Cordon Pricing, Daily Activity Pattern, and Exposure to Traffic-Related Air Pollution: A Case Study of New York City
Abstract
:1. Introduction
2. Literature Review
2.1. Congestion Pricing Studies
2.2. Exposure Assessment Studies
3. Method
3.1. Integrated Modeling Framework
3.2. Activity-Based Modeling
3.3. Vehicle Emission Modeling
3.4. Dispersion Modeling
3.5. Exposure Estimation
3.6. Indoor Exposure
4. Pricing Schemes
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. 9 Out of 10 People Worldwide Breathe Polluted Air, But More Countries Are Taking Action. Available online: https://www.who.int/news-room/detail/02-05-%0A2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action%0A (accessed on 15 November 2019).
- USEPA. Available online: https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution (accessed on 15 November 2019).
- Allen, R.W.; Criqui, M.H.; Roux, A.V.D.; Allison, M.; Shea, S.; Detrano, R.; Sheppard, L.; Wong, N.D.; Stukovsky, K.H.; Kaufman, J. Fine Particulate Matter Air Pollution, Proximity to Traffic, and Aortic Atherosclerosis. Epidemiology 2009, 20, 254–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engström, E.; Forsberg, B. Health impacts of active commuters’ exposure to traffic-related air pollution in Stockholm, Sweden. J. Transp. Heal. 2019, 14, 100601. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Env. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Gapstur, S.M.; Thun, M.J. Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships. Env. Health Perspect. 2011, 119, 1616–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities Study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef]
- Yu, H.; Stuart, A.L. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed. Sci. Total. Env. 2017, 576, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Fix NYC. Fix NYC Advisory Panel Report January 2018. 2018. Available online: https://www.scribd.com/document/369529810/Fix-NYC-Panel-Report (accessed on 15 January 2018).
- Lee, D.-H.; Palliyani, S. Sustainable transport policy—An evaluation of Singapore’s past, present and future. J. Infrastruct. Policy Dev. 2017, 1, 112–118. [Google Scholar] [CrossRef]
- Us-Dot What Is Congestion Pricing? Available online: https://ops.fhwa.dot.gov/publications/congestionpricing/sec2.htm (accessed on 5 April 2019).
- Börjesson, M.; Kristoffersson, I. The Swedish congestion charges: Ten years on. Transp. Res. Part A Policy Pr. 2018, 107, 35–51. [Google Scholar] [CrossRef]
- Percoco, M. Is road pricing effective in abating pollution? Evidence from Milan. Transp. Res. Part D Transp. Environ. 2013, 25, 112–118. [Google Scholar] [CrossRef]
- Fan, W. Social welfare maximization by optimal toll design for congestion management: Models and comprehensive numerical results. Transp. Lett. 2017, 9, 81–89. [Google Scholar] [CrossRef]
- Daganzo, C.F.; Lehe, L.J. Distance-dependent congestion pricing for downtown zones. Transp. Res. Part B Methodol. 2015, 75, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.D.; Pel, A.J.; Waraich, R.A.; Hoogendoorn, S.P. Marginal cost congestion pricing based on the network fundamental diagram. Transp. Res. Part C Emerg. Technol. 2015, 56, 221–238. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H. The optimal cordon-based network congestion pricing problem. Transp. Res. Part B Methodol. 2004, 38, 517–537. [Google Scholar] [CrossRef]
- Yang, H.; Bell, M.G. Traffic restraint, road pricing and network equilibrium. Transp. Res. Part B Methodol. 2003, 31, 303–314. [Google Scholar] [CrossRef]
- Ferrari, P. Road pricing and network equilibrium. Transp. Res. Part B Methodol. 1995, 29, 357–372. [Google Scholar] [CrossRef]
- Rodriguez-Roman, D.; Allahviranloo, M. Designing area pricing schemes to minimize travel disutility and exposure to pollutants. Transp. Res. Part D Transp. Env. 2019, 76, 236–254. [Google Scholar] [CrossRef]
- Sugiarto, S.; Miwa, T.; Morikawa, T. Recursive bivariate response models of the ex-ante intentions to link perceived acceptability among charge and refund options for alternative road pricing schemes. Transp. Lett. 2016, 10, 52–63. [Google Scholar] [CrossRef]
