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Abstract: Tea is one of the most significant cash crops and plays an important role in economic
development and poverty reduction. On the other hand, tea is an optimal choice in the extreme
weather conditions of Tanuyen Laichau, Vietnam. In our study, the NDVI variation of tea in the
growing season from 2009 to 2018 was showed by calculating NDVI trend and the Mann-Kendall
analysis to assess trends in the time series. Support Vector Machine (SVM) and Random Forest (RF)
model were used for predicting tea yield. The NDVI of tea showed an increasing trend with a slope
from −0.001–0.001 (88.9% of the total area), a slope from 0.001–0.002 (11.1% of the total area) and a
growing rate of 0.00075/year. The response of tea NDVI to almost climatic factor in a one-month
time lag is higher than the current month. The tea yield was estimated with higher accuracy in the
RF model. Among the input variables, we detected that the role of Tmean and NDVI is stronger than
other variables when squared with each of the independent variables into input data.

Keywords: NDVI trend; mann-kendall test; the Pearson correlation coefficients; tea yield prediction;
support vector machine; random forest

1. Introduction

Tea is a perennial crop, which has an economically significant value in agriculture, and
is an important economic driving force in developing countries such as Vietnam. Laichau
province has very suitable climatic and soil conditions for the growth and development of
tea trees, where high quality tea products are created such as Oolong, Sencha and Matcha
and are highly appreciated by domestic and foreign consumers. Laichau tea industry
brings great economic and social benefits in the area. Tea plays an important role in hunger
eradication, poverty reduction and enrichment of Laichau farmers in general and Tanuyen
district in particular. The economy in Tanuyen district is mainly agriculture, so the district
has focused on exploiting the potentials and strengths to promote the development of the
agricultural sector, in which tea is the main economic crop. Tea plant for the mountain folk
of Tanuyen Laichau has special significant when bring long-term economic value.

Normalized Difference Vegetation index (NDVI) is a vegetation index relied on the
contrast of the near-infrared band reflection (NIR) and the red band absorption. Observing
the change of NIR and red light can provide an accurate indication of chlorophyll activity,
which correlates with plant health. Rouse [1] proposed the normalized difference vegetation
index based on red and near-infrared reflectance. The range of NDVI is from −1 to 1. High
NDVI value corresponds to dense vegetation. Low or negative NDVI values represent
clouds, snow, water, or a bright, non-vegetated surface [2]. The NDVI was considered an

Atmosphere 2021, 12, 962. https://doi.org/10.3390/atmos12080962 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-3521-9972
https://orcid.org/0000-0002-6454-2963
https://orcid.org/0000-0001-7524-7268
https://orcid.org/0000-0003-3884-9387
https://doi.org/10.3390/atmos12080962
https://doi.org/10.3390/atmos12080962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12080962
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12080962?type=check_update&version=1


Atmosphere 2021, 12, 962 2 of 15

important indicator for measuring the coverage of vegetation [3]. Due to high space and
time resolution and accuracy, remotely sensed data can effectively support for monitoring
vegetation dynamics [4,5]. With the development of remote sensing technology, many
high resolution images were used for tea plantation extraction [6,7]. In previous studies,
many scholars have studied surface vegetation coverage at different spatial and temporal
scales [4] based on time series data and spatiotemporal changes of NDVI [8]. Ning et al. [4]
analyzed temporal and spatial changes of NDVI and explored the impacts of human
activities on the observed NDVI changes on the northern Loess Plateau. They showed that
the spatial distribution of the annual maximum NDVI gradually decreased from east to
west. NDVI variation was studied in many previous researches [4,9–11]. Wang et al. [11]
investigated the NDVI variation in the growing season and its response to climate change.
Guo et al. [12] determined the NDVI in growing-season from April to October to avoid
low NDVI values in winter. The mean NDVI was calculated to detect the vegetation
variation and its relation to climate change. Spatiotemporal changes of NDVI was studied
by Pan et al. [8]. Their result show that the annual average of NDVI has an upward trend
in northern China.

