulate Matter in Urban Street Canyon. Sci. Total Environ. 2023, 858, 159902. [Google Scholar] [CrossRef]
Geometry | H/W = 2 | H/W = 1 | H/W = 0.5 | H/W = 0.25 |
---|---|---|---|---|
- | 1.40/1.56/2.67 | - | - | |
0.86/1.49/3.41 | 1.94/2.14/3.6 | 2.53/2.21/4.10 | 2.20/1.74/4.33 | |
1.13/1.90/4.3 | 2.42/2.72/4.65 | 3.19/2.88/5.53 | 2.76/2.21/5.91 | |
1.39/2.30/5.47 | 2.95/3.36/5.9 | 3.99/3.66/7.19 | 3.36/2.84/7.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linda, J.; Pospíšil, J.; Köbölová, K. Identification of Wind-Induced Particle Resuspension in Urban Environment Using CFD Modelling. Atmosphere 2023, 14, 57. https://doi.org/10.3390/atmos14010057
Linda J, Pospíšil J, Köbölová K. Identification of Wind-Induced Particle Resuspension in Urban Environment Using CFD Modelling. Atmosphere. 2023; 14(1):57. https://doi.org/10.3390/atmos14010057
Chicago/Turabian StyleLinda, Jakub, Jiří Pospíšil, and Klaudia Köbölová. 2023. "Identification of Wind-Induced Particle Resuspension in Urban Environment Using CFD Modelling" Atmosphere 14, no. 1: 57. https://doi.org/10.3390/atmos14010057
APA StyleLinda, J., Pospíšil, J., & Köbölová, K. (2023). Identification of Wind-Induced Particle Resuspension in Urban Environment Using CFD Modelling. Atmosphere, 14(1), 57. https://doi.org/10.3390/atmos14010057