- Abulibdeh, A.; Andrey, J.; Melnik, M. Insights into the fairness of cordon pricing based on origin-destination data. J. Transp. Geogr. 2015, 49, 61–67. [Google Scholar] [CrossRef]
- Ecola, L.; Light, T. Making Congestion Pricing Equitable. Transp. Res. Rec. J. Transp. Res. Board 2010, 2187, 53–59. [Google Scholar] [CrossRef]
- Hess, S.; Börjesson, M. Understanding attitudes towards congestion pricing: A latent variable investigation with data from four cities. Transp. Lett. 2017, 11, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Meyer de Freitas, L.; Schuemperlin, O.; Balac, M.; Ciari, F. Equity Effects of Congestion Charges: An Exploratory Analysis With Matsim. Transp. Res. Rec. 2017, 2670, 75–82. [Google Scholar] [CrossRef]
- Schaller, B. New York City’s congestion pricing experience and implications for road pricing acceptance in the United States. Transp. Policy 2010, 17, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Kheirbek, I.; Haney, J.; Douglas, S.; Ito, K.; Matte, T. The contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: A health burden assessment. Environ. Health 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, X.; Yao, Z.; Liu, H.; Liang, S.; Yang, Y.J. Framework for integrating traffic-source emission estimates into sustainability analysis. In Proceedings of the CICTP 2012: Multimodal Transportation Systems-Convenient, Safe, Cost-Effective, Efficient-Proceedings of the 12th COTA International Conference of Transportation Professionals, Beijing, China, 3–6 August 2012. [Google Scholar]
- Hammadou, H.; Papaix, C. Policy packages for modal shift and CO2reduction in Lille, France. Transp. Res. Part D Transp. Environ. 2015, 38, 105–116. [Google Scholar] [CrossRef]
- Woodcock, J.; Givoni, M.; Morgan, A.S. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLoS ONE 2013, 8, e51462. [Google Scholar] [CrossRef]
- Bachman, W.; Sarasua, W.; Washington, S.; Guensler, R.; Hallmark, S.; Meyer, M.D. Integrating Travel Demand Forecasting Models with GIS to Estimate Hot Stabilized Mobile Source Emissions. In Proceedings of the Ninth Symposium on Geographic Information Systems for Transportation (GIS-T), Kansas City, MO, USA, 31 March 1996. [Google Scholar]
- Beckx, C.; Panis, L.I.; Vankerkom, J.; Janssens, D.; Wets, G.; Arentze, T. An integrated activity-based modelling framework to assess vehicle emissions: Approach and application. Env. Plan. B Plan. Des. 2009, 36, 1086–1102. [Google Scholar] [CrossRef] [Green Version]
- Hatzopoulou, M.; Miller, E.J.; Santos, B. Integrating Vehicle Emission Modeling with Activity-Based Travel Demand Modeling. Transp. Res. Rec. J. Transp. Res. Board 2008, 2011, 29–39. [Google Scholar] [CrossRef]
- Wei, H.; Zuo, T.; Liu, H.; Yang, Y.J. Integrating Land Use and Socioeconomic Factors into Scenario-Based Travel Demand and Carbon Emission Impact Study. Urban Rail Transit 2017, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Hu, M. Estimation of the Impact of Traveler Information Apps on Urban Air Quality Improvement. Engineering 2018, 4, 224–229. [Google Scholar] [CrossRef]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Dhondt, S.; Kochan, B.; Beckx, C.; Lefebvre, W.; Pirdavani, A.; Degraeuwe, B.; Bellemans, T.; Int Panis, L.; Macharis, C.; Putman, K. Integrated health impact assessment of travel behaviour: Model exploration and application to a fuel price increase. Environ. Int. 2013, 51, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Gurram, S.; Stuart, A.L. Impacts of Transit-Oriented Compact-Growth on Air Pollutant Concentrations and Exposures in the Tampa Region; Center for Transportation and Community Health, University of South Florida, Tampa: Tampa, FL, USA, 2018; p. 27. [Google Scholar]
- Gustafsson, M.; Lindén, J.; Tang, L.; Forsberg, B.; Orru, H.; Åström, S.; Sjöberg, K. Quantification of Population Exposure to NO2, PM2.5 and PM10 and Estimated Health Impacts; Volume IVL Report; IVL Swedish Environmental Research Institute Ltd.: Stockholm, Sweden, 2018; ISBN 9789188787606. [Google Scholar]
