Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China
Abstract
:1. Introduction
2. Experimental Section
2.1. Test Bench and Conditions
2.2. Emission Measurement System
2.3. Test Engines
2.4. Test Cycles
2.5. Data Calculating Method
2.6. Fuel Information
3. Results and Discussion
3.1. Fuel-Based Average Emission Factors
3.2. Fuel-Based Emission Factors Analysis
3.3. Energy-Based Average Emission Factors
3.4. Energy-Based Emission Factors Regression Analysis
3.5. Uncertainty Analysis
4. Conclusions
- (1)
- The marine ME NOX fuel-based emission factors from Class A to Class F are 33.25, 38.51, 39.83, 45.21, 66.01 and 76.58 kg/t, respectively. The CO fuel-based emission factors were 4.06, 3.78, 3.22, 2.70, 4.33 and 3.77 kg/t, respectively. The CO2 fuel-based emission factors are 3140, 3125, 3125, 3124, 3166 and 3158 kg/t, respectively. The THC fuel-based emission factors are 1.16, 1.83, 2.64, 1.82, 1.33 and 1.10 kg/t, respectively. The marine AE NOX fuel-based emission factors from Class A to Class D are 27.17, 30.82, 36.77 and 39.81 kg/t, respectively. The CO fuel-based emission factors are 5.12, 4.48, 3.05 and 2.66 kg/t, respectively. The CO2 fuel-based emission factors are 3141, 3113, 3123 and 3124 kg/t, respectively. The THC fuel-based emission factors are 1.16, 1.86, 2.87 and 2.54 kg/t, respectively.
- (2)
- The marine ME NOX energy-based emission factors from Class A to Class F are 6.57, 7.61, 8.02, 8.84, 11.09 and 11.75 g/kW h, respectively. The CO energy-based emission factors are 0.81, 0.63, 0.56, 0.57, 0.64 and 0.57 g/kW h, respectively. The CO2 energy-based emission factors are 656.74, 655.88, 659.71, 631.91, 534.99 and 530.28 g/kW h, respectively. The THC energy-based emission factors are 0.24, 0.37, 0.61, 0.37, 0.22 and 0.18 g/kW h, respectively. The marine AE NOX energy-based emission factors from Class A to Class D are 6.06, 6.74, 8.11 and 8.33 g/kW h, respectively. The CO energy-based emission factors are 0.77, 0.68, 0.56 and 0.47 g/kW h, respectively. The CO2 energy-based emission factors are 683.78, 684.91, 676.60 and 656.86 g/kW h, respectively. The THC energy-based emission factors are 0.21, 0.35, 0.61 and 0.48 g/kW h, respectively.
- (3)
- The diesel engine emission factors under different loads are analyzed in this paper. The NOX, CO, THC emission factor are closely related to the diesel engine type and load. The CO2 fuel-based emission factor is independent of engine load and type, but closely related to the fuel carbon content. The ME emission is an important source of ship exhaust emission. If the baseline emission factors are used to establish a Chinese ship exhaust emission inventory, when the top-down methodology is used to evaluate the ship’s exhaust emissions, the CO calculation results will be significantly reduced and the THC calculation results will be significantly amplified. When the bottom-up approach is used to evaluate the ship exhaust emissions, the NOX and THC calculation results will be significantly amplified. Usually, the bottom-up method provides a more correct representation of the ship emission inventory. Therefore, reasonable emission factors should be selected when establishing regional ship exhaust emission inventory.
- (4)
- Based on the regression analysis method, this paper studies the relationship between the energy-based emission factors and the diesel engine load. The results show that the relationship between the energy-based emission factors and the diesel engine load satisfied the quadratic polynomial or power function.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transport 2019; United Nations Publications: New York, NY, USA, 2019; Available online: https://unctad.org/system/files/official-document/rmt2019_en.pdf (accessed on 24 May 2021).
- Peng, W.; Yang, J.; Corbin, J.; Trivanovic, U.; Lobo, P.; Kirchen, P.; Rogak, S.; Gagne, S.; Miller, J.W.; Cocker, D. Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environ. Pollut. 2020, 266, 115404. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. Space Phys. 2003, 108, 4560. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Olivié, D.J.L.; Cariolle, D.; Teyssèdre, H.; Salas, D.; Voldoire, A.; Clark, H.; Saint-Martin, D.; Michou, M.; Karcher, F.; Balkanski, Y.; et al. Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860-2100 with an AOGCM. Atmos. Chem. Phys. 2012, 12, 1449–1480. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Fu, M.; Jin, X.; Shang, Y.; Shindell, D.; Faluvegi, G.; Shindell, C.; He, K. Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Chang. 2016, 6, 1037–1041. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Huang, C.; Hu, Q.Y.; Wang, H.Y.; Qiao, L.P.; Jing, S.A.; Wang, H.L.; Zhou, M.; Zhu, S.H.; Ma, Y.G.; Lou, S.R.; et al. Emission factors of particulate and gaseous compounds from a large cargo vessel operated under real-world conditions. Environ. Pollut. 2018, 242, 667–674. [Google Scholar] [CrossRef]
- Sharafian, A.; Blomerus, P.; Mérida, W. Natural gas as a ship fuel: Assessment of greenhouse gas and air pollutant reduction potential. Energy Policy 2019, 131, 332–346. [Google Scholar] [CrossRef]
- Miola, A.; Ciuffo, B. Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources. Atmos. Environ. 2011, 45, 2242–2251. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). Third IMO GHG Study 2014 Executive Summary and Final Report; International Maritime Organization (IMO): London, UK, 2014; pp. 1–295.
- Nunes, R.A.O.; Alvim-Ferraz, M.D.C.; Martins, F.; Sousa, S. The activity-based methodology to assess ship emissions—A review. Environ. Pollut. 2017, 231, 87–103. [Google Scholar] [CrossRef]
- Xing, H.; Duan, S.-L.; Huang, L.-Z.; Han, Z.-T.; Liu, Q.-A. Testbed-Based Exhaust Emission Factors for Marine Diesel Engines in China. Huan Jing Ke Xue Huanjing Kexue 2016, 37, 3750–3757. [Google Scholar]
- Cooper, D.; Gustafsson, T. Methodology for Calculating Emissions from Ships: 1. Update of Emission Factors; SMHI Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2004; pp. 8–40.
- Cooper, D. Exhaust emissions from ships at berth. Atmos. Environ. 2003, 37, 3817–3830. [Google Scholar] [CrossRef]
- Moldanová, J.; Fridell, E.; Popovicheva, O.; Demirdjian, B.; Tishkova, V.; Faccinetto, A.; Focsa, C. Characterisation of partic-ulate matter and gaseous emissions from a large ship diesel engine. Atmos. Environ. J. 2009, 43, 2632–2641. [Google Scholar] [CrossRef]
- Hulskotte, J.H.J.; Denier van der Gon, H.A.C. Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey. Atmos. Environ. 2010, 44, 1229–1236. [Google Scholar] [CrossRef]
- Chu-Van, T.; Ristovski, Z.; Pourkhesalian, A.M.; Rainey, T.; Garaniya, V.; Abbassi, R.; Jahangiri, S.; Enshaei, H.; Kam, U.-S.; Kimball, R.; et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions. Environ. Pollut. 2018, 237, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Ding, Y.; Ge, Y.; Yu, L.; Yin, H.; Ye, W.; Liang, B. Real-world emissions of inland ships on the Grand Canal, China. Atmos. Environ. 2013, 81, 222–229. [Google Scholar] [CrossRef]
- Yin, H.; Ding, Y.; Ge, Y.S.; Ye, W.T.; Wang, J.F.; Bai, T.; Qian, L.Y. Emissions characteristics of diesel engines for inland waterway vessels in China. Res. Environ. Sci. 2014, 27, 470–476. [Google Scholar]
- Peng, Z.; Ge, Y.; Tan, J.; Fu, M.; Wang, X.; Chen, M.; Yin, H.; Ji, Z. Emissions from several in-use ships tested by portable emission measurement system. Ocean Eng. 2016, 116, 260–267. [Google Scholar] [CrossRef]
- Wang, C.; Hao, L.; Ma, D.; Ding, Y.; Lv, L.; Zhang, M.; Wang, H.; Tan, J.; Wang, X.; Ge, Y. Analysis of ship emission charac-teristics under real-world conditions in China. Ocean Eng. 2019, 194, 106615. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.J.; Tian, C.G.; Lou, D.M.; Li, J.; Zhang, G.; Matthias, V. Emission factors for gaseous and particulate pol-lutants from offshore diesel engine vessels in China. Atmos. Chem. Phys. 2016, 16, 6319–6334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chen, Y.; Chen, Q.; Feng, Y.; Shang, Y.; Yang, X.; Gao, H.; Tian, C.; Li, J.; Zhang, G.; et al. Real-world emission factors of gaseous and particulate pollutants from marine fishing boats and their total emissions in China. Environ. Sci. Technol. 2018, 52, 4910–4919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, Y.; Cui, M.; Feng, Y.; Yang, X.; Chen, J.; Zhang, Y.; Gao, H.; Tian, C.; Matthias, V.; et al. Emission factors and environmental implication of organic pollutants in PM emitted from various vessels in China. Atmos. Environ. 2018, 200, 302–311. [Google Scholar] [CrossRef]
- Tzannatos, E. Ship emissions and their externalities for Greece. Atmos. Environ. 2010, 44, 2194–2202. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Li, Y.; Lang, J.; Zhou, Y.; Guo, X.; Zhao, Y. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Sci. Total Environ. 2017, 609, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Zhang, Y.; Ma, W.; Ma, H.; Feng, J.; Yu, Q.; Yang, X.; Ng, S.K.W.; Fu, Q.; Chen, L. Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef]
- Fu, Q.; Shen, Y.; Zhang, J. On the ship pollutant emission inventory in Shanghai Port. J. Saf. Environ. 2012, 12, 57–63. [Google Scholar]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.-L.; Ye, S.-Q.; Wang, S.-S.; Zheng, J.-Y.; Ou, J.-M. Marine Emission Inventory and Its Temporal and Spatial Characteristics in the City of Shenzhen. Huan Jing Ke Xue Huanjing Kexue 2015, 36, 1217–1226. [Google Scholar]
- International Maritime Organization (IMO). Amendments to Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines; International Maritime Organization (IMO): London, UK, 2008; pp. 1–100.