The NDVI-climate relationship at different scales has been carried out in many previ-
ous studies. The changing climate has caused negative effects on a large scale on global
ecosystems recently in [13,14]. Assessing the sensitivity of vegetation due to climate change
was examined in many previous studies [15]. Many studies have been carried out to
investigate the relationships between NDVI and its influencing factors, including climate
conditions. Guan et al. [16] studied the changes of NDVI in the Hexi Corridor and its
surrounding areas and showed a close relationship between variations in vegetation and
precipitation within the Qilian Mountains region. The relationship between NDVI and
climate in the grassland region of Northern China was analyzed by Zhao et al. [17]. The
results concluded the strongest positive driving force is precipitation, followed by average
temperature while the strong negative driving force is sunshine duration. He et al. [9]
showed that the relationship between NDVI and precipitation is less than that with tem-
perature. Joshi et al. [18] analyzed the spatial-temporal distribution of vegetation cover,
and examined the relationship of temperature and precipitation with vegetation in Nepal
by creating a time series of NDVI monthly for six months [18]. In addition, Zhan et al. [19]
showed that NDVI has relationship with terrain attributes, particularly the aspect, slope
and altitude. NDVI and its lag time to climatic were analyzed to examine their relation
and show the spatial distribution of NDVI values in the growing season and the effects of
different climatic factors on NDVI [20]. Pan et al. [8] show a higher correlation between
NDVI and air temperature in high altitude alpine and plateau areas, while NDVI has a
higher correlation with precipitation in grassland and desert grassland areas. The impacts
of human activities on the NDVI were investigated in existing studies [11,16]. Inter-annual
trends and seasonal variation of vegetation are recognized as indicators to identify the
climatic change [21–23]. These researches approached NDVI in the relationship with tem-
perature and rainfall. In fact, there are many parameters that may correlate with NDVI are
listed: precipitation, average temperature, sunshine duration, slope and human activity.
In our study, we combined multiple climatic data, including mean temperature (Tmean),
minimum temperature (Tmin), maximum temperature (Tmax), precipitation (Pre) and
solar radiation (SL) in the study area to examine the response of NDVI to climate factors
in the growing season. The informative foundation that brings the measurement of these
parameters are provided by Hydro-Meteorological station in Laichau province [24].

For crop yield prediction, two methods were widely used, including the process-based
“crop models” and the “machine learning models”. The crop model forecasted yield by
using the physiological characteristics of plants based on extensive input data to simulate
crop growth and yield [25]. Machine learning-based models used historical data and do
not directly rely on known physiological mechanisms for individual crops [26,27]. Multiple
vegetation indices from MODIS data were applied to estimate the crop yield for wheat,
corn, soybean, maize almond and tea through many other methods. The NDVI time series
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extracted from MODIS data were used to predict the corn and soybean yield in the United
States [28]. NDVI and the Enhanced Vegetation Index (EVI) were combined to predict
wheat yield [29], which were demonstrated having a good correlation with crop yield and
have contributed to prediction of crop yield [30]. Zhang et al. [25] used NDVI and EVI
from Landsat satellite observations to predict early and mid-season almond yield. Ana
Paula et al. [31] relied on the correlation parameter approach of VIs to predict the maize
yield. NDVI is an important part of increasing ability prediction in their combination with
random forest. N. Rama Rao et al. [32] used NDVI, simple ratio and TVI for tea yield
prediction based on leaf area index and weather parameters. Saumitra et al. [33] applied
the remote sensing and GIS as tool to infer the potential of tea product by using NDVI
image. Nitin K. et al. [34] attempted to build a tea yield prediction model based on LAI
value derived from IRS-1C LISS-III sensor. These researches are used NDVI and climatic
data for predicting tea yield; however, the combine machine learning is largely unknown.
In our research, Support Vector Machine (SVM) and Random Forest (RF) were applied for
tea yield prediction in the growing season. Our main objectives in this study are: (1) to
detect temporal variation of tea NDVI in growing season in Tanuyen from 2009 to 2018;
(2) to find out relationship between tea NDVI and climate variables; (3) to identify the best
model for tea yield prediction in Tanuyen; (4) to explore the importance of variables in
prediction tea yield.

