Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study
Abstract
:1. Introduction
2. Data Availability
2.1. Observational Data and Study Site
2.2. Satellite and GPCC Data
2.3. Hadley Sea Surface Temperature Data
2.4. Reanalysis Data Products
3. Data Evaluation: Are Reanalysis Data Suitable to Investigate ISM Change?
3.1. Comparing Seasonal Cycle
3.2. Assessment of Spatial Characteristics
4. The Regional and Local Impacts of the 2015/2016 ENSO and IOD Events on the ISM—A Bhutan Case Study
4.1. Impact on Monsoon Precipitation
4.2. Impact on Vertically Integrated Moisture Flux Divergence and Wind at 850 hPa
4.3. Temperature and Pressure Gradients during the 2015/16 Monsoon Peaks
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z.; Kiefer, T.; Liu, Z. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev. 2017, 174, 84–121. [Google Scholar] [CrossRef]
- Singh, D.; Ghosh, S.; Roxy, M.K.; McDermid, S. Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. WIREs Clim. Chang. 2019, 10, e571. [Google Scholar] [CrossRef]
- Goswami, B.; Chakravorty, S. Dynamics of the Indian Summer Monsoon Climate; Oxford University Press: Oxford, UK, 2017; Volume 1. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Saji, N.H.; Yamagata, T. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim. 2004, 17, 3141–3155. [Google Scholar] [CrossRef]
- Kumar, K.K.; Rajagopalan, B.; Cane, M.A. On the Weakening Relationship Between the Indian Monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Anchukaitis, K.J.; Buckley, B.M.; D’Arrigo, R.D.; Jacoby, G.C.; Wright, W.E. Asian Monsoon Failure and Megadrought During the Last Millennium. Science 2010, 328, 486–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.; Smoliak, B.V.; Lettenmaier, D.P.; Wallace, J.M. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proc. Natl. Acad. Sci. USA 2012, 109, 7213–7217. [Google Scholar] [CrossRef] [Green Version]
- Lau, G.C.; Wang, G. Interactions between the Asian monsoon and the El Niño Southern Oscillation. In The Asian Monsoon; Springer-Praxis: Chichester, UK, 2006. [Google Scholar]
- Lau, K.M.; Wu, H.T. Assessment of the impacts of the 1997–98 El Niño on the Asian-Australia Monsoon. Geophys. Res. Lett. 1999, 26, 1747–1750. [Google Scholar] [CrossRef]
- Gadgil, S.; Vinayachandran, P.N.; Francis, P.A.; Gadgil, S. Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation: EXTREMES OF INDIAN SUMMER MONSOON RAINFALL. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.K.; Ratnam, J.V. Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD. Sci. Rep. 2018, 8, 123. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Sen Gupta, A.; Li, Y.; Taschetto, A.S.; England, M.H. Multi-decadal modulation of the El Niño–Indian monsoon relationship by Indian Ocean variability. Environ. Res. Lett. 2011, 6, 034006. [Google Scholar] [CrossRef]
- Stockdale, T.; Balmaseda, M.; Ferranti, L. The 2015/2016 El Niño and beyond. ECMWF 2017, 151. [Google Scholar] [CrossRef]
- Avia, L.Q.; Sofiati, I. Analysis of El Niño and IOD Phenomenon 2015/2016 and Their Impact on Rainfall Variability in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 166, 012034. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.P.; Hendon, H.H. Causes and Predictability of the Negative Indian Ocean Dipole and Its Impact on La Niña during 2016. Sci. Rep. 2017, 7, 12619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, F.; Boyland, M.; Jegillos, S.; Sharma, R.; Shairi, M.; Bonapace, T.; Rafisura, S.; Sarkar, K.; Madhurima, H. Enhancing Resilience to Extreme Climate Events: Lessons from the 2015–2016 El Niño Event in Asia and the Pacific A Multi-Agency Study of Lessons Learnt; Technical Report; UNDP: New York, NY, USA, 2017. [Google Scholar]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread Climate Change in the Himalayas and Associated Changes in Local Ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; D’Agostino, A.L.; Meenawat, H.; Rawiani, A. Expert views of climate change adaptation in least developed Asia. J. Environ. Manag. 2012, 97, 78–88. [Google Scholar] [CrossRef]
- Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; Schneider, C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water 2020, 12, 3271. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, L.; Chen, D.; Xu, J.; Zhang, H. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau: Downscaled Extreme Precipitations Simulation over the Tibet. Int. J. Climatol. 2018, 38, 1285–1297. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Does ERA-5 Outperform Other Reanalysis Products for Hydrologic Applications in India? J. Geophys. Res. Atmos. 2019, 124, 9423–9441. [Google Scholar] [CrossRef]
- Gleixner, S.; Demissie, T.; Diro, G.T. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere 2020, 11, 996. [Google Scholar] [CrossRef]
- IRI. WORLDBATH: ETOPO5 5x5 minute Navy Bathymetry. 2015. Available online: http://iridl.ldeo.columbia.edu/SOURCES/.WORLDBATH/ (accessed on 20 October 2020).
- Dorji, U.; Olesen, J.E.; Bøcher, P.K.; Seidenkrantz, M.S. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover. Mt. Res. Dev. 2016, 36, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, T. Synoptic and Local Analysis of Relationship between Climate and Forest in the Bhutan Himalaya (Preliminary Report); Technical Report; Research and Development Centre Yusipang, Department of Forest and Park Services, Ministry of Agriculture and Forest: Bhutan, Thimpu, 2011.
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 day 0.25 degree x 0.25 degree V7. 2016. Type: Dataset. Available online: https://doi.org/10.5067/TRMM/TMPA/DAY/7 (accessed on 10 November 2020).
- NASA. GES DISC. 2020. Available online: https://disc.gsfc.nasa.gov (accessed on 15 September 2020).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Tan, J. GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06. 2019. Type: Dataset. Available online: https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (accessed on 15 September 2020).
- Kukulies, J.; Chen, D.; Wang, M. Temporal and spatial variations of convection, clouds and precipitation over the Tibetan Plateau from recent satellite observations. Part II: Precipitation climatology derived from global precipitation measurement mission. Int. J. Climatol. 2020, 40, 4858–4875. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. IMERG: Integrated Multi-satellitE Retrievals for GPM|NASA Global Precipitation Measurement Mission. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary (accessed on 15 September 2020).
- Schneider, U.; Becker, A.; Finger, P.; Rustemeier, E.; Ziese, M. GPCC Full Data Monthly Version 2020 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data: Gridded Monthly Totals. 2020. Type: Dataset. Available online: https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025 (accessed on 5 February 2021).
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147. [Google Scholar] [CrossRef]
- Priestley, M.D.K.; Ackerley, D.; Catto, J.L.; Hodges, K.I.; McDonald, R.E.; Lee, R.W. An Overview of the Extratropical Storm Tracks in CMIP6 Historical Simulations. J. Clim. 2020, 33, 6315–6343. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. 2019. Type: Dataset. Available online: https://doi.org/10.24381/CDS.F17050D7 (accessed on 11 January 2020).
- Jiang, Q.; Li, W.; Wen, J.; Qiu, C.; Sun, W.; Fang, Q.; Xu, M.; Tan, J. Accuracy Evaluation of Two High-Resolution Satellite-Based Rainfall Products: TRMM 3B42V7 and CMORPH in Shanghai. Water 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Mehran, A.; AghaKouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Krishna, U.V.M.; Das, S.K.; Deshpande, S.M.; Doiphode, S.L.; Pandithurai, G. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent. Earth Space Sci. 2017, 4, 540–553. [Google Scholar] [CrossRef]
- Singh, T.; Saha, U.; Prasad, V.; Gupta, M.D. Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for Indian region. Atmos. Res. 2021, 259, 105679. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Pan, Z.; Qin, J.; Chen, D.; Lin, C.; Chen, Y.; Tang, W.; Han, M.; Lu, N.; et al. Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau. J. Clim. 2017, 30, 5699–5713. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Chen, D. Evaluation of WRF Mesoscale Climate Simulations over the Tibetan Plateau during 1979–2011. J. Clim. 2015, 28, 2823–2841. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network: Validation of GPM and TRMM Over TP. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Chokngamwong, R.; Chiu, L.S. Thailand Daily Rainfall and Comparison with TRMM Products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res. 2017, 187, 95–105. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Li, J.; Li, Q.; Chen, D.; Liu, W.; Yin, G. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol. 2018, 38, 3475–3493. [Google Scholar] [CrossRef]
- Sungmin, O.; Kirstetter, P.E. Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Sørland, S.L.; Sorteberg, A.; Liu, C.; Rasmussen, R. Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase. J. Geophys. Res. Atmos. 2016, 121, 6258–6272. [Google Scholar] [CrossRef] [Green Version]
- Gadgil, S. The Indian Monsoon 4. Links to Cloud Systems over the Tropical Oceans. Resonance 2008, 13, 218–235. [Google Scholar] [CrossRef]
- Rupic, M.; Wetzell, L.; Marra, J.J.; Balwani, S. 2014–2016 El Niño Assessment Report An Overview of the Impacts of the 2014–16 El Niño on the U.S.—Affiliated Pacific Islands (USAPI); Technical Report; National Oceanic and Atmospheric Administration, NOAA National Centers for Environmental Information (NCEI): Honolulu, HI, USA, 2018.