- Poorfakhraei, A.; Tayarani, M.; Rowangould, G. Evaluating health outcomes from vehicle emissions exposure in the long range regional transportation planning process. J. Transp. Health 2017, 6, 501–515. [Google Scholar] [CrossRef]
- Shekarrizfard, M.; Faghih-Imani, A.; Tétreault, L.F.; Yasmin, S.; Reynaud, F.; Morency, P.; Plante, C.; Drouin, L.; Smargiassi, A.; Eluru, N.; et al. Regional assessment of exposure to traffic-related air pollution: Impacts of individual mobility and transit investment scenarios. Sustain. Cities Soc. 2017, 29, 68–76. [Google Scholar] [CrossRef]
- Tayarani, M.; Poorfakhraei, A.; Nadafianshahamabadi, R.; Rowangould, G.M. Evaluating unintended outcomes of regional smart-growth strategies: Environmental justice and public health concerns. Transp. Res. Part D Transp. Environ. 2016, 49, 280–290. [Google Scholar] [CrossRef]
- Vallamsundar, S.; Lin, J.; Konduri, K.; Zhou, X.; Pendyala, R.M. A comprehensive modeling framework for transportation-induced population exposure assessment. Transp. Res. Part D Transp. Environ. 2016, 46, 94–113. [Google Scholar] [CrossRef]
- Wichmann, J.; Lind, T.; Nilsson, M.A.M.; Bellander, T. PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Monn, C. Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos. Environ. 2001, 35, 1–32. [Google Scholar] [CrossRef]
- Martuzevicius, D.; Grinshpun, S.A.; Lee, T.; Hu, S.; Biswas, P.; Reponen, T.; LeMasters, G. Traffic-related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmos. Environ. 2008, 42, 6575–6585. [Google Scholar] [CrossRef]
- ITF. The Social Impacts of Road Pricing; International Transport Forum Corporate Partnership Board: Paris, France, 2018. [Google Scholar]
- Shiftan, Y.; Ben-Akiva, M. A practical policy-sensitive, activity-based, travel-demand model. Ann. Reg. Sci. 2011, 47, 517–541. [Google Scholar] [CrossRef]
- West, J.; Börjesson, M.; Engelson, L. Accuracy of the Gothenburg congestion charges forecast. Transp. Res. Part A Policy Pract. 2016, 94, 266–277. [Google Scholar] [CrossRef]
- Leape, J. The London Congestion Charge. J. Econ. Perspect. 2007, 20, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.P.G. ERP in Singapore—A perspective one year on. Traffic Eng. Control 2000, 41, 40–45. [Google Scholar]
- Transport for London (TfL). Central London Congestion Charging: Impacts Monitoring—Sixth Annual Report. 2008. Available online: http://content.tfl.gov.uk/central-london-congestion-charging-impactsmonitoring-sixth-annual-report.pdf (accessed on 20 November 2019).
- Tvinnereim, E.; Haarstad, H.; Rødeseike, A.; Bugnion, V. Explaining public acceptance of congestion charging: The role of geographical variation in the Bergen case. Case Stud. Transp. Policy 2020, 8, 992–1001. [Google Scholar] [CrossRef]
- Gibson, M.; Carnovale, M. The effects of road pricing on driver behavior and air pollution. J. Urban Econ. 2015, 89, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, E.T.; Johansen, B.G. Congestion Pricing, Air Pollution, and Individual-Level Behavioral Responses. Available online: https://ssrn.com/abstract=3832230 (accessed on 22 April 2021).
- He, B.Y.; Zhou, J.; Ma, Z.; Wang, D.; Sha, D.; Lee, M.; Chow, J.Y.J.; Ozbay, K. A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City. Transp. Policy 2020, 101, 145–161. [Google Scholar] [CrossRef]
- Li, Y.; Sun, S. Prediction of Travel Mode Choice Behavior Preference under the Impacts of Congestion Pricing Based on ICLV Model. In Proceedings of the 20th COTA International Conference of Transportation Professionals, Xi’an, China, 14–16 August 2020; pp. 3241–3252. [Google Scholar]
- Tang, C.K. The Cost of Traffic: Evidence from the London Congestion Charge. J. Urban Econ. 2020, 121, 103302. [Google Scholar] [CrossRef]
- Takayama, Y. Who gains and who loses from congestion pricing in a monocentric city with a bottleneck? Econ. Transp. 2020, 24, 100189. [Google Scholar] [CrossRef]
