Improving Air Quality Standards in Europe: Comparative Analysis of Regional Differences, with a Focus on Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Emission Inventories and Air Quality Trends in EU
- North-Eastern Italy (regions Veneto and Emilia Romagna, equivalent to 9,289,720 inhabitants and 40,791 km2) vs. North Rhine-Westphalia (17,925,570 inhabitants and 34,084 km2);
- Lombardy (9,964,993 inhabitants and 23,844 km2) vs. Baden-Württemberg (11,100,394 inhabitants and 35,751 km2);
- Po Valley (regions Piedmont, Lombardy, Veneto and Emilia Romagna, equivalent to 23,527,923 inhabitants and 90,037 km2) vs. Southern Germany (regions Bavaria and Baden-Württemberg, with 24,225,131 inhabitants and 106,302 km2);
- Piedmont (4,273,210 inhabitants and 25,402 km2) vs. Southern Poland (regions Lesser Poland and Silesian, equivalent to 7,928,954 inhabitants and 27,516 km2).
2.2. Parameters Influencing Pollutant Atmospheric Dispersion and Transport
2.3. PM Source Apportionment in Northern Italy
2.4. Air Quality during COVID-19 Lockdown
3. Results
4. Discussion
4.1. Difficulties to Comply with Air Quality Limits in Northern Italy
4.2. PM Toxicity and Air Quality Standard
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environmental Agency. Air Quality in Europe–2020. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 31 December 2021).
- European Environmental Agency. Emissions of the Main Air Pollutants in Europe. Available online: https://www.eea.europa.eu/ims/emissions-of-the-main-air (accessed on 31 December 2021).
- European Environmental Agency. Urban Population Exposed to Air Pollutant Concentrations above EU Air Quality Standards. Available online: https://tableau-public.discomap.eea.europa.eu/views/Country_CSI4/Dashboard1?:iid=1&:isGuestRedirectFromVizportal=y&:embed=y (accessed on 6 April 2022).
- Thunis, P.; Triacchini, G.; White, L.; Maffeis, G.; Volta, M. Air pollution and emission reductions over the Po-valley: Air quality modelling and integrated assessment. In Conference Proceedings, Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; Anderssen, R.S., Breddock, R.D., Newham, L.T.H., Eds.; Modelling and Simulation Society of Australia and New Zealand Inc.: Canberra, Australia, 2009; pp. 2335–2341. ISBN 9780975840078. [Google Scholar]
- European Environmental Agency. Impact of Selected Policy Measures on Europe’s Air Quality; EEA Report No 8/2010; EEA: Copenhagen, Denmark, 2010. [CrossRef]
- Bigi, A.; Ghermandi, G. Trends and variability of atmospheric PM2.5 and PM10–2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. 2016, 16, 15777–15788. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.; van Loon, M.; ten Brink, H.M.; Dentener, F.J.; Builtjes, P.J.H. Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys. 2004, 4, 857–874. [Google Scholar] [CrossRef] [Green Version]
- EU Commission: European Commission–Press Release: Air Quality: Commission Takes Action to Protect Citizens from Air Pollution, Brussels, 17 May 2018, Press Release Database. Available online: http://europa.eu/rapid/press-release_IP-18-3450_en.htm (accessed on 6 April 2022).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 31 December 2021).
- European Environmental Agency. Europe’s Urban Population Remains at Risk due to Levels of Air Pollution Known to Damage Health. Available online: https://www.eea.europa.eu/highlights/europes-urban-population-remains-at (accessed on 31 December 2021).
- European Environmental Agency. EEA Report No 05/2020, European Union Emission Inventory Report 1990–2018 under the Unece Convention on Long-Range Transboundary Air Pollution (LRTAP); EEA: Copenhagen, Denmark, 2020; ISBN 9789294802378. [CrossRef]
- Regione Piemonte, Inventario Regionale delle Emissioni in Atmosfera (IREA). Available online: https://servizi.regione.piemonte.it/catalogo/inventario-regionale-delle-emissioni-atmosfera-irea (accessed on 31 December 2021).
- Regione Lombardia. Inventario Emissioni in Aria (INEMAR). Available online: https://www.inemar.eu/xwiki/bin/view/Inemar/HomeLombardia (accessed on 31 December 2021).
- Regione Veneto, INEMAR. Available online: https://www.regione.veneto.it/web/ambiente-e-territorio/INEMAR (accessed on 31 December 2021).
- Regione Emilia-Romagna. Inventario Emissioni in Atmosfera (INEMAR). Available online: https://datacatalog.regione.emilia-romagna.it/catalogCTA/dataset/inventario-regionale-emissioni-in-atmosfera-inemar (accessed on 31 December 2021).
- Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Online-Emissionskataster Luft NRW. Available online: https://www.ekl.nrw.de/ekat/ (accessed on 31 December 2021).
- Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg LUBW. Available online: https://udo.lubw.baden-wuerttemberg.de/public/?highlightglobalid=emission (accessed on 31 December 2021).
- Institut für Energiewirtschaft und Rationelle Energieanwendung IER, University of Stuttgart. Fortschreibung des Emissionskatasters Bayern für Das Jahr 2004. Available online: https://www.thru.de/fileadmin/SITE_MASTER/content/Dokumente/Berichte/BY_endbericht_Emissionskataster.pdf (accessed on 31 December 2021).
- Załupka, M.; Rackiewicz, I.; Benikas, E.; Wikarek-Paluch, E.; Wahlig, A.; Sobecki, I.; Przybyła, T.; Hołownia, K.; Wahlig, W.; Grzebiela, R. Air Quality Plan for the Malopolska Region–Malopolska in a Healthy Atmosphere, 2020. Available online: https://powietrze.malopolska.pl/en/air-quality-plan/ (accessed on 31 December 2021).
- Banaś, A.; Bekek, J.; Błaś, M.; Chmura, U.; Chudy, P.; Jaśkiewicz, J.; Jechna, K.; Kuczer, J.; Kuczer, M.; Lochno, A.; et al. Program Ochrony Powietrza dla Województwa Śląskiego, 2020. Available online: https://powietrze.slaskie.pl/content/pop (accessed on 31 December 2021).
- European Environmental Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 31 December 2021).
- De Leeuw, F. A set of emission indicators for long-range transboundary air pollution. Environ. Sci. Policy 2002, 5, 135–145. [Google Scholar] [CrossRef]
- European Environmental Agency. Available online: https://www.eea.europa.eu/data-and-maps/dashboards/air-quality-statistics-expert-viewer (accessed on 31 December 2021).
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic: Dordrecht, The Netherlands, 1988; p. 666. [Google Scholar]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Raupach, M.R.; Denmead, O.T.; Dunin, F.X. Challenges in linking atmospheric CO2 concentrations to fluxes at local and regional scales. Aust. J. Bot. 1992, 40, 697–716. [Google Scholar] [CrossRef]
- Denmead, O.T.; Raupach, M.R.; Dunin, F.X.; Cleugh, H.A.; Leuning, R. Boundary layer budgets for regional estimates of scalar fluxes. Glob. Chang. Biol. 1996, 2, 255–264. [Google Scholar] [CrossRef]
- Quan, J.; Gao, Y.; Zhang, Q.; Tie, X.; Cao, J.; Han, S.; Meng, J.; Chen, P.; Zhao, D. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology 2013, 11, 34–40. [Google Scholar] [CrossRef]
- Pal, S.; Lee, T.R.; Phelps, S.; De Wekker, S.F.J. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ. 2014, 496, 424–434. [Google Scholar] [CrossRef]
- Czernecki, B.; Półrolniczak, M.; Kolendowicz, L.; Marosz, M.; Kendzierski, S.; Pilguj, N. Influence of the atmospheric conditions on PM10 concentrations in Poznań, Poland. J. Atmos Chem. 2017, 74, 115–139. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- ECMWF. Available online: https://confluence.ecmwf.int/display/CKB/The+family+of+ERA5+datasets (accessed on 31 December 2021).
- Copernicus CDS. Available online: https://cds.climate.copernicus.eu/#!/home (accessed on 31 December 2021).
- Takahama, S.; Manousakas, M.; Vratolis, S.; Salvador, P.; Decesari, S.; Mircea, M.; Paglione, M.; Belis, C.A.; Gilardoni, S.; Mooibroek, D.; et al. European Guide on Air Pollution Source Apportionment with Receptor Models: Revised Version 2019; Publications Office of the European Union: Luxembourg, 2019; Available online: https://data.europa.eu/doi/10.2760/439106 (accessed on 31 December 2021).
- Perrino, C.; Catrambone, M.; Canepari, S. Chemical Composition of PM10 in 16 Urban, Industrial and Background Sites in Italy. Atmosphere 2020, 11, 479. [Google Scholar] [CrossRef]
- EU LIFE-IP Po Regions Engaged to Policies of Air (PREPAIR) project. Report 3 COVID-19: Studio Degli Effetti Delle Misure COVID-19 Sulla Composizione Chimica Del Particolato Nel Bacino Padano. Available online: https://www.lifeprepair.eu/wp-content/uploads/2021/02/Prepair_covidQA_Report3_def2.pdf (accessed on 31 December 2021).
- Regione Piemonte. Piano Regionale di Qualità dell’Aria (Air Quality Plan for Piedmont, N-W Italy). Available online: https://www.regione.piemonte.it/web/sites/default/files/media/documenti/2019-04/prqa_allegato1_def.pdf (accessed on 31 December 2021).
