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Abstract: In this study, a Land Data Assimilation System (LDAS) is applied over the Carpathian
Basin at the Hungarian Meteorological Service to monitor the above-ground biomass, surface fluxes
(carbon and water), and the associated root-zone soil moisture at the regional scale (spatial resolution
of 8 km × 8 km) in quasi-real-time. In this system the SURFEX model is used, which applies the
vegetation growth version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-
gs) photosynthesis scheme to describe the evolution of vegetation. SURFEX is forced using the
outputs of the ALADIN numerical weather prediction model run operationally at the Hungarian
Meteorological Service. First, SURFEX is run in an open-loop (i.e., no assimilation) mode for the
period 2008–2015. Secondly, the Extended Kalman Filter (EKF) method is used to assimilate Leaf
Area Index (LAI) Spot/Vegetation (until May 2014) and PROBA-V (from June 2014) and Soil Water
Index (SWI) ASCAT/Metop satellite measurements. The benefit of LDAS is proved over the whole
country and to a selected site in West Hungary (Hegyhátsál). It is demonstrated that the EKF can
provide useful information both in wet and dry seasons as well. It is shown that the data assimilation
is efficient to describe the inter-annual variability of biomass and soil moisture values. The vegetation
development and the water and carbon fluxes vary from season to season and LDAS is a capable tool
to monitor the variability of these parameters.

Keywords: land surface modeling; data assimilation; satellite data; LAI; SWI

1. Introduction

The accurate description of surface processes is important in several temporal and
spatial scales from the weather forecasts to climate change projections as they provide
lower boundary conditions for the atmospheric models. Sub-grid scale interactions be-
tween the atmosphere and the land surface, as well as soil processes, are described with
parametrization in numerical weather prediction (NWP) and climate models. Besides the
increasingly sophisticated schemes, in state-of-the-art NWP models, the surface processes
of the vegetation, carbon and water cycles are often represented in land surface models
(LSM) coupled with the atmospheric model component. Using the atmospheric forcings,
LSMs describe the biophysical conditions of the soil, e.g., soil moisture and temperature
and the biomass consistently with ecosystem dynamics [1].

LSM forecasts can be improved by involving observations using data assimilation
(DA) techniques in which observations are combined with the short-term forecasts in a
statistically optimal way. Several DA methods have been developed to estimate the soil
parameters. In the early years, when measurements for soil parameters were available
only sporadically and with low spatial coverage, the employed techniques were based
on atmospheric or screen level analysis resulting from atmospheric data assimilation. For
instance, in the lack of screen level analysis in the 90 s, a simple nudging approach was
applied at ECMWF to correct the soil moisture using specific humidity analysis at the
lowest model level [2]. Later, optimal interpolation (OI) was widely implemented, taking
the advantage that the soil moisture analysis relies on the link between the screen-level
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parameters and the soil moisture [3,4]. An extended Kalman Filter (EKF) allows assimila-
tion of both conventional (screen-level) and non-conventional (satellite) observations to
provide surface analysis. Furthermore, to exploit the advantage of the satellite data, EKF,
2D-Var [5], and Ensemble Kalman Filter [6] methods were investigated to generate soil
moisture analysis.

Since few in-situ measurements are available and they are not representative, it is
important to know how to assimilate satellite data. Several studies have discussed the
possibility of the assimilation of remote sensing observations into LSMs [7–13] and in NWP
models [14–17]. Combining Earth observations (EOs) and LSMs through land data assimi-
lation systems (LDAS) can improve the initial land surface conditions, this can benefit the
weather forecasts, including temperature and precipitation predictions [18–20]. Various
articles have assessed different versions of EKF to assimilate either satellite measurements
for soil moisture [10–12], LAI [13], or both [1–7], in LSMs; [11] demonstrated useful incre-
ments generated from AMSR-E (Advanced Microwave Scanning Radiometer) soil moisture
remote sense observations in the total soil layer. Besides, EKF and the simplified version
of EKF were compared, in which the background errors were kept constant. Despite the
fact that they produced similar soil analyses, EKF was recommended for future work. It
was also presented that it is necessary to remove the seasonal bias between the satellite
observation and the model soil moisture by using a Cumulative Distribution Function
(CDF) matching technique.

The SURFace EXternalisée (SURFEX) LSM model applies Interaction between Soil,
Biosphere, and Atmosphere (ISBA), a scheme which simulates these processes [21]. It is
an externalised surface model capable of being coupled to any atmospheric numerical
weather prediction (NWP) model.

The benefit of joint assimilation of SSM and LAI by using the multi-patