NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Calculation of NDVI Trends
2.3.2. Analysis of Relationship between NDVI and Meteorological Parameters
2.3.3. The Time Lags between NDVI and Meteorological Parameters
2.3.4. Support Vector Machine and Random Forest for Estimating Tea Yield
3. Results
3.1. Temporal Variation in Normalized Difference Vegetation Index (NDVI) of Tea
3.2. Relationship between NDVI and Climate Variables
3.2.1. Relationship between NDVI and Climate Variables in Current Month
3.2.2. Relationship between NDVI and Climate Variables in Lag Time
3.3. The Prediction of Tea Yield in Growing Season by SVM and RF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouse, J.W.; Haas, R.; Schell, J. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Yin, Z.; Lee, T.H.L. Obtaining Spatial and Temporal Vegetation Data from Landsat MSS and AVHRR/NOAA Satellite Images for a Hydrologic Model. Photogramm. Eng. Remote Sens. 1997, 63, 69–77. [Google Scholar]
- Higginbottom, T.; Symeonakis, E. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef] [Green Version]
- Ning, T.; Liu, W.; Lin, W.; Song, X. NDVI Variation and Its Responses to Climate Change on the Northern Loess Plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A Review of Remote Sensing for Environmental Monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Fauziana, F.; Danoedoro, P.; Murti, S.H. Linear Spectral Mixture Analysis of SPOT-7 for Tea Yield Estimation in Pagilaran Estate, Batang Central Java. In Proceedings of the IOP Conference Series Earth and Environmental Science, Yogyakarta, Indonesia, 7–19 October 2016. [Google Scholar] [CrossRef]
- Xu, W.; Sun, R.; Jin, Z. Extracting Tea Plantations Based on ZY-3 Satellite Data. Trans. Chin. Soc. Agric. Eng. 2016, 32, 161–168. [Google Scholar]
- Pan, S.; Zhao, X.; Yue, Y. Spatiotemporal Changes of NDVI and Correlation with Meteorological Factors in Northern China from 1985–2015. E3S Web Conf. 2019. [Google Scholar] [CrossRef]
- He, Y.; Guo, X.; Dixon, P.; Wilmshurst, J.F. NDVI Variation and Its Relations to Climate in Canadian Ecozones. Can. Geogr. 2012, 56, 492–507. [Google Scholar] [CrossRef]
- Fabricante, I.; Oesterheld, M.; Paruelo, J.M. Annual and Seasonal Variation of NDVI Explained by Current and Previous Precipitation across Northern Patagonia. J. Arid Environ. 2009, 73, 745–754. [Google Scholar] [CrossRef]
- Wang, M.; Fu, J.; Wu, Z.; Pang, Z. Spatiotemporal Variation of NDVI in the Vegetation Growing Season in the Source Region of the Yellow River, China. ISPRS Int. J. Geo Inf. 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Hu, Y.; Xiong, Z.; Yan, X.; Ren, B.; Bu, R. Spatiotemporal Variations of Growing-Season NDVI Associated with Climate Change in Northeastern China’s Permafrost Zone. Polish J. Environ. Stud. 2017, 26, 1521–1529. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, art129. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.; Jiang, C.; Sun, O.J. Assessing the Vulnerability of Ecosystems to Climate Change Based on Climate Exposure, Vegetation Stability and Productivity. For. Ecosyst. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing Vegetation Response to Climatic Variations and Human Activities: Spatiotemporal NDVI Variations in the Hexi Corridor and Surrounding Areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, Q.; Yue, Y.; Duan, L.; Pan, S. A System Analysis on Steppe Sustainability and Its Driving Forces-A Case Study in China. Sustainability 2018, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Gyawali, P.; Sapkota, S.; Neupane, D.; Shrestha, S.; Shrestha, N.; Tuladhar, F.M. ANALYZING the EFFECT of CLIMATE CHANGE (RAINFALL and TEMPERATURE) on VEGETATION COVER of Nepal USING TIME SERIES MODIS IMAGES. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.-Z.; Liu, H.-B.; Li, H.-M.; Wu, W.; Zhong, B. The Relationship NDVI and Terrain Factors. Procedia Environ. Sci. 2011, 12, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, T.; Yi, G.; He, D.; Zhou, X.; Li, J.; Bie, X.; Miao, J. Dynamic Changes of Ndvi in the Growing Season of the Tibetan Plateau during the Past 17 Years and Its Response to Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global Correlation Analysis for NDVI and Climatic Variables and NDVI Trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Sarkar, S.; Kafatos, M. Interannual Variability of Vegetation over the Indian Sub-Continent and Its Relation to the Different Meteorological Parameters. Remote Sens. Environ. 2004, 90, 268–280. [Google Scholar] [CrossRef]
- Richard, Y.; Poccard, I. A Statistical Study of NDVI Sensitivity to Seasonal and Interannual Rainfall Variations in Southern Africa. Int. J. Remote Sens. 2010, 19, 2907–2920. [Google Scholar] [CrossRef]
- Hydrometeorological Station in Lai Chau Province. Available online: http://kttvtaybac.org/index.php/vi/gioi-thieu/Don-vi-truc-thuoc/Dai-KTTV-tinh-Lai-Chau-10/ (accessed on 20 July 2020).
- Zhang, Z.; Jin, Y.; Chen, B.; Brown, P. California Almond Yield Prediction at the Orchard Level with a Machine Learning Approach. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, E.E.; Ramesh, K.V.; Rajkumar, R.; Moral, M. Modelling The Impact Of Agrometeorological Variables On Regional Tea Yield Variability In South Indian Tea-Growing Regions: 1981–2015. Cogent Food Agric. 2019, 5, 5. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Machine Learning Methods for Crop Yield Prediction and Climate Change Impact Assessment in Agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating Crop Yield from Multi-Temporal Satellite Data Using Multivariate Regression and Neural Network Techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, H.; Dai, Q.; Han, D. Analysis of NDVI Data for Crop Identification and Yield Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4374–4384. [Google Scholar] [CrossRef]
- Ramos, A.P.M.; Osco, L.P.; Furuya, D.E.G.; Gonçalves, W.N.; Santana, D.C.; Teodoro, L.P.R.; Junior, C.A.D.S.; Capristo-Silva, G.F.; Li, J.; Baio, F.H.R.; et al. A Random Forest Ranking Approach to Predict Yield in Maize with Uav-Based Vegetation Spectral Indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Rama Rao, N.; Kapoor, M.; Sharma, N.; Venkateswarlu, K. Yield Prediction and Waterlogging Assessment for Tea Plantation Land Using Satellite Image-based Techniques. Int. J. Remote Sens. 2007, 28, 1561–1576. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumara, A.; Aruna, D.; Kumara, P. Remote Sensing Applications to Infer Yield of Tea in a Part of Sri Lanka November 2013. In Crop Improvement under Adverse Conditions; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nitin, K.; Tripathi, S.S.; RajapakseSpace, K.H. Tea Yield Modeling Based on Satellite Derived LAI. Geocarto Int. 2004, 19, 51–54. [Google Scholar]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-Based Increase in Growth of Temperate Grasslands and Its Responses to Climate Changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Chen, H.L. Variations of Vegetation Cover and Its Impact on Climate and Water Source in Huanghe-Huaihe-Haihe Zone; Nanjing University of Information Science & Technology: Nanjing, China, 2007. [Google Scholar]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef] [Green Version]
- Phan, P.; Chen, N.; Xu, L.; Chen, Z. Using Multi-Temporal MODIS NDVI Data to Monitor Tea Status and Forecast Yield: A Case Study at Tanuyen, Laichau, Vietnam. Remote Sens. 2020, 12, 1814. [Google Scholar] [CrossRef]