- Arpa Piemonte. Analisi Sul Territorio Piemontese Degli Effetti Sulla Qualità Dell’aria e Sulle Emissioni in Atmosfera dei Provvedimenti Legati All’emergenza COVID-19. Available online: http://www.arpa.piemonte.it/arpa-comunica/file-notizie/2020/Qualit_aria_COVID_Piemonte.pdf (accessed on 31 December 2021).
- Lanzani, G. Impatto Sulla Qualità Dell’aria Della Combustione Della Legna in Impianti Domestici: Analisi e Prospettive. Arpa Lombardia. Congress Paper. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/CReIAMO_PA/L4/lanzani.pdf (accessed on 31 December 2021).
- Scotto, F.; Bacco, D.; Lasagni, S.; Trentini, A.; Poluzzi, V.; Vecchi, R. A multi-year Source Apportionment of PM2.5 at multiple sites in the southern Po Valley. Atmos. Pollut. Res. 2021, 12, 101192. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; J. Wiley: New York, NY, USA, 2006. [Google Scholar]
- Weijers, E.P.; Schaap, M.; Nguyen, L.; Matthijsen, J.; van der Gon, H.A.C.D.; Brink, H.M.T.; Hoogerbrugge, R. Anthropogenic and natural constituents in particulate matter in the Netherlands. Atmos. Chem. Phys. 2011, 11, 2281–2294. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Vogel, H.; Vogel, B.; Huang, W.; Mohr, C.; Ramisetty, R.; Leisner, T.; Prévôt, A.S.H.; Saathoff, H. Composition and origin of PM2:5 aerosol particles in the upper Rhine valley in summer. Atmos. Chem. Phys. 2019, 19, 13189–13208. [Google Scholar] [CrossRef] [Green Version]
- Hellack, B.; Quass, U.; Beuck, H.; Wick, G.; Kuttler, W.; Schins, R.P.; Kuhlbusch, T.A. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses. Atmos. Environ. 2015, 105, 1–6. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef]
- Samek, L.; Stegowski, Z.; Furman, L.; Styszko, K.; Szramowiat, K.; Fiedor, J. Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water Air Soil Pollut. 2017, 228, 290. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H.; et al. Source Apportionment of particulate matter in Europe: A review of methods and results. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Almeida, S.M. Ambient particulate matter Source Apportionment using receptor modelling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115199. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Green Deal: Modernising EU Industrial Emissions Rules to Steer Large Industry in Long-Term Green Transition. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2238 (accessed on 7 April 2022).
- World Health Organization Europe. Health Relevance of Particulate Matter from Various Sources. In Report on A WHO Workshop Bonn, Germany 26–27 March 2007; WHO Regional Office for Europe: Copenhagen, Denmark, 2007. [Google Scholar]
- World Health Organization Europe. Review of Evidence on Health Aspects of Air Pollution–Revihaap Project; Technical Report; World Health Organization Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Cooke, R.M.; Wilson, A.M.; Tuomisto, J.T.; Morales, O.; Tainio, M.; Evans, J.S. A probabilistic characterization of the relationship between fine particulate matter and mortality: Elicitation of European experts. Environ. Sci. Technol. 2007, 41, 6598–6605. [Google Scholar] [CrossRef]
- Tuomisto, J.T.; Wilson, A.; Evans, J.S.; Tainio, M. Uncertainty mortality response to airborne fine particulate matter: Combining European air pollution experts. Reliab. Eng. Syst. Saf. 2008, 93, 732–744. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential toxicities of fine particulate matters from various sources. Nat. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20200930-1 (accessed on 31 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robotto, A.; Barbero, S.; Bracco, P.; Cremonini, R.; Ravina, M.; Brizio, E. Improving Air Quality Standards in Europe: Comparative Analysis of Regional Differences, with a Focus on Northern Italy. Atmosphere 2022, 13, 642. https://doi.org/10.3390/atmos13050642
Robotto A, Barbero S, Bracco P, Cremonini R, Ravina M, Brizio E. Improving Air Quality Standards in Europe: Comparative Analysis of Regional Differences, with a Focus on Northern Italy. Atmosphere. 2022; 13(5):642. https://doi.org/10.3390/atmos13050642
Chicago/Turabian StyleRobotto, Angelo, Secondo Barbero, Pierangiola Bracco, Roberto Cremonini, Marco Ravina, and Enrico Brizio. 2022. "Improving Air Quality Standards in Europe: Comparative Analysis of Regional Differences, with a Focus on Northern Italy" Atmosphere 13, no. 5: 642. https://doi.org/10.3390/atmos13050642
APA StyleRobotto, A., Barbero, S., Bracco, P., Cremonini, R., Ravina, M., & Brizio, E. (2022). Improving Air Quality Standards in Europe: Comparative Analysis of Regional Differences, with a Focus on Northern Italy. Atmosphere, 13(5), 642. https://doi.org/10.3390/atmos13050642