- China Classification Society (CCS). Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines; China Classification Society (CCS): Beijing, China, 2017; pp. 1–93. [Google Scholar]
- Sinha, P.; Hobbs, P.V.; Yokelson, R.; Christian, T.J.; Kirchstetter, T.W.; Bruintjes, R. Emissions of trace gases and particles from two ships in the southern Atlantic Ocean. Atmos. Environ. 2003, 37, 2139–2148. [Google Scholar] [CrossRef]
Test Cycle | Parameter | Test Power Point | ||||
---|---|---|---|---|---|---|
E3 | Power | 100% | 75% | 50% | 25% | - |
Speed | 100% | 91% | 80% | 63% | - | |
Weighting factor | 0.20 | 0.50 | 0.15 | 0.15 | - | |
D2 | Power | 100% | 75% | 50% | 25% | 10% |
Speed | 100% | 100% | 100% | 100% | 100% | |
Weighting factor | 0.05 | 0.25 | 0.30 | 0.30 | 0.10 |
Power Range (kW) | Use | EFfNOx | EFfCO | EFfCO2 | EFfTHC | ||||
---|---|---|---|---|---|---|---|---|---|
x ± s (1) | n (2) | x ± s | n | x ± s | n | x ± s | n | ||
130~600 (Class A) | ME | 33.25 ± 6.82 | 38 | 4.06 ± 3.15 | 36 | 3140 ± 22 | 36 | 1.16 ± 0.94 | 35 |
601~1200 (Class B) | ME | 38.51 ± 5.64 | 13 | 3.78 ± 1.43 | 12 | 3125 ± 15 | 10 | 1.83 ± 0.99 | 13 |
1201~2000 (Class C) | ME | 39.83 ± 6.47 | 11 | 3.22 ± 0.84 | 10 | 3125 ± 20 | 10 | 2.64 ± 1.31 | 10 |
2001~4000 (Class D) | ME | 45.21 ± 2.89 | 13 | 2.70 ± 1.14 | 12 | 3124 ± 14 | 12 | 1.82 ± 0.60 | 11 |
4001~10,000 (Class E) | ME | 66.01 ± 5.34 | 14 | 4.33 ± 1.99 | 14 | 3166 ± 26 | 15 | 1.33 ± 0.40 | 15 |
10,001~26,000 (Class F) | ME | 76.58 ± 2.39 | 12 | 3.77 ± 2.56 | 12 | 3158 ± 36 | 12 | 1.10 ± 0.49 | 11 |
Baseline [11] | ME | 73.75 | 2.77 | 3206 | 3.08 + 0.06 (3) | ||||
130~600 (Class A) | AE | 27.17 ± 6.81 | 46 | 5.12 ± 3.15 | 45 | 3141 ± 27 | 42 | 1.16 ± 0.84 | 41 |
601~1200 (Class B) | AE | 30.82 ± 4.51 | 20 | 4.48 ± 1.65 | 20 | 3113 ± 30 | 19 | 1.86 ± 0.74 | 19 |
1201~2000 (Class C) | AE | 36.77 ± 3.14 | 12 | 3.05 ± 0.99 | 11 | 3123 ± 22 | 13 | 2.87 ± 1.28 | 11 |
2001~4000 (Class D) | AE | 39.81 ± 5.29 | 16 | 2.66 ± 1.01 | 16 | 3124 ± 16 | 16 | 2.54 ± 0.90 | 15 |
Power Range (kW) | Use | EFeNOx | EFeCO | EFeCO2 | EFeTHC | ||||
---|---|---|---|---|---|---|---|---|---|
x ± s (1) | n (2) | x ± s | n | x ± s | n | x ± s | n | ||
130~600 (Class A) | ME | 6.57 ± 1.25 | 38 | 0.81 ± 0.65 | 36 | 656.74 ± 25.78 | 37 | 0.24 ± 0.20 | 35 |
601~1200 (Class B) | ME | 7.61 ± 1.25 | 13 | 0.63 ± 0.34 | 12 | 655.88 ± 10.86 | 11 | 0.37 ± 0.21 | 13 |
1201~2000 (Class C) | ME | 8.02 ± 1.06 | 11 | 0.56 ± 0.20 | 10 | 659.71 ± 28.23 | 10 | 0.61 ± 0.38 | 11 |
2001~4000 (Class D) | ME | 8.84 ± 0.64 | 13 | 0.57 ± 0.32 | 13 | 631.91 ± 12.47 | 12 | 0.37 ± 0.13 | 11 |
4001~10,000 (Class E) | ME | 11.09 ± 1.22 | 15 | 0.64 ± 0.30 | 15 | 534.99 ± 11.38 | 15 | 0.22 ± 0.06 | 15 |
10,001~26,000 (Class F) | ME | 11.75 ± 1.15 | 12 | 0.57 ± 0.31 | 12 | 530.28 ± 12.19 | 12 | 0.18 ± 0.08 | 11 |
Baseline [11] | ME | 14.38 | 0.54 | 607 | 0.60 + 0.01 (3) | ||||