- Braswell, B.H.; Schimel, D.S.; Linder, E.; III, B.M. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science 1997, 278, 870–872. [Google Scholar] [CrossRef]
- Los, S.O.; Collatz, G.J.; Bounoua, L.; Sellers, P.J.; Tucker, C.J. Global Interannual Variations in Sea Surface Temperature and Land Surface Vegetation, Air Temperature, and Precipitation. J. Clim. 2001, 14, 1535–1549. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Sala, O.E.; Paruelo, J.M. Patterns and Controls of Primary Production in the Patagonian Steppe: A Remote Sensing Approach. Ecology 2002, 83, 307–319. [Google Scholar]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Hu, M.Q.; Mao, F.; Sun, H.; Hou, Y.Y. Study of Normalized Difference Vegetation Index Variation and Its Correlation with Climate Factors in the Three-River-Source Region. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 24–33. [Google Scholar] [CrossRef]
- Gunn, S.R. Support Vector Machines for Classification and Regression. Tech. Report Sch. Electron. Comput. Sci. 1998, 14, 5–16. [Google Scholar]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Shoubo, H. Meteorology of the Tea Plant in China: A Review. Agric. For. Meteorol. 2003, 47, 19–30. [Google Scholar] [CrossRef]
- Carr, M.K.V. The Climatic Requirements of the Tea Plant: A Review. Exp. Agric. 1972, 8, 1–14. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T. An Approach to Forecast Grain Crop Yield Using Multi-Layered, Multi-Farm Data Sets and Machine Learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Rötter, R.P. Wheat Yield Benefited from Increases in Minimum Temperature in the Huang-Huai-Hai Plain of China in the Past Three Decades. Agric. For. Meteorol. 2017, 239, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Othieno, C.O.; Stephens, W.; Carr, M.K.V. Yield Variability at the Tea Research Foundation of Kenya. Agric. For. Meteorol. 1992, 61, 237–252. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Saikia, S.D.; Gupta, N.; Biggs, E.M. Observing Climate Impacts on Tea Yield in Assam, India. Appl. Geogr. 2016, 77, 64–71. [Google Scholar] [CrossRef]
Dynamic Trend | Area (%) | |
---|---|---|
Fast decrease | −0.001–0.0001 | 6.27 |
Slow decrease | 0.0001–0.0004 | 20.6 |
Basically unchanged | 0.0004–0.0008 | 32.6 |
Slow increase | 0.0008–0.001 | 29.5 |
Fast increase | 0.001–0.002 | 11.3 |
Climatic Factor | The Value of R between NDVI and Climatic Factor | |
---|---|---|
Current Month | Previous Month | |
Tmean | 0.68 | 0.73 |
Tmin | 0.72 | 0.65 |
Tmax | 0.01 | 0.4 |
Precipitation | 0.62 | 0.67 |
Solar radiation | 0.4 | 0.12 |
Month | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|
Tmean | 0.05 | 0.27 | 0.38 | 0.03 | 0.35 | 0.43 | 0.31 |
Tmin | 0.05 | 0.38 | 0.002 | 0.25 | 0.34 | 0.47 | 0.43 |
Tmax | 0.09 | 0.12 | 0.3 | 0.38 | 0.15 | 0.23 | 0.28 |
Precipitation | 0.1 | 0.012 | 0.5 | 0.02 | 0.13 | 0.11 | 0.43 |
Solar | 0.12 | 0.17 | 0.08 | 0.57 | 0.07 | 0.08 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, P.; Chen, N.; Xu, L.; Dao, D.M.; Dang, D. NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam. Atmosphere 2021, 12, 962. https://doi.org/10.3390/atmos12080962
Phan P, Chen N, Xu L, Dao DM, Dang D. NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam. Atmosphere. 2021; 12(8):962. https://doi.org/10.3390/atmos12080962
Chicago/Turabian StylePhan, Phamchimai, Nengcheng Chen, Lei Xu, Duy Minh Dao, and Dinhkha Dang. 2021. "NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam" Atmosphere 12, no. 8: 962. https://doi.org/10.3390/atmos12080962
APA StylePhan, P., Chen, N., Xu, L., Dao, D. M., & Dang, D. (2021). NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam. Atmosphere, 12(8), 962. https://doi.org/10.3390/atmos12080962