- Xue, Y.; Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. China Earth Sci. 2017, 60, 1572–1588. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, G.; Zhao, X.; Feng, L.; Han, G.; Wu, Y.; Yu, W. Why Was the Indian Ocean Dipole Weak in the Context of the Extreme El Niño in 2015? J. Clim. 2017, 30, 4755–4761. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Pal, J. The influence of El Niño on the Indian summer monsoon rainfall anomaly: A diagnostic study of the 1982/83 and 1997/98 events. Meteorol. Atmos. Phys. 2014, 124, 183–194. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th Climate Diagnostics Workshop; NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey; CIMMS and the School of Meteorology, University of Oklahoma: Norman, OK, USA, 1993; pp. 52–57. [Google Scholar]
- Wolter, K.; Timlin, M.S. Measuring the strength of ENSO events: How does 1997/98 rank? Weather 1998, 53, 315–324. [Google Scholar] [CrossRef]
- Slingo, J.M.; Annamalai, H. 1997: The El Niño of the Century and the Response of the Indian Summer Monsoon. Mon. Weather Rev. 2000, 128, 1778–1797. [Google Scholar] [CrossRef]
- Cherchi, A.; Navarra, A. Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Clim. Dyn. 2013, 41, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.N.; Jin, D.; Thilakan, V. A model for super El Niños. Nat. Commun. 2018, 9, 2528. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Bedi, H.S.; Subramaniam, M. The Summer Monsoon of 1987. J. Clim. 1989, 2, 321–340. [Google Scholar] [CrossRef] [Green Version]
- Sreelekha, P.N.; Babu, C.A. Is the negative IOD during 2016 the reason for monsoon failure over southwest peninsular India? Meteorol. Atmos. Phys. 2019, 131, 413–420. [Google Scholar] [CrossRef]
- Rajeevan, M. Winter surface pressure anomalies over Eurasia and Indian summer monsoon. Geophys. Res. Lett. 2002, 29, 94-1–94-4. [Google Scholar] [CrossRef]
- Blanford, H.F., II. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc. R. Soc. Lond. 1884, 37, 3–22. [Google Scholar] [CrossRef]
- Bamzai, A.S.; Shukla, J. Relation between Eurasian Snow Cover, Snow Depth, and the Indian Summer Monsoon: An Observational Study. J. Clim. 1999, 12, 3117–3132. [Google Scholar] [CrossRef]
- Goswami, B.N.; Madhusoodanan, M.S.; Neema, C.P.; Sengupta, D. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett. 2006, 33, L02706. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Rajeevan, M.; Kulkarni, R. Teleconnection of OLR and SST anomalies over Atlantic Ocean with Indian summer monsoon: OLR and SST Anomalies ober Atlantic Ocean. Geophys. Res. Lett. 2002, 29, 125-1–125-4. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Goswami, B.N. Indian Monsoon–ENSO Relationship on Interdecadal Timescale. J. Clim. 2000, 13, 579–595. [Google Scholar] [CrossRef]
- Roy, S.; Goodrich, G.; Balling, R. Influence of El Niño/southern oscillation, Pacific decadal oscillation, and local sea-surface temperature anomalies on peak season monsoon precipitation in India. Clim. Res. 2003, 25, 171–178. [Google Scholar] [CrossRef]
- Roy, S.S. The Impacts of Enso, PDO, and Local SSTS on Winter Precipitation in India. Phys. Geogr. 2006, 27, 464–474. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Krishnamurthy, V. Influence of PDO on South Asian Summer Monsoon and Monsoon-ENSO Relation; Technical Report; UCAR/NOAA Geophysical Fluid Dynamics Laboratory: Princeton, NJ, USA, 2013. [Google Scholar]
- Kumar, K.K.; Rajagopalan, B.; Hoerling, M.; Bates, G.; Cane, M. Unraveling the Mystery of Indian Monsoon Failure During El Nino. Science 2006, 314, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Thiede, R.C.; Strecker, M.R. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Planet. Sci. Lett. 2005, 231, 131–146. [Google Scholar] [CrossRef]
- Hoy, A.; Katel, O.; Thapa, P.; Dendup, N.; Matschullat, J. Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: An implementation strategy. Reg. Environ. Chang. 2016, 16, 1401–1415. [Google Scholar] [CrossRef]
- Bisht, M. Bhutan–India Power Cooperation: Benefits Beyond Bilateralism. Strateg. Anal. 2012, 36, 787–803. [Google Scholar] [CrossRef]
- Gupta, A.K.; Dutt, S.; Cheng, H.; Singh, R.K. Abrupt changes in Indian summer monsoon strength during the last ~900 years and their linkages to socio-economic conditions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 536, 109347. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Liu, J. Understanding Future Change of Global Monsoons Projected by CMIP6 Models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Moon, S.; Ha, K.J. Future changes in monsoon duration and precipitation using CMIP6. NPJ Clim. Atmos. Sci. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Collins, M.; An, S.I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, K.; Axelsson, J.; Wangdi, N.; Zhang, Q. Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study. Atmosphere 2021, 12, 954. https://doi.org/10.3390/atmos12080954
Power K, Axelsson J, Wangdi N, Zhang Q. Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study. Atmosphere. 2021; 12(8):954. https://doi.org/10.3390/atmos12080954
Chicago/Turabian StylePower, Katherine, Josefine Axelsson, Norbu Wangdi, and Qiong Zhang. 2021. "Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study" Atmosphere 12, no. 8: 954. https://doi.org/10.3390/atmos12080954
APA StylePower, K., Axelsson, J., Wangdi, N., & Zhang, Q. (2021). Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study. Atmosphere, 12(8), 954. https://doi.org/10.3390/atmos12080954