130~600 (Class A) | AE | 6.06 ± 1.20 | 46 | 0.77 ± 0.37 | 42 | 683.78 ± 44.80 | 45 | 0.21 ± 0.15 | 41 |
601~1200 (Class B) | AE | 6.74 ± 0.86 | 20 | 0.68 ± 0.22 | 18 | 684.91 ± 21.62 | 19 | 0.35 ± 0.16 | 19 |
1201~2000 (Class C) | AE | 8.11 ± 0.67 | 12 | 0.56 ± 0.22 | 12 | 676.60 ± 19.20 | 13 | 0.61 ± 0.27 | 12 |
2001~4000 (Class D) | AE | 8.33 ± 0.85 | 16 | 0.47 ± 0.17 | 16 | 656.86 ± 18.64 | 16 | 0.48 ± 0.17 | 15 |
EFr | Coefficients | Use | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|
EFrNOx | a | ME | 4.486 | 6.750 | 7.360 | 2.025 | 10.430 | 2.025 |
AE | 5.639 | 6.312 | 7.571 | 7.528 | - | - | ||
b | ME | −10.855 | 0.358 | 0.252 | −7.718 | 0.187 | −7.404 | |
AE | 0.141 | 0.138 | 0.094 | 0.141 | - | - | ||
c | ME | 12.061 | - | - | 13.426 | - | 16.206 | |
R2 | ME | 0.998 | 0.997 | 0.994 | 0.990 | 0.993 | 0.996 | |
AE | 0.848 | 0.830 | 0.862 | 0.922 | - | - | ||
EFrCO | a | ME | −1.554 | 1.995 | 3.533 | 2.261 | 2.412 | −1.484 |
AE | 0.470 | 0.376 | 0.273 | 0.287 | - | - | ||
b | ME | 1.482 | −2.844 | −6.335 | −3.361 | −4.735 | 2.130 | |
AE | 0.920 | 0.995 | 1.141 | 0.903 | - | - | ||
c | ME | 0.680 | 1.632 | 3.261 | 1.676 | 2.708 | −0.148 | |
R2 | ME | 0.683 | 0.859 | 0.992 | 0.977 | 0.992 | 0.677 | |
AE | 0.944 | 0.913 | 0.974 | 0.910 | - | - | ||
EFrCO2 | a | ME | 187.467 | 208.788 | 162.377 | 234.809 | 138.482 | 150.192 |
AE | 598.766 | 614.658 | 612.775 | 593.429 | - | - | ||
b | ME | −252.016 | −288.915 | −272.459 | −366.696 | −192.703 | −206.388 | |
AE | 0.254 | 0.208 | 0.197 | 0.208 | - | - | ||
c | ME | 731.774 | 743.473 | 761.148 | 764.994 | 597.147 | 595.228 | |
R2 | ME | 0.995 | 0.934 | 0.983 | 0.999 | 0.948 | 0.977 | |
AE | 0.908 | 0.911 | 0.925 | 0.906 | - | - | ||
EFrTHC | a | ME | 0.206 | 0.149 | −0.036 | −0.549 | 0.138 | 0.194 |
AE | 0.139 | 0.226 | 0.445 | 0.324 | - | - | ||
b | ME | −0.202 | −0.271 | −0.326 | 0.685 | −0.226 | −0.278 | |
AE | 0.762 | 0.693 | 0.605 | 0.671 | - | - | ||
c | ME | 0.266 | 0.491 | 0.882 | 0.253 | 0.310 | 0.275 | |
R2 | ME | 0.885 | 0.999 | 0.999 | 0.665 | 0.999 | 0.959 | |
AE | 0.913 | 0.963 | 0.990 | 0.984 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Yang, Y.; Sun, P.; Xing, H.; Duan, S.; Qu, H.; Zou, Y. Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China. Atmosphere 2021, 12, 1108. https://doi.org/10.3390/atmos12091108
Ma Z, Yang Y, Sun P, Xing H, Duan S, Qu H, Zou Y. Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China. Atmosphere. 2021; 12(9):1108. https://doi.org/10.3390/atmos12091108
Chicago/Turabian StyleMa, Zhongmin, Yuanyuan Yang, Peiting Sun, Hui Xing, Shulin Duan, Hongfei Qu, and Yongjiu Zou. 2021. "Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China" Atmosphere 12, no. 9: 1108. https://doi.org/10.3390/atmos12091108
APA StyleMa, Z., Yang, Y., Sun, P., Xing, H., Duan, S., Qu, H., & Zou, Y. (2021). Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China. Atmosphere, 12(9), 1108. https://doi.org/10.3390/atmos12091108