2. Materials and Methods
2.1. Study Area

Tanuyen is a district in the East region of Laichau Province, which was established in
2008 with an area of 903.27 km2 and 9 communes (Figure 1). There are 10 ethnic minorities,
of which the Thai is predominant. Tea has been identified as an important crop and staple
export in Tanuyen. The climate features tropical monsoons, hot days and cold nights. The
climate of the year is divided into two distinct seasons: the rainy season from May to
September, with high temperature and humidity and the dry season from November to
March of the next year. The climate is cold, with low humidity and rainfall. The average
annual temperature is about 21–23 ◦C. The average annual rainfall ranges from 2500–2700 m.
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2.2. Data

NDVI data from 2010 to 2018 were obtained from the Terra Moderate Resolution Imag-
ing Spectra radiometer (MODIS) Vegetation Indices (MOD13A3) Version 6 data, which are
provided monthly at 1 kilometer (km) spatial resolution. In generating the monthly prod-
uct, the algorithm ingests all the MOD13A2 products that overlap the month and employs
a weighted temporal average. The average NDVI from April to October was examined as
growing-season of NDVI, which reflect better the growth status of vegetation [35,36]. In
the image processing step, geometric correction and radiometric correction procedures on
NDVI were carried out. Then, NDVI value was extracted, aggregated on pixel by over tea
area and mean value calculating.

Monthly meteorological data included precipitation, mean temperature (Tmean) min-
imum temperature (Tmin), maximum temperature (Tmax), precipitation (Pr) and solar
radiation (SL) from Thanuyen weather stations for the period of 2010 to 2018, and has been
subjected to quality control.

The land-use map in the year of 2018 were used in this study. It was produced from
Sentinel-2 image using the supervised classification method with accuracy Kappa 95%.
The tea area was extracted and aggregated from this map.

The tea yield (ton/ha) in growing season from 2009 to 2018 were calculated by total
tea productivity (ton) per tea area (ha), which was provided by the Statistical Yearbook
in Laichau and Department of Natural Resources and Environment, Tanuyen district.
Therefore, the change of tea area in Tanuyen increased from 1208 ha (2009) to 2854 ha (2018)
does not affect to tea yield in difference period.

2.3. Method
2.3.1. Calculation of NDVI Trends

The unitary linear regression method was used to estimate the NDVI trend which
was calculate by ArcGIS 10.5 software to show the slope of NDVI period 2009 to 2018. The
positive value of slope indicates an increasing trend of NDVI tea and the negative value of
slope decreasing trend. The formula is expressed as follows:

θslope =
n×∑n

i=1 i× NDVIi −∑n
i=1 i×∑ NDVIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where θslope represent the slope of the NDVI trend, i = 1, 2 . . . 10, n = 10. θslope < 0 means
that the average NDVI for growing-season from 2009–2018 is decreased and vice versa.

The Mann–Kendall analysis is a non-parametric test, which was developed by Mann
and Kendall to assess trends in the time series. This trend analysis method was applied to
determine the change of NDVI [11,37]. First, building a rank sequence dk for time series:

dk =
k

∑
i=1

ri (2)

k is the dataset record length

ri =

{
1 NDVIi > NDVIj
0 NDVIi < NDVIj

}
(1 ≤ j ≤ i)

The Zk statistic was calculated as in equation as follows:

Zk =
dk −M(dk)√

Var(dk)
(3)

M(dk) =
k(k− 1)

4
(4)
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Var(dk) =
k(k− 1)(2k + 5)

72
(5)

where Z1 is equal to 1. M(dk) calculates the mean of Zk statistic and Var(dk) calculates the
variance. The value of Zk is positive means an increasing trend, and vice versa.

2.3.2. Analysis of Relationship between NDVI and Meteorological Parameters

The Pearson correlation coefficients between the NDVI and the meteorological param-
eters were calculated to analyze their relationships. Considering the effects of interactions
between air temperature, precipitation and net radiation on the NDVI, the partial corre-
lation coefficients between the NDVI and meteorological variables were also calculated
to determine the main meteorological driving factors that affect NDVI variations. The
correlation coefficient, R can be expressed as follows:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2 ∑n
i=1(xi − x)2

(6)

where Rxy is the Pearson correlation coefficients for x and y variable which have value from
−1 to 1. xi is NDVI value in the ith month [38], yi is the mean monthly climate factor in the
ith month [24] and x y are the average of x and y, respectively.

