Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology
Abstract
:1. Introduction
2. Methods
2.1. Single-Wavelength Simulation Analysis Model
2.2. Deep Neural Network Model
3. Experiments and Data
3.1. Experimental Diesel Engine
3.2. Online Monitoring Equipment
3.3. Marine Fuel
3.4. Working Conditions of the Diesel Engine
3.5. UV Imaging Detection Equipment
4. Results and Discussion
4.1. Single-Wavelength Simulation Analysis Results
4.2. Single-Wavelength Inversion Results of Ultraviolet Images
4.3. Sulfur Content Prediction Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalkanen, J.P.; Johansson, L.; Kukkonen, J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmos. Chem. Phys. 2016, 16, 71–84. [Google Scholar] [CrossRef] [Green Version]
- International Maritime Organization. Reduction of GHG Emissions from Ships Third IMO GHG Study 2014—Final Report; MEPC.: London, UK, 2014; Volume 67. [Google Scholar]
- International Maritime Organization (IMO). Annex VI of MARPOL 73/78, Regulations for the Prevention of Air Pollution from Ships and NOx Technical Code; IMO: London, UK, 2007; Volume 3, pp. 154–196. [Google Scholar]
- Eyring, V.; Isaksen, I.S.A.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, J.; Zhang, B.; Shi, Y. Satellite remote-sensing monitoring technology and the research advances of SO2 in the atmosphere. J. Saf. Environ. 2012, 4, 166–169. [Google Scholar]
- Yan, H.; Chen, L.; Tao, J.; Han, D.; Su, L.; Yu, C. SO2 long-term monitoring by satellite in the Pearl River Delta. J. Remote Sens. 2012, 2, 390–404. [Google Scholar]
- Huaxiang, S.; Minhua, Y. Effectiveness evaluation of SO2 emission reduction in Guizhou Province. Earth Environ. 2014, 5, 319–327. [Google Scholar]
- Huaxiang, S.; Minhua, Y. Analysis on effectiveness of SO2 emission reduction in Guangxi Zhuang Autonomous Region by satellite remote sensing. Chin. J. Environ. Eng. 2015, 3, 1361–1368. [Google Scholar]
- Li, B.; Ju, T.; Zhang, B.; Ge, J.; Zhang, J.; Tang, H. Satellite remote sensing monitoring and analysis of the causes of temporal and spatial variation characteristics of atmospheric SO2 Concentration in Tianshui. Environ. Monit. China 2016, 2, 134–140. [Google Scholar]
- Li, C. Emissions Characteristics and Future Trends of Non-Road Mobile Sources in China. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2017. [Google Scholar]
- Mellqvist, J.; Conde, V.; Beecken, J.; Ekholm, J. Surveillance of Sulfur Emissions from Ships in Danish Waters; Chalmers University of Technology: Göteborg, Sweden, 2017. [Google Scholar]
- Daniel, A.B.; Carmen, R.M.B. Bridge-based sensing of NOx and SO2 emissions from ocean-going ships. Atmos. Environ. 2016, 136, 54–60. [Google Scholar]
- Zhou, F.; Pan, S.; Chen, W.; Ni, X.; An, B. Monitoring of compliance with fuel sulfur content regulations through unmanned aerial vehicle (UAV) measurements of ship emissions. Atmos. Meas. Tech. 2019, 12, 6113–6124. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Wei, P.; Gali, N.K.; Sun, L.; Yang, F.; Westerdahl, D.; Zhang, Q.; Deng, Z.; Wang, Y.; Liu, D.; et al. Protocol development for real-time ship fuel sulfur content determination using drone based plume sniffing microsensor system. Sci. Total Environ. 2020, 744, 140885. [Google Scholar] [CrossRef]
- Seyler, A.; Wittrock, F.; Kattner, L.; Mathieu-Üffing, B.; Peters, E.; Richter, A.; Schmoke, S.; Burrows, J.P. Monitoring shipping emissions in the German Bight using MAX-DOAS measurements. Atmos. Chem. Phys. 2017, 17, 10997–11023. [Google Scholar] [CrossRef] [Green Version]
- Berg, N.; Mellqvist, J.; Jalkanen, J.P.; Balzani, J. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms. Atmos. Meas. Tech. 2012, 5, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, S.; Zhu, J.; Guo, Y.; Zhang, R.; Liu, Y.; Zhang, Y.; Yu, Q.; Ma, W.; Zhou, B. Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and implication to compliance of fuel sulfur content. Atmos. Chem. Phys. 2019, 19, 13611–13626. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J. Measuring SO2 ship emissions with an ultraviolet imaging camera. Atmos. Meas. Tech. 2014, 7, 1213–1229. [Google Scholar] [CrossRef] [Green Version]
