Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain
Abstract
1. Introduction
2. Methodology
3. Particle Characteristics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The Physics of Wind-Blown Sand and Dust. Reports Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Smithsonian Institution. Report on La Palma Vulcano. Available online: https://volcano.si.edu/volcano.cfm?vn=383010 (accessed on 7 October 2022).
- Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K. The Atmospheric Aerosol System: An Overview. Rev. Geophys. 1983, 21, 1607–1629. [Google Scholar] [CrossRef]
- Jaenicke, R. Atmospheric Aerosols and Global Climate. J. Aerosol Sci. 1980, 11, 577–588. [Google Scholar] [CrossRef]
- WMO Barcelona Dust Regional Center Daily Dust Products. Available online: https://dust.aemet.es/products/daily-dust-products (accessed on 7 October 2022).
- Copernicus Atmosphere Monitoring Service. CAMS Monitors Transport of SO2 from La Palma Volcano. Available online: https://atmosphere.copernicus.eu/cams-monitors-transport-so2-la-palma-volcano (accessed on 7 October 2022).
- Basart, S.; Nickovic, S.; Terradellas, E.; Cuevas, E.; García-Pando, C.P.; García-Castrillo, G.; Werner, E.; Benincasa, F. The WMO SDS-WAS Regional Center for Northern Africa, Middle East and Europe. E3S Web Conf. 2019, 99, 04008. [Google Scholar] [CrossRef]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A.; et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev. 2019, 12, 4627–4659. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol Light Absorption and Its Measurement: A Review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Valsaraj, K.T.; Melvin, E.M. Principles of Environmental Thermodynamics and Kinetics, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780429959097. [Google Scholar]
- Flanner, M.G.; Arnheim, J.B.; Cook, J.M.; Dang, C.; He, C.; Huang, X.; Singh, D.; Skiles, S.M.K.; Whicker, C.A.; Zender, C.S. SNICAR-ADv3: A Community Tool for Modeling Spectral Snow Albedo. Geosci. Model Dev. 2021, 14, 7673–7704. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Zege, E.P. Scattering Optics of Snow. Appl. Opt. 2004, 43, 1589–1602. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Vidal, V.; Moosmüller, H.; Lapuerta, M. Reduction of Snow Albedo from Vehicle Emissions at Portillo, Chile. Cold Reg. Sci. Technol. 2018, 146, 43–52. [Google Scholar] [CrossRef]
- González-Correa, S.; Gómez-Doménech, D.; Ballesteros, R.; Lapuerta, M.; Pacheco-Ferrada, D.; Flores, R.P.; Castro, L.; Fadic-Ruiz, X.; Cereceda-Balic, F. Impact of Vehicle Soot Agglomerates on Snow Albedo. Atmosphere 2022, 13, 801. [Google Scholar] [CrossRef]
- Lapuerta, M.; González-Correa, S.; Ballesteros, R.; Moosmüller, H.; Cereceda-Balic, F. Albedo Reduction for Snow Surfaces Contaminated with Soot Aerosols: Comparison of Experimental Results and Models. Aerosol Sci. Technol. 2022, 56, 847–858. [Google Scholar] [CrossRef]
- Skiles, S.M.K.; Painter, T. Daily Evolution in Dust and Black Carbon Content, Snow Grain Size, and Snow Albedo during Snowmelt, Rocky Mountains, Colorado. J. Glaciol. 2017, 63, 118–132. [Google Scholar] [CrossRef]
- Niu, H.; Kang, S.; Shi, X.; Paudyal, R.; He, Y.; Li, G.; Wang, S.; Pu, T.; Shi, X. In-Situ Measurements of Light-Absorbing Impurities in Snow of Glacier on Mt. Yulong and Implications for Radiative Forcing Estimates. Sci. Total Environ. 2017, 581–582, 848–856. [Google Scholar] [CrossRef]
- Dang, C.; Brandt, R.E.; Warren, S.G. Parameterizations for Narrowband and Broadband Albedo of Pure Snow and Snow Containing Mineral Dust and Black Carbon. J. Geophys. Res. 2015, 120, 5446–5468. [Google Scholar] [CrossRef]
- Painter, T.H.; Bryant, A.C.; McKenzie Skiles, S. Radiative Forcing by Light Absorbing Impurities in Snow from MODIS Surface Reflectance Data. Geophys. Res. Lett. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- Constantin, J.G.; Ruiz, L.; Villarosa, G.; Outes, V.; Bajano, F.N.; He, C.; Bajano, H.; Dawidowski, L. Measurements and Modeling of Snow Albedo at Alerce Glacier, Argentina: Effects of Volcanic Ash, Snow Grain Size, and Cloudiness. Cryosphere 2020, 14, 4581–4601. [Google Scholar] [CrossRef]
- Formenti, P.; Schütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent Progress in Understanding Physical and Chemical Properties of African and Asian Mineral Dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef]
- Lapuerta, M.; Oliva, F.; Agudelo, J.R.; Boehman, A.L. Effect of Fuel on the Soot Nanostructure and Consequences on Loading and Regeneration of Diesel Particulate Filters. Combust. Flame 2012, 159, 844–853. [Google Scholar] [CrossRef]
- La Tribuna de Ciudad Real. La Calima Seguirá Sobre Ciudad Real Durante La Semana. Available online: https://www.latribunadeciudadreal.es/Noticia/Z86ECDF15-CCF7-762A-ED3027336030186D/202203/La-calima-seguira-sobre-Ciudad-Real-durante-la-semana (accessed on 7 October 2022).
- Lapuerta, M.; Ballesteros, R.; Martos, F.J. A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates. J. Colloid Interface Sci. 2006, 303, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Saffaripour, M.; Tay, L.L.; Thomson, K.A.; Smallwood, G.J.; Brem, B.T.; Durdina, L.; Johnson, M. Raman Spectroscopy and TEM Characterization of Solid Particulate Matter Emitted from Soot Generators and Aircraft Turbine Engines. Aerosol Sci. Technol. 2017, 51, 518–531. [Google Scholar] [CrossRef]
- Pawlyta, M.; Hercman, H. Transmission Electron Microscopy (TEM) as a Tool for Identification of Combustion Products: Application to Black Layers in Speleothems. Ann. Soc. Geol. Pol. 2016, 86, 237–248. [Google Scholar] [CrossRef]
- Gupta, V.; Siddique, S.; Chaudhary, S. Characterization of Different Types of Fly Ash Collected from Various Sources in Central India. Mater. Today Proc. 2019, 18, 5076–5080. [Google Scholar] [CrossRef]
- Meteoblue. Archivo Meteorológico Estación de Esquí de Sierra Nevada. Available online: https://www.meteoblue.com/es/tiempo/historyclimate/weatherarchive/estación-de-esquí-de-sierra-nevada_españa_7602397 (accessed on 8 October 2022).
- Conway, H.; Gades, A.; Raymond, C.F. Albedo of Dirty Snow during Conditions of Melt. Water Resour. Res. 1996, 32, 1713–1718. [Google Scholar] [CrossRef]
- Beres, N.D.; Sengupta, D.; Samburova, V.; Khlystov, A.Y.; Moosmüller, H. Deposition of Brown Carbon onto Snow: Changes in Snow Optical and Radiative Properties. Atmos. Chem. Phys. 2020, 20, 6095–6114. [Google Scholar] [CrossRef]
- Beres, N.D.; Moosmüller, H. Apparatus for Dry Deposition of Aerosols on Snow. Atmos. Meas. Tech. 2018, 11, 6803–6813. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Wiscombe, W.J.; Warren, S.G. A Model for the Spectral Albedo of Snow, I: Pure Snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical Constants of Ice from the Ultraviolet to the Microwave: A Revised Compilation. J. Geophys. Res. Atmos. 2008, 113, D14220. [Google Scholar] [CrossRef]
- Mountain, R.D.; Mulholland, G.W. Light Scattering from Simulated Smoke Agglomerates. Langmuir 1988, 4, 1321–1326. [Google Scholar] [CrossRef]
- Lapuerta, M.; Ballesteros, R.; Martos, F.J. The Effect of Diesel Engine Conditions on the Size and Morphology of Soot Particles. Int. J. Veh. Des. 2009, 50, 91–106. [Google Scholar] [CrossRef]
- Ajalloeian, R.; Yu, H.S.; Allman, M.A. Physical and Mechanical Properties of Stockon Beach Sand; Institution of Engineers: Barton, Australia, 2018; pp. 536–537. [Google Scholar]
- Belenkov, E.A. Formation of Graphite Structure in Carbon Crystallites. Inorg. Mater. 2001, 37, 928–934. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Incorporation of Mineralogical Composition into Models of the Radiative Properties of Mineral Aerosol from UV to IR Wavelengths. J. Geophys. Res. Atmos. 1999, 104, 9423–9444. [Google Scholar] [CrossRef]
- Shivola, A. Mixing Rules with Complex Dielectric Coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Polyanskiy, M. Refractive Index Database. Available online: https://refractiveindex.info (accessed on 8 October 2022).
- Chang, H.; Charalampopoulos, T.T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1990, 430, 577–591. [Google Scholar] [CrossRef]
- Deguine, A.; Petitprez, D.; Clarisse, L.; Guđmundsson, S.; Outes, V.; Herbin, H. Complex Refractive Index of Volcanic Ash Aerosol in the Infrared, Visible, and Ultraviolet. Appl. Opt. 2020, 59, 884–895. [Google Scholar] [CrossRef]
- Longtin, D.R.; Shettle, E.P.; Hummel, J.R.; Pryce, J.D. A Wind Dependent Desert Aerosol Dust Model: Radiative Properties; United States air Force: Bedford, MA, USA, 1988. [Google Scholar]
- Duc, P.; Bournaud, F.; Masset, F. Astrophysics A Top-down Scenario for the Formation. Astron. Astrophys. 2004, 814, 803–814. [Google Scholar] [CrossRef][Green Version]
- ClassicGems.Net. Available online: http://www.classicgems.net/refractiveindex.htm#top (accessed on 8 October 2022).
- Querry, M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet; University of Missouri-Kansas City: Kansas City, MO, USA, 1987. [Google Scholar]
- Posch, M.; Kurz, D. A2M-A Program to Compute All Possible Mineral Modes from Geochemical Analyses. Comput. Geosci. 2007, 33, 563–572. [Google Scholar] [CrossRef]
- Rodríguez-de Marcos, L.V.; Larruquert, J.I.; Méndez, J.A.; Aznárez, J.A. Self-Consistent Optical Constants of SiO2 and Ta2O5 Films. Opt. Mater. Express 2016, 6, 3622. [Google Scholar] [CrossRef]
- Calingaert, G.; Heron, S.D.; Stair, R. Sapphire and Other New Combustion-Chamber Window Materials. SAE Trans. 1936, 31, 448–450. Available online: https://www.jstor.org/stable/44439140 (accessed on 1 October 2022).