2.3.3. The Time Lags between NDVI and Meteorological Parameters

Vegetation is sensitive to climate change; however, the adaptability in different vegeta-
tion is under a specific environment. Braswell et al. [39] and Los et al. [40] show the time
lag of vegetation growth on temperature. Meanwhile, the precipitation has a lag effect on
vegetation growth in another study [41]. Many researches show that the lag time for NDVI
response and climate factor [16,35,42–44]. Piao et al [35] indicated the temporal lag between
NDVI and temperature with a time lag of 1 month, but there is only a 20-day period for a
time lag in the three-river source region in the Qinghai-Tibetan Plateau in China according
to Hu et al. [44]. Guan et al. [16] and Pei et al. [42] calculated the correlation coefficients
in the corresponding period and the preceding 3 months between NDVI and climatic
variables. In our study, we calculate the lag correlation coefficients of NDVI and climate
variables of the previous 2 months, the previous month and current month. The expression
is as follows:

R = max{R0, R1, R2 . . . , Rn−1, Rn} (7)

where R is the lag correlation coefficients, and n is the number of samples. R0, R1, R2, . . . , Rn
are the lag coefficients of mean NDVI and the previous 2 months, the previous month and
the current month, respectively.

2.3.4. Support Vector Machine and Random Forest for Estimating Tea Yield

SVM is a non-parametric supervised algorithm, which was firstly introduced for
classification and then extended for regression problem [45]. SVM regression algorithm
with input space was a non-linear mapping through a kernel function to balance between
minimizing errors and the Gaussian kernel function is best performed in this study.

Random forest is a classification problem, including many decision trees while each
tree is created from the choice random variable set and data set. From a large number of
individual trees generated, they voted the most popular classes. Many research showed that
RF may reach the best predictive performances compared to other methodologies [38,45,46].

In our study, the square of all independent variables were taken in turn to find the
best performances in tea yield prediction.
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We appraised accuracy of model by calculating the following metrics: the coefficient
of determination (R2), the root-mean-square error (RMSE), mean Squared Error (MSE),
and percentage errors of tea yield in each model (PETY):

MSE =
∑n

i=1(xi − yi)
2

n
(8)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(9)

PETY =
|xi − yi|
|yi|

∗ 100 (10)

where n (i = 1, 2, . . . , n) is the number of samples in growing season of tea used for SVM,
RF, TLRM model, xi is the observed tea yield, yi is the predict tea yield.

3. Results
3.1. Temporal Variation in Normalized Difference Vegetation Index (NDVI) of Tea

The spatial distribution of the tea NDVI in the growing season in the Tanuyen from
2009 to 2018 showed not much regional difference with over 0.64 mean NDVI value.
The maximum NDVI value was 0.77 which was a garden of central sub-area (CSA). The
multiyear average NDVI in the growing season was 0.72, of which the area was 0.64 to 0.68
covering 7.6% of the total tea area, mainly including CSA and Phuc Khoa sub-area (PKSA).
The area with NDVI values between 0.69 and 0.72 covered 41.8% of the area, including
three sub-areas, of which is mainly CSA. The areas where NDVI was >0.72 covered over
50% of the total tea area and was mainly distributed in CSA.

To monitor the variation trend of tea NDVI from 2009 to 2018, we calculated the NDVI
slope value using Equation (1). The NDVI change trend is displayed in Figure 2b. We
divided the NDVI slope into 5 grades, as shown in Table 1. According to the statistics,
there can be seen an increasing trend of tea NDVI from Figure 2b and Table 1. There
are no obvious regional differences in tea NDVI value, but a difference of NDVI value
at some small garden of the in a sub-area. According to the statistic, from 2009 to 2018
(Table 1), the area of NDVI with an increasing trend cover 40.53% of the total tea area
and mainly distributed in CSA. The fast-increasing area cover 11.03% of the total area
and slow-increasing area cover 29.5%. The trend of NDVI remained basically unchanged
account covered 32.6% total area, appears in three sub-areas. The decrease trend of tea
NDVI mainly distributed in PKSA. The trend statistic of tea NDVI was shown that from
2009 to 2018 the mean grow rate of 0.0075/year, in which a slope of tea NDVI < 0 to 0.001
cover 88.9% total tea area, a slope from 0.001–0.002 cover 11.1%% total tea area.

