Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Filtered Navier–Stokes and Concentration Equations
2.2. Large-Eddy Simulation (LES)
2.2.1. Subgrid-Scale (SGS) Model
2.2.2. Smagorinsky-Lilly Model
3. Numerical Modelling
3.1. Setup of Wind-Tunnel Experiment
3.2. Present Simulation Setup
3.2.1. Computational Domain and Boundary Conditions
3.2.2. Flow Simulation
3.2.3. Dispersion Method
3.2.4. Numerical Validation with Experimental Results for the Street Canyon
4. Results and Discussion
4.1. Area of Interest: Dhaka
4.2. Pollutant Concentration Data Overview
4.3. Pollutant Concentration on Upwind Buildings
4.4. Pollutant Concentration on Downwind Buildings
5. Discussion on Pollutant Concentration Evolution and Impact
5.1. Sampling Overview
5.2. Key Findings on Each Building Block
5.3. Significance of the Approach and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
English Symbol | |
B | Building width |
c | Measured mean concentration |
Normalized pollutant concentration | |
Mean normalized pollutant concentration | |
Sampled mean normalized pollutant concentration | |
Smagornisky constant | |
d | Distance to the nearest wall |
D | Domain of the fluid |
Turbulent diffusivity | |
G | Filter function |
Sensible enthalpy | |
H | Building height |
Turbulence intensity | |
k | Turbulent kinetic energy |
Sand grain roughness height | |
Thermal conductivity in terms of species transport | |
l | Tracer gas source length |
L | Length of street canyon |
Streamwise length of the domain | |
Mixing length of sub-grid-scales | |
Integral length scale profile | |
Lewis number | |
Sub-grid-scale Mach number | |
N | Total number of fluid phase chemical species considered in the problem |
Sub-grid-scale Prandtl number | |
Sub-grid-scale flux | |
Q | Tracer gas intensity |
Vortex core structure method Q-criterion | |
Rate of generation of species | |
Reynolds number | |
Rate of generation due to addition from the dispersed state and any UDS | |
Rate-of-strain tensor | |
Spectral arrangements of turbulent kinetic energy | |
Turbulent Schmidt number | |
T | Flow-through time |
u | Streamwise velocity |
Mean streamwise velocity | |
Sampled mean streamwise velocity | |
Developed approaching airflow mean velocity at height H | |
U | Velocity magnitude |
Mean velocity magnitude | |
Sampled mean velocity magnitude | |
Bulk velocity | |
v | Vertical velocity |
Mean vertical velocity | |
Sampled mean vertical velocity | |
V | Volume of a computational cell |
w | Spanwise velocity |
Mean spanwise velocity | |
Sampled mean spanwise velocity | |
W | Street-canyon width |
x | Length in x-direction |
y | Length in y-direction |
Aerodynamic roughness height | |
Local mass fraction of the species | |
z | Length in z-direction |
Greek Symbol | |
Mean velocity profile exponent | |
Turbulence intensity profile exponent | |
Bounded grid-scale | |
Turbulent dissipation rate | |
Von Kármán constant | |
Thermal conductivity | |
Sub-grid-scale viscosity | |
Sub-grid-scale turbulent viscosity | |
Stress tensor because of molecular viscosity | |
Sub-grid-scale stress | |
Isotropic component of sub-grid-scale stress | |
Density-weighted (or Favre) filtering term |
References
- Li, X.X.; Liu, C.H.; Leung, D.Y. Large-eddy simulation of flow and pollutant dispersion in high-aspect-ratio urban street canyons with wall model. Bound.-Layer Meteorol. 2008, 129, 249–268. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Wang, Q.; Li, Y.; Wang, X.; Hang, J.; Gao, P.; Ou, C.; Wang, K. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Sci. Total Environ. 2020, 726, 138147. [Google Scholar] [CrossRef] [PubMed]
- García, M.Á.; Pérez, I.A. Lower Atmosphere Meteorology. Atmosphere 2019, 10, 609. [Google Scholar] [CrossRef] [Green Version]
- Buccolieri, R.; Gatto, E.; Manisco, M.; Ippolito, F.; Santiago, J.L.; Gao, Z. Characterization of urban greening in a district of Lecce (Southern Italy) for the analysis of CO2 storage and air pollutant dispersion. Atmosphere 2020, 11, 967. [Google Scholar] [CrossRef]
- Ming, T.; Fang, W.; Peng, C.; Cai, C.; De Richter, R.; Ahmadi, M.H.; Wen, Y. Impacts of traffic tidal flow on pollutant dispersion in a non-uniform urban street canyon. Atmosphere 2018, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Shan, R.; Zhang, Y.; Li, X.X.; Yin, T.; Hang, J.; Norford, L. Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas. Sci. Total Environ. 2019, 647, 255–267. [Google Scholar] [CrossRef]