- Waddell, P. Modeling Residential Location in UrbanSim. In Advances in Spatial Science; Pagliara, F., Preston, J., Simmonds, D., Eds.; Residential Location Choice. Advances in Spatial Science (The Regional Science Series); Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Tayarani, M.; Nadafianshahamabadi, R.; Poorfakhraei, A.; Rowangould, G. Evaluating the cumulative impacts of a long range regional transportation plan: Particulate matter exposure, greenhouse gas emissions, and transportation system performance. Transp. Res. Part D Transp. Environ. 2018, 63, 261–275. [Google Scholar] [CrossRef]
- Gupta, S.; Kalmanje, S.; Kockelman, K.M. Road pricing simulations: Traffic, land use and welfare impacts for Austin, Texas. Transp. Plan. Technol. 2006, 29, 1–23. [Google Scholar] [CrossRef]
- Ferreira, F.; Gomes, P.; Carvalho, A.C.; Tente, H.; Monjardino, J.; Brás, H.; Pereira, P. Evaluation of the Implementation of a Low Emission Zone in Lisbon. J. Environ. Prot. 2012, 3, 1188–1205. [Google Scholar] [CrossRef] [Green Version]
- Wolff, H. Keep your clunker in the suburb: Low-emission zones and adoption of green vehicles. Econ. J. 2014, 124, F481–F512. [Google Scholar] [CrossRef]
- Coria, J.; Bonilla, J.; Grundström, M.; Pleijel, H. Air pollution dynamics and the need for temporally differentiated road pricing. Transp. Res. Part A Policy Pract. 2015, 75, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Brown, V.; Moodie, M.; Carter, R. Congestion pricing and active transport—Evidence from five opportunities for natural experiment. J. Transp. Heal. 2015, 2, 568–579. [Google Scholar] [CrossRef]
- Cavallaro, F.; Giaretta, F.; Nocera, S. The potential of road pricing schemes to reduce carbon emissions. Transp. Policy 2018, 67, 85–92. [Google Scholar] [CrossRef]
- Rotaris, L.; Danielis, R.; Marcucci, E.; Massiani, J. The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part A Policy Pract. 2010, 44, 359–375. [Google Scholar] [CrossRef]
- Green, C.P.; Heywood, J.S.; Navarro Paniagua, M. Did the London congestion charge reduce pollution? Reg. Sci. Urban Econ. 2020, 84, 103573. [Google Scholar] [CrossRef]
- York Bigazzi, A.; Rouleau, M. Can traffic management strategies improve urban air quality? A review of the evidence. J. Transp. Health 2017, 7, 111–124. [Google Scholar] [CrossRef]
- Barnes, J.H.; Chatterton, T.J.; Longhurst, J.W.S. Emissions vs exposure: Increasing injustice from road traffic-related air pollution in the United Kingdom. Transp. Res. Part D Transp. Environ. 2019, 73, 56–66. [Google Scholar] [CrossRef]
- Qian, X.; Wu, Y. Assessment for health equity of PM2.5 exposure in bikeshare systems: The case of Divvy in Chicago. J. Transp. Health 2019, 14, 100596. [Google Scholar] [CrossRef]
- Brinckerhoff, P. 2010 Base Year Update and Validation of the NYMTC; New York Best Practice Model (NYBPM) 2014. Available online: https://www.nymtc.org/LinkClick.aspx?fileticket=8WgNz6e-6dY%3D&portalid=0 (accessed on 20 October 2018).
- Cornell University. PPS-AQ Post Processor Software for Regional Conformity Analysis; Cornell University: Amherst, NY, USA, 2012. [Google Scholar]
- NYMTC. Available online: https://www.nymtc.org/DATA-AND-MODELING/Travel-Surveys/2010-11-Travel-Survey (accessed on 20 October 2018).
- Caliper Corporation, User’s Guide for the NYBPM 2G Model in TransCAD 6.0. 2012. Available online: https://www.caliper.com/press/transportationlibrary.htm (accessed on 1 November 2021).
- Brinckerhoff New York Best Practice Model (NYBPM) For Regional Travel Demand Forecasting. 2009. Available online: https://www.nymtc.org/Data-and-Modeling/New-York-Best-Practice-Model-NYBPM/Model-Background (accessed on 1 November 2021).
- Rowangould, G.M. A new approach for evaluating regional exposure to particulate matter emissions from motor vehicles. Transp. Res. Part D Transp. Environ. 2015, 34, 307–317. [Google Scholar] [CrossRef]
- Tayarani, M.; Rowangould, G. Estimating exposure to fine particulate matter emissions from vehicle traffic: Exposure misclassification and daily activity patterns in a large, sprawling region. Environ. Res. 2020, 182, 108999. [Google Scholar] [CrossRef] [PubMed]
- Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas; US EPA U.S. Environmental Protection Agency: Washington, DC, USA, 2015. Available online: https://www.fhwa.dot.gov/Environment/air_quality/conformity/policy_and_guidance/pmhotspotguidatt.cfm (accessed on 1 November 2021).