Table 1. The trend of NDVI from 2009 to 2018.

Dynamic Trend θslope Area (%)

Fast decrease −0.001–0.0001 6.27

Slow decrease 0.0001–0.0004 20.6

Basically unchanged 0.0004–0.0008 32.6

Slow increase 0.0008–0.001 29.5

Fast increase 0.001–0.002 11.3
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Figure 2. Spatial distribution of NDVI mean value (a); and NDVI trend (b) with (A) represent Trung Dong and Than Thuoc
sub-area (TDTTSA), (B) represent the central sub-area (CSA), (C) represent Phuc Khoa sub-area (PKSA).

In Figure 3a, we can see the change of tea NDVI following temporal in Tanuyen with
increased slowly and unstable trend. The NDVI change was represent in the direction:
decrease NDVI value from 2009 to 2010, and significant increase from 0.69 (2010) to 0.73
(2018). In this period, the maximum NDVI value in growing season is in 2018. From
the Mann-Kendall test in Figure 3b we can see the NDVI of tea represent an increasing
trend with positive z-score value and S > 0. However, according to the results of the
Mann-Kendall test, the average month NDVI in the growing season only in 2011, 2012 and
2015 are statistically significant (p < 0.05). The NDVI showed a highest rising trend in 2012.

Atmosphere 2021, 12, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 3. (a) Annual variations in growing-season NDVI (Normalized Difference Vegetation Index), (b) shows the Mann-
Kendall results for trend analysis (α = 0.05, Z1 = −1.96, Z2 = 1.96). 

The increasing trends in NDVI was obvious in many regions in the world, but the 
NDVI changes of tea in Tanuyen were relatively small in spatio-temporal. This increasing 
trend was effected by climate factor or not we will have discussed in the subsequent 
analysis. The change of tea NDVI in within growing season and in the inter growing 
season were displayed in Figure 4. In Figure 4a, the mean NDVI of tea in growing season 
is higher 0.7 with the highest value of 0.73 in 2018 and the lowest value of 0.69 in 2010. 
This change has related with widen the building area in 2010 and the result of planning 
expand acreage tea of two periods: 2011–2015 and 2015–2020. In the Figure 4b, we can see 
that the mean NDVI in inter growing season increased gradually from about 0.68 (April) 
to about 0.78 (August) and decreased gradually from August to October. The mean NDVI 
is highest in July and August and lowest in April. 

  

(a) (b) 

Figure 4. The mean of tea NDVI in growing season (a) and in the inter growing season (b). 

3.2. Relationship between NDVI and Climate Variables 
3.2.1. Relationship between NDVI and Climate Variables in Current Month 

The NDVI trends due to climate changes was determined different in the growth 
phase of vegetation types [35]. Therefore, we carried out Pearson correlation coefficients 
(R) for tea NDVI and the climatic variables to show the change of R between them at 
multiple time scales. From 2009 to 2018, the coefficient of determination (ܴଶ) between 
NDVI and climatic variables in growing season of study area is 0.63 (p < 0.0001). To 
understand the impact level of each variable, we analyzed the correlation of tea NDVI and 
the variables in growth season (April to October) from 2009 to 2018. In general, the 
correlation of NDVI and variables is relatively high and significant (except Tmax). In 
Table 2, the R of NDVI and the variables are 0.68 (p < 0.005) with Tmean, 0.72 (p < 
0.0001) with Tmin, 0.01 (p > 0.005) with Tmax, 0.62 (p < 0.005) with Pre and 0.4 (p < 
0.005) with SL. 