- Hassan, S.; Molla, M.; Nag, P.; Akhter, N.; Khan, A. Unsteady RANS simulation of wind flow around a building shape obstacle. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2022; Volume 15, pp. 291–312. [Google Scholar]
- Himika, T.A.; Hasan, F.; Molla, M. Lattice Boltzmann simulation of airflow and mixed convection in a general ward of hospital. J. Comput. Eng. 2016, 2016, 5405939. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.F.; Ahmed Himika, T.; Molla, M.M. Lattice Boltzmann simulation of airflow and heat transfer in a model ward of a hospital. J. Therm. Sci. Eng. Appl. 2017, 9, 011011. [Google Scholar] [CrossRef]
- Walton, A.; Cheng, A. Large-eddy simulation of pollution dispersion in an urban street canyon—Part II: Idealised canyon simulation. Atmos. Environ. 2002, 36, 3615–3627. [Google Scholar] [CrossRef]
- Zhiyin, Y. Large-eddy simulation: Past, present and the future. Chin. J. Aeron. 2015, 28, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.F.; Himika, T.A.; Molla, M.M. Large-eddy simulation of airflow and heat transfer in a general ward of hospital. AIP Conf. Proc. 2016, 1754, 050022. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Son, M.; Lee, J.I.; Kim, J.J.; Park, S.J.; Kim, D.; Kim, D.Y. Evaluation of the Wind Environment around Multiple Urban Canyons Using Numerical Modeling. Atmosphere 2022, 13, 834. [Google Scholar] [CrossRef]
- Salim, S.; Ong, K.; Cheah, S. Comparison of RANS, URANS and LES in the Prediction of Airflow and Pollutant Dispersion. Proc. World Cong. Eng. Comput. Sci. 2011, 2, 19–21. [Google Scholar]
- Zhang, Y.; Gu, Z.; Yu, C.W. Impact factors on airflow and pollutant dispersion in urban street canyons and comprehensive simulations: A review. Curr. Pollut. Rep. 2020, 6, 425–439. [Google Scholar] [CrossRef]
- Gromke, C.; Denev, J.; Ruck, B. Dispersion of traffic exhausts in urban street canyons with tree plantings-experimental and numerical investigations. In Proceedings of the International Workshop on Physical Modelling of Flow and Dispersion Phenomena (PHYSMOD 2007), Orleans, France, 23–25 August 2007; Volume 1. [Google Scholar]
- Gromke, C.; Ruck, B. Influence of trees on the dispersion of pollutants in an urban street canyon—Experimental investigation of the flow and concentration field. Atmos. Environ. 2007, 41, 3287–3302. [Google Scholar] [CrossRef] [Green Version]
- Gromke, C.; Ruck, B. Flow and dispersion phenomena in urban street canyons in the presence of trees. In Proceedings of the 12th International Conference on Wind Engineering, Cairns, Australia, 1–6 July 2007. [Google Scholar]
- Gromke, C.; Ruck, B. On the impact of trees on dispersion processes of traffic emissions in street canyons. Bound.-Layer Meteorol. 2009, 131, 19–34. [Google Scholar] [CrossRef]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]
- Gadde, S.N.; Stieren, A.; Stevens, R.J. Large-eddy simulations of stratified atmospheric boundary layers: Comparison of different subgrid models. Bound.-Layer Meteorol. 2021, 178, 363–382. [Google Scholar] [CrossRef]
- Hasan, M.F.; Molla, M.; Kamrujjaman, M.; Siddiqa, S. Natural Convection Flow over a Vertical Permeable Circular Cone with Uniform Surface Heat Flux in Temperature-Dependent Viscosity with Three-Fold Solutions within the Boundary Layer. Computation 2022, 10, 60. [Google Scholar] [CrossRef]
- Wang, S.; De Roo, F.; Thobois, L.; Reuder, J. Characterization of Terrain-Induced Turbulence by Large-Eddy Simulation for Air Safety Considerations in Airport Siting. Atmosphere 2022, 13, 952. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons. Int. J. Environ. Waste Manag. 2009, 4, 225–242. [Google Scholar] [CrossRef]
- Hinze, J. Turbulence; McGraw-Hill Publishing Co.: New York, NY, USA, 1975. [Google Scholar]
- Meroney, R.N.; Leitl, B.M.; Rafailidis, S.; Schatzmann, M. Wind-tunnel and numerical modeling of flow and dispersion about several building shapes. J. Wind Eng. Indust. Aerodyn. 1999, 81, 333–345. [Google Scholar] [CrossRef]
- Salim, S.M.; Chan, A.; Buccolieri, R.; Di Sabatino, S. CFD Study on the Roles of Trees on Airflow and Pollutant Dispersion within Urban Street Canyons. In CFD Applications in Energy and Environmental Sectors; International Energy and Environmental Foundation: Tripoli, Libya, 2011; pp. 175–204. [Google Scholar]
- Salim, S.M.; Buccolieri, R.; Chan, A.; Di Sabatino, S. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. J. Wind Eng. Indust. Aerodyn. 2011, 99, 103–113. [Google Scholar] [CrossRef]