- Osorio, M.; Casaballe, N.; Belsterli, G.; Barreto, M.; Gomez, A.; Ferrari, J.A.; Frins, E. Plume segmentation from UV camera images for SO2 emission rate quantification on cloud days. Remote. Sens. 2017, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P. Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique. Atmos. Meas. Tech. 2014, 7, 1957–1968. [Google Scholar] [CrossRef]
- Premuda, M.; Masieri, S.; Bortoli, D.; Kostadinov, I.; Petritoli, A.; Giovanelli, G. Evaluation of vessel emissions in a lagoon area with ground based Multi axis DOAS measurements. Atmos. Environ. 2011, 45, 5212–5219. [Google Scholar] [CrossRef]
- Balzani Lööv, J.M.; Alfoldy, B.; Gast, L.F.L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; et al. Field test of available methods to measure remotely SOx and Nox emissions from ships. Atmos. Meas. Tech. 2014, 7, 2597–2613. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Gu, J.; Chen, W.; Ni, X. Measurement of SO2 and NO2 in ship plumes using rotary unmanned aerial system. Atmosphere 2019, 10, 657. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Xiong, Y.; Chen, Z.; Yu, G.; Liu, L.; Li, F.; Wu, K. Remote sensing and monitoring of industrial SO2 and carbon black particles with ultraviolet imaging technology. Acta Photonica Sin. 2020, 49, 153–161. [Google Scholar]
- Zhang, Z.; Zheng, W.; Cao, K.; Li, Y.; Xie, M. Simulation analysis on the optimal imaging detection wavelength of SO2 concentration in ship exhaust. Atmosphere 2020, 11, 1119. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, Z.; Li, Y.; Zheng, W.; Xie, M. Ship fuel sulfur content prediction based on convolutional neural network and ultraviolet camera images. Environ. Pollut. 2021, 273, 116501. [Google Scholar] [CrossRef]
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Power percentage (%) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 90 | 100 |
Wavelength (nm) | RMSE | MAE | MAPE |
---|---|---|---|
300 | 0.15 | 0.12 | 55.69 |
310 | 0.38 | 0.28 | 148.28 |
330 | 15.43 | 13.20 | 9976.35 |
Fuel Sulfur Content (% m/m) | Counts | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
0.1 | 4 | 0 | 0 | 0 | - |
0.3 | 806 | 0.71 | 0.81 | 0.76 | - |
0.5 | 676 | 0.74 | 0.69 | 0.72 | - |
0.8 | 212 | 0.81 | 0.57 | 0.66 | - |
Macro avg. | 1698 | 0.57 | 0.52 | 0.54 | - |
Weighted avg. | 1698 | 0.74 | 0.73 | 0.73 | - |
Total | 1698 | - | - | - | 0.73 |
Fuel Sulfur Content (% m/m) | Counts | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
0.1 | 2 | 1 | 0.5 | 0.67 | - |
0.3 | 388 | 0.91 | 0.93 | 0.92 | - |
0.5 | 873 | 0.97 | 0.94 | 0.96 | - |
0.8 | 42 | 0.69 | 0.9 | 0.78 | - |
Macro avg. | 1305 | 0.89 | 0.82 | 0.83 | - |
Weighted avg. | 1305 | 0.94 | 0.94 | 0.94 | - |
Total | 1305 | - | - | - | 0.94 |
Fuel Sulfur Content (% m/m) | Counts | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
0.1 | 300 | 0.49 | 0.49 | 0.49 | - |
0.3 | 767 | 0.74 | 0.83 | 0.78 | - |
0.5 | 910 | 0.81 | 0.76 | 0.79 | - |
0.8 | 321 | 0.60 | 0.53 | 0.56 | - |
Macro avg. | 2298 | 0.66 | 0.65 | 0.65 | - |
Weighted avg. | 2298 | 0.71 | 0.71 | 0.71 | - |
Total | 2298 | - | - | - | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zheng, W.; Li, Y.; Cao, K.; Xie, M.; Wu, P. Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology. Atmosphere 2021, 12, 1182. https://doi.org/10.3390/atmos12091182
Zhang Z, Zheng W, Li Y, Cao K, Xie M, Wu P. Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology. Atmosphere. 2021; 12(9):1182. https://doi.org/10.3390/atmos12091182
Chicago/Turabian StyleZhang, Zhenduo, Wenbo Zheng, Ying Li, Kai Cao, Ming Xie, and Peng Wu. 2021. "Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology" Atmosphere 12, no. 9: 1182. https://doi.org/10.3390/atmos12091182
APA StyleZhang, Z., Zheng, W., Li, Y., Cao, K., Xie, M., & Wu, P. (2021). Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology. Atmosphere, 12(9), 1182. https://doi.org/10.3390/atmos12091182