- Petros, K.; Briggs, S.L.K.; Leaderer, B.P. Source Apportionment of Indoor Aerosols in Suffolk and Onondaga Counties, New York. Environ. Sci. Technol. 1992, 26, 521–527. [Google Scholar]
- Cyrys, J.; Pitz, M.; Bischof, W.; Wichmann, H.E.; Heinrich, J. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J. Expo. Anal. Env. Epidemiol. 2004, 14, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, Y.M.; Turpin, B.J.; Korn, L.; Weisel, C.P.; Morandi, M.; Colome, S.; Junfeng, Z.; Stock, T.; Spektor, D.; Winer, A.; et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. J. Expo. Anal. Env. Epidemiol. 2004, 15, 17–28. [Google Scholar]
- Long, C.M.; Suh, H.H.; Catalano, P.J.; Koutrakis, P. Using time- and size-resolved particulate data to ouantify indoor penetration and deposition behavior. Environ. Sci. Technol. 2001, 35, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Thornburg, J.; Ensor, D.S.; Rodes, C.E.; Lawless, P.A.; Sparks, L.E.; Mosley, R.B. Penetration of Particles into Buildings and Associated Physical Factors. Part I: Model Development and Computer Simulations. Aerosol Sci. Technol. 2001, 34, 284–296. [Google Scholar] [CrossRef]
- Koontz, M.D.; Rector, H. Estimation of Distributions for Residential Air Exchange Rates: Final Report; Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, USA, 1995.
- Jung, K.H.; Bernabé, K.; Moors, K.; Yan, B.; Chillrud, S.N.; Whyatt, R.; Camann, D.; Kinney, P.L.; Perera, F.P.; Miller, R.L. Effects of floor level and building type on residential levels of outdoor and indoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in New York City. Atmosphere 2011, 2, 96–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Liu, Z.; Cheng, Q.; Saberi, M. Congestion pricing practices and public acceptance: A review of evidence. Case Stud. Transp. Policy 2018, 6, 94–101. [Google Scholar] [CrossRef]
- Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Gao, H.O. Evaluating the traffic and emissions impacts of congestion pricing in New York city. Sustainability 2020, 12, 3655. [Google Scholar] [CrossRef]
- Boldo, E.; Medina, S.; LeTertre, A.; Hurley, F.; Mücke, H.G.; Ballester, F.; Aguilera, I.; Eilstein, D. Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. Eur. J. Epidemiol. 2006, 21, 449–458. [Google Scholar] [CrossRef] [PubMed]
Measure | VHD | VMT | LMC | ATS (Restricted Access) | ATS (Unrestricted Access) | |
---|---|---|---|---|---|---|
Scenario | 2020 Low Toll | −15.34 | −5.48 | −13.11 | 7.74 | 2.02 |
2020 High Toll | −32.57 | −13.89 | −32.34 | 17.86 | 7.07 |
Area | Number of TAZs | Number of Employees × Hour | Population-Weighted Mean Exposure | ||
---|---|---|---|---|---|
2020 Base | 2020 Low Toll | 2020 High Toll | |||
Manhattan CBD | 165 | 31341 | 0.7803 | 0.6051 | 0.5587 |
(−22%) | (−28%) | ||||
Upper Manhattan | 170 | 6936 | 0.5734 | 0.5455 | 0.5349 |
(−5%) | (−7%) | ||||
Total | 335 | 38277 | 0.6389 | 0.5943 | 0.5544 |
(−7%) | (−13%) |
Area | Indoor Exposure (µg/m3) | ||
---|---|---|---|
2020 Base | 2020 Low Toll | 2020 High Toll | |
Manhattan CBD | 3.1339 | 3.0291 | 2.9189 |
Upper Manhattan | 0.8587 | 0.8114 | 0.7828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Gao, H.O. Cordon Pricing, Daily Activity Pattern, and Exposure to Traffic-Related Air Pollution: A Case Study of New York City. Atmosphere 2021, 12, 1458. https://doi.org/10.3390/atmos12111458
Baghestani A, Tayarani M, Allahviranloo M, Gao HO. Cordon Pricing, Daily Activity Pattern, and Exposure to Traffic-Related Air Pollution: A Case Study of New York City. Atmosphere. 2021; 12(11):1458. https://doi.org/10.3390/atmos12111458
Chicago/Turabian StyleBaghestani, Amirhossein, Mohammad Tayarani, Mahdieh Allahviranloo, and H. Oliver Gao. 2021. "Cordon Pricing, Daily Activity Pattern, and Exposure to Traffic-Related Air Pollution: A Case Study of New York City" Atmosphere 12, no. 11: 1458. https://doi.org/10.3390/atmos12111458
APA StyleBaghestani, A., Tayarani, M., Allahviranloo, M., & Gao, H. O. (2021). Cordon Pricing, Daily Activity Pattern, and Exposure to Traffic-Related Air Pollution: A Case Study of New York City. Atmosphere, 12(11), 1458. https://doi.org/10.3390/atmos12111458