- Salim, S.M.; Cheah, S.C.; Chan, A. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: Comparison between RANS and LES. Build. Environ. 2011, 46, 1735–1746. [Google Scholar] [CrossRef]
- Ng, W.Y.; Chau, C.K. A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons. Sci. Total Environ. 2014, 468, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Kwa, S.; Salim, S. Numerical Simulation of Dispersion in an Urban Street Canyon: Comparison between Steady and Fluctuating Boundary Conditions. Eng. Lett. 2015, 23. [Google Scholar]
- Vranckx, S.; Vos, P.; Maiheu, B.; Janssen, S. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium. Sci. Total Environ. 2015, 532, 474–483. [Google Scholar] [CrossRef]
- Lachance-Barrett, S.; Alexander, K. Wind Turbine Blade FSI (Part 1)—Mesh; Cornell University: Ithaca, NY, USA, 2018. [Google Scholar]
- Blocken, B.; Carmeliet, J.; Stathopoulos, T. CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. J. Wind Eng. Indust. Aerodyn. 2007, 95, 941–962. [Google Scholar] [CrossRef]
- Gromke, C.; Buccolieri, R.; Di Sabatino, S.; Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data. Atmos. Environ. 2008, 42, 8640–8650. [Google Scholar] [CrossRef]
- Smirnov, A.; Shi, S.; Celik, I. Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng. 2001, 123, 359–371. [Google Scholar] [CrossRef]
- Moonen, P.; Dorer, V.; Carmeliet, J. Large Eddy Simulation of concentration fluctuations in an urban street canyon. In Proceedings of the 7th International Colloquium on Bluff Body Aerodynamics, Shanghai, China, 2–6 September 2012. [Google Scholar]
- Merlier, L.; Jacob, J.; Sagaut, P. Lattice-Boltzmann Large-Eddy Simulation of pollutant dispersion in street canyons including tree planting effects. Atmos. Environ. 2018, 195, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.; Andersson, A.; Jeba, F.; Haque, M.I.; Hossain Khan, M.D.; Gustafsson, O. Wintertime air quality in megacity Dhaka, Bangladesh strongly affected by influx of black carbon aerosols from regional biomass burning. Environ. Sci. Technol. 2021, 55, 12243–12249. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Koronakis, I.; Livada, I.; Asimakopoulos, D. Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions. Atmos. Environ. 1999, 33, 4503–4521. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, C.; Liu, C.H.; Perez, P.; Forehead, H.; Kong, S.; Zhou, J.L. A review of strategies for mitigating roadside air pollution in urban street canyons. Environ. Pollut. 2021, 280, 116971. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chongbo, W. Estimating energy-related CO2 emission growth in Bangladesh: The LMDI decomposition method approach. Energy Strategy Rev. 2020, 32, 100565. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, M.T.; Mondal, M.A.H.; Awual, M.R.; Monir, M.U.; Islam, K. A snapshot of coal-fired power generation in Bangladesh: A demand–supply outlook. In Natural Resources Forum; Wiley Online Library: Oxford, UK, 2021; Volume 45, pp. 157–182. [Google Scholar]
- Hurley, P.; Manins, P.; Lee, S.; Boyle, R.; Ng, Y.L.; Dewundege, P. Year-long, high-resolution, urban airshed modelling: Verification of TAPM predictions of smog and particles in Melbourne, Australia. Atmos. Environ. 2003, 37, 1899–1910. [Google Scholar] [CrossRef]
- Sinnott, R.O.; Wang, Y.; Wang, Y. Real-time Route Planning using Mobile Air Pollution Detectors and Citizen Scientists. In Proceedings of the 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Bologna, Italy, 11–13 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 139–144. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.; Akter, U.H.; Nag, P.; Molla, M.M.; Khan, A.; Hasan, M.F. Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City. Atmosphere 2022, 13, 1028. https://doi.org/10.3390/atmos13071028
Hassan S, Akter UH, Nag P, Molla MM, Khan A, Hasan MF. Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City. Atmosphere. 2022; 13(7):1028. https://doi.org/10.3390/atmos13071028
Chicago/Turabian StyleHassan, Sheikh, Umma Habiba Akter, Preetom Nag, Md. Mamun Molla, Amirul Khan, and Md Farhad Hasan. 2022. "Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City" Atmosphere 13, no. 7: 1028. https://doi.org/10.3390/atmos13071028
APA StyleHassan, S., Akter, U. H., Nag, P., Molla, M. M., Khan, A., & Hasan, M. F. (2022). Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City. Atmosphere, 13(7), 1028. https://doi.org/10.3390/atmos13071028