y = 0.0028x - 4.8708
R² = 0.5663

0.65

0.67

0.69

0.71

0.73

0.75

2009 2011 2013 2015 2017

ND
V

Year
-2.50

-1.50

-0.50

0.50

1.50

2.50

2009 2011 2013 2015 2017

Z Z1 Z2

Z-
sc

or
e

Year

0.5

0.7

0.9

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

ND
VI

Year
0.6

0.7

0.8

April May June July August September October

ND
VI

Month

Figure 3. (a) Annual variations in growing-season NDVI (Normalized Difference Vegetation Index), (b) shows the Mann-
Kendall results for trend analysis (α = 0.05, Z1 = −1.96, Z2 = 1.96).
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The increasing trends in NDVI was obvious in many regions in the world, but the
NDVI changes of tea in Tanuyen were relatively small in spatio-temporal. This increasing
trend was effected by climate factor or not we will have discussed in the subsequent
analysis. The change of tea NDVI in within growing season and in the inter growing season
were displayed in Figure 4. In Figure 4a, the mean NDVI of tea in growing season is higher
0.7 with the highest value of 0.73 in 2018 and the lowest value of 0.69 in 2010. This change
has related with widen the building area in 2010 and the result of planning expand acreage
tea of two periods: 2011–2015 and 2015–2020. In the Figure 4b, we can see that the mean
NDVI in inter growing season increased gradually from about 0.68 (April) to about 0.78
(August) and decreased gradually from August to October. The mean NDVI is highest in
July and August and lowest in April.
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Figure 4. The mean of tea NDVI in growing season (a) and in the inter growing season (b).

3.2. Relationship between NDVI and Climate Variables
3.2.1. Relationship between NDVI and Climate Variables in Current Month

The NDVI trends due to climate changes was determined different in the growth
phase of vegetation types [35]. Therefore, we carried out Pearson correlation coefficients (R)
for tea NDVI and the climatic variables to show the change of R between them at multiple
time scales. From 2009 to 2018, the coefficient of determination (R2) between NDVI and
climatic variables in growing season of study area is 0.63 (p < 0.0001). To understand the
impact level of each variable, we analyzed the correlation of tea NDVI and the variables in
growth season (April to October) from 2009 to 2018. In general, the correlation of NDVI
and variables is relatively high and significant (except Tmax). In Table 2, the R of NDVI and
the variables are 0.68 (p < 0.005) with Tmean, 0.72 (p < 0.0001) with Tmin, 0.01 (p > 0.005)
with Tmax, 0.62 (p < 0.005) with Pre and 0.4 (p < 0.005) with SL.

Table 2. The relationship between NDVI and climactic factor in current month and previous month.

Climatic Factor
The Value of R between NDVI and Climatic Factor

Current Month Previous Month

Tmean 0.68 0.73
Tmin 0.72 0.65
Tmax 0.01 0.4

Precipitation 0.62 0.67
Solar radiation 0.4 0.12

In the inter-growing season the value R between tea NDVI and climate factors are not
high but there is positive correlation (Table 3). In terms of temperature, the Tmean had a
significant impact on tea in June, August, September, October but this value is low in April
and July. In Tmin the value R is significant in May, July, August and highest in September
and October. With Tmax, there is a highest significant positive correlation in June and July.
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In terms of precipitation, the precipitation is sensitive on tea in June and October. In solar
radiation, the value had significant impact on tea in July and October.

Table 3. The value R between tea NDVI and climatic factor in inter growing season from 2009 to 2018.

Month April May June July August September October

Tmean 0.05 0.27 0.38 0.03 0.35 0.43 0.31
Tmin 0.05 0.38 0.002 0.25 0.34 0.47 0.43
Tmax 0.09 0.12 0.3 0.38 0.15 0.23 0.28

Precipitation 0.1 0.012 0.5 0.02 0.13 0.11 0.43
Solar 0.12 0.17 0.08 0.57 0.07 0.08 0.5

We analyzed the modification in the R value between NDVI and climate variables in
within growing season and in the inter growing season (Figure 5). In the two method, with
the change of time series, the value of R has increased trends and fluctuated slightly in
all factor. In multi time scales (Figure 5a), the value of R between tea NDVI and Tmin is
highest (R = 0.8), and the fluctuation is relatively small. This value is decreases in order:
Tmean > Pre > Solar > Tmax, in which a smallest the fluctuation on Tmax and a highest
the fluctuation on SL. In the inter-growing season (Figure 5b), the impact level of the
climatic variables on NDVI is smaller than in growing season. NDVI had a higher value of
R with Tmin (0.31) and a largest fluctuation. The significant correlation between NDVI and
other variables decreased in order: Tmean > SL > Precipitation and smallest in Tmax.
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Figure 5. The change in R between NDVI and climatic variable in within-growing season (a) and in the inter-growing
season (b) period 2009–2018.

3.2.2. Relationship between NDVI and Climate Variables in Lag Time

We calculated the R value between NDVI and climate factor for the current month
and previous month (Table 2), in which NDVI was positively correlated with all climatic
variables of current month and previous month. With a 1-month time lag, the response
between the NDVI and Tmean is an extremely significant. Compared with Tmax, Tmin
had a higher impact on NDVI tea in current month and lagged month. The precipitation
plays an important role in impact on NDVI tea in the current month and the lag month,
but the R value of lag month is higher. NDVI was positively correlated with SL in current
month and the lag month.

The NDVI response to each variable in the current month and lag month are different,
and the higher R value is considered as the lag month. In Figure 6, the response of tea NDVI
to almost climatic factors with general month lag time (except Tmin). In terms of mean
temperature, its impact on NDVI is more sensitive in the current month than in a 1-month
time lag (except September). For Tmin, the response of tea NDVI is mainly occurred in
current month from May to October and the lag response occur in April. NDVI was mainly
affected by the Tmax and SL of the previous month in all months of the growing season
except August. NDVI was sensitive to the precipitation of the one-month time lag in April
September, and NDVI was significantly affected by the precipitation of the current month
in October.
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3.3. The Prediction of Tea Yield in Growing Season by SVM and RF

Based on the trained samples of SVM, RF, the tea yield in growing season was pre-
dicted. The scatter diagram of observed and predicted yield of each models in growing
periods are shown in Figures 7 and 8 in which abscissa is the forecasted yield and ordinate
is the observed yield. Figure 7 shows the correlation coefficient (R2) between observed and
predicted tea yield is 0.61 in SVM model. We calculated the increased accuracy after add
one variable in prediction model. Follow Figure 7, the highest accuracy when squared all
variables (R2 = 0.7), in the order is the square all variable > 6 variable input and squared
Tmean > 6 variable input and squared NDVI > 6 variable input and squared Tmin or
Precipitation > 6 variable input and squared Tmax > 6 variable input or 6 variable input
and squared SL.
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to: Tmean, Tmin, Tmax, Precipitation, Solar radiation, NDVI and all variables.

The scatter diagrams of observed and predicted yields of RF model are shown in
Figure 8 with R2 > 0.67. To improve accuracy of model, we take the square each of
independent variable in turn in input data to find the best performances in yield prediction.
Observed in Figure 8, the predict model by RF will be higher when any variable was
squared. The correlation coefficient (R2) between observed and predicted tea yield are
shown in the order of 6 variable input < 6 variable input and squared Precipitation or
NDVI < 6 variable input and squared Tmean or Tmin or Tmax < the square all variable. In
tea yield prediction, RF model accuracy was assess higher than SVM model.

We plotted the MSE, RMSE and PETY in growing period with 6 variables input and
squared one of the variable (Figure 9) to examined impacts of different variable on yield
prediction with the same algorithms or evaluation indicators. MSE, RMSE and PETY were
displayed highest accuracy by squared all variables with the errors smallest. In addition,
MSE, RMSE and PETY are smaller errors than other variables while squared Tmean. The
variable importance in yield prediction is ordered as: Tmean > NDVI > Tmin > Tmax > Pre
and SL.

We investigated the prediction errors according to machine learning variation by
6 variables input and squared one of another variable. The result displayed that the
prediction errors is around 13.1–15.9%. The mean accuracy increased by which SVM or
RF model’s prediction would be increase if one variable is included. The highest accuracy
in SVM with 6 variables and squared all the variables (13.1%); RF shows the best perform
with 6 variables and squared Tmax (15.1%).
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Figure 9. The mean square error, root mean square error and percentage error of the perform for tea yield prediction in
growing season by including one variable input.

4. Discussion

With extreme weather conditions in Tan uyen, low winter temperatures and insuffi-
cient water for irrigation in the dry season, tea plant exist as the optimal choice for economic
development in Tanuyen district. According to tea statistics of countries around the world,
tea grows optimally at a temperature of 18–25 ◦C and can grow without serious risks up to
35 ◦C [47]. Air temperatures is below 13 ◦C and over 30 ◦C may reduce shoot growth [48].
In Tanuyen, the Tmean is around 22–26 ◦C which consider as suitable threshold for growth
of tea. The Tmin is below 18 ◦C in January and December when NDVI of tea achieved the
smallest value. The rainy season from May to September is also a time of relatively high
temperatures. This is the best time to grow and develop for tea.

The responses of vegetation on climate factor in the spatio-temporal indicate a differ-
ence in their behaviors by climate variability. At the local scale, this responses of tea on
climatic change mainly occurs in the temporal scales with a current month and a typical lag
time of one month. In our study, a lag time between NDVI and climate factors as Tmean,
Tmax, precipitation and SL were possible during the period growing season. With Tmin,
the R value of lag time is less than in the growing season of almost current months.

The relationship between tea NDVI and climatic factor and the variation of its may
not represent for all vegetation in Tanuyen. On the other hand, tea NDVI may affect from
human activities which may create some uncertainties of NDVI values in certain time. The
changing tea planting areas such as expanding acreage, demolishing old trees or replacing
building ground may cause heterogeneous distribution in tea NDVI. In small local scale,
we don’t investigate the change of NDVI and the relationship with climatic factor in pixel.

The Pearson correlation coefficient which was based on the covariance method, is
known as a good method for measuring variables association. However, the correlation
coefficients obtained within growing season by Pearson analysis method which doesn’t
reflect the impact on vegetation by water and heat condition [42]. So this analysis should
be used with caution and combine with other analysis method in the future. In the
inter growing season, Pearson correlation coefficient was considered more realistic in the
response of NDVI to climate change when it may reduce the correlation synchronization of
many climatic factor.
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The conjunction of climatic variable with machine learning approaches were used to
predict crop yield. The yield would be change from season to season and from location
to location [49]. Han et al. [29] pointed out that the crop yield varied by different region
and this spatial scales is large. In our study, the acreage plant of tea distributes in local
scope and the change of climate, soil and management conditions is small so the prediction
performance of regional differences doesn’t consider. The accuracy prediction will improve
with the increase of inputting one variable. We recognized the role importance is higher of
Tmin than of Tmax which was verify in previous studies [28,50]. Othieno et al. [51] showed
that low air temperature and water deficits in the dry season limited the overall yield due
to relation of shoot extension rates. The growth of tea bush is sensitive to climatic factors,
the tea yield would decrease in warmer temperatures and negative effect if temperature
above 26.6 ◦C [52]. In our study, we confirmed that the impact of Tmean and Tmin on tea
yield are stronger than other variables when squared each input variable.

In statistical model, there are certain limitation in explaining the result of the black
box models. The data set is need enough large to achieve acceptable predictions in learning
models. The number of samples in this research is enlarged, which could be a result of
model [25]. On the other hand, the source data such as remote sensing resolution, mete-
orological data, human activities can decrease the ability prediction of machine learning.
We hope that the uncertainties of model will be improve as the data was collect full and
increase the input variables.

5. Conclusions

NDVI variation of tea in the growing season and inter growing season were analyzed
from 2009 to 2018 in Tanuyen, Laichau, Vietnam. However, the spatial variation of tea
NDVI is relatively small. We compared the correlation coefficient between NDVI and
climate variable in current month, finding that correlation between NDVI and Tmean,
between NDVI and Tmin were much stronger than between NDVI and other climate
variables. The response of the NDVI to climate variable in lag time show that almost
variables response one-month lag time with NDVI in except Tmin.

RF model may estimate tea yield accurately in growing season that can be used for
estimating tea yield before the harvesting dates in Tanuyen in the future. In addition,
Tmean is detected as the most important predictor used in our study for predicting tea
yield. NDVI time series and climatic data are a good method to study NDVI trend and
forecast yield to the other crops in the world.
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