- Koepke, P.M.; Hess, I.S.; Shettle, E.P. Global Aerosol Data Set; GEISA: Hamburg, Germany, 1977. [Google Scholar]
- Ball, J.G.C.; Reed, B.E.; Grainger, R.G.; Peters, D.M.; Mather, T.A.; Pyle, D.M. Measurements of the Complex Refractive Index of Volcanic Ash at 450, 546.7, and 650 Nm. J. Geophys. Res. 2015, 120, 7747–7757. [Google Scholar] [CrossRef]
- Reed, B.E.; Peters, D.M.; McPheat, R.; Grainger, R.G. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction. J. Geophys. Res. Atmos. 2018, 123, 1339–1350. [Google Scholar] [CrossRef]
- Patterson, E.M.; Gillette, D.A.; Stockton, B.H. Complex Index of Refraction between 300 and 700 Nm for Saharan Aerosols. J. Geophys. Res. 1977, 82, 3153–3160. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Absorption by Atmospheric Aerosol Substances. J. Geophys. Res. 1972, 77, 1017–1031. [Google Scholar] [CrossRef]
- Balkanski, Y.; Schulz, M.; Claquin, T.; Guibert, S. Reevaluation of Mineral Aerosol Radiative Forcings Suggests a Better Agreement with Satellite and AERONET Data. Atmos. Chem. Phys. 2007, 7, 81–95. [Google Scholar] [CrossRef]
- Liu, F.; Yon, J.; Bescond, A. On the Radiative Properties of Soot Aggregates—Part 2: Effects of Coating. J. Quant. Spectrosc. Radiat. Transf. 2016, 172, 134–145. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Bruun, C.A.; Pratsinis, S.E. The Impact of Organic Carbon on Soot Light Absorption. Carbon 2021, 172, 742–749. [Google Scholar] [CrossRef]
- Piontek, D.; Hornby, A.J.; Voigt, C.; Bugliaro, L.; Gasteiger, J. Determination of Complex Refractive Indices and Optical Properties of Volcanic Ashes in the Thermal Infrared Based on Generic Petrological Compositions. J. Volcanol. Geotherm. Res. 2021, 411, 107174. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
Date | Snow Surface Previously Contaminated with: | Snow Surface Artificially Contaminated with: | Corrected Zenith Angle (°) | Concentration (mg/kg) | Snow Density (kg m−3) | Snow Grain Radius (µm) | Depth (cm) |
---|---|---|---|---|---|---|---|
16 December 2021 | Soot | - | 70.3 | 0.9 | 250 | 309.8 ± 53.4 | Semi-infinite |
- | Soot | 0.8 | |||||
Soot | - | 61.0 | 0.5 | ||||
- | Ash | 90 | |||||
Soot | - | 65.0 | 0.3 | ||||
- | Sand | 100 | |||||
8 April 2022 | Soot + Haze | - | 48.6 | 0.2 Soot + 25 Haze | 404.78 | 270.3 ± 40.6 | 11.46 |
- | Haze | 25 |
Material | Average Grain Radius (nm) | Densities (kg m−3) | |
---|---|---|---|
Soot | 97 | 1850 | |
Ash | 450 | 2600 | |
Sand | 10,000 | 1500 | |
Haze | Previously deposited | 1500 | 2500 |
Artificially deposited | 400 |
Aerosol | Mineral | Reference |
---|---|---|
Ash | Olivine | Fabian et al. 2001 [47] |
Cordierite | Classic gems [48] | |
Franklinite | ||
Albite | ||
Sand | Dolomite | Querry 1987 [49] |
Calcium carbonate | Posch et al. 2007 [50] | |
Silicon oxide | Rodriguez de Marcos et al. [51] | |
Haze | Hematite | Triaud 2005 [41] |
Calcite | Posch et al. 2007 [50] | |
Quartz | Calingaert 1936 [52] | |
Montmorillonite | Querry 1987 [49] | |
Kaolinite | ||
Illite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Correa, S.; Lapuerta, M.; Ballesteros, R.; Pacheco-Ferrada, D.; Castro, L.; Cereceda-Balic, F. Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain. Atmosphere 2022, 13, 1903. https://doi.org/10.3390/atmos13111903
González-Correa S, Lapuerta M, Ballesteros R, Pacheco-Ferrada D, Castro L, Cereceda-Balic F. Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain. Atmosphere. 2022; 13(11):1903. https://doi.org/10.3390/atmos13111903
Chicago/Turabian StyleGonzález-Correa, Sofía, Magín Lapuerta, Rosario Ballesteros, Diego Pacheco-Ferrada, Lina Castro, and Francisco Cereceda-Balic. 2022. "Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain" Atmosphere 13, no. 11: 1903. https://doi.org/10.3390/atmos13111903
APA StyleGonzález-Correa, S., Lapuerta, M., Ballesteros, R., Pacheco-Ferrada, D., Castro, L., & Cereceda-Balic, F. (2022). Impacts of Soot, Ash, Sand, and Haze on Snow Albedo in Sierra Nevada, Spain. Atmosphere, 13(11), 1903. https://doi.org/10.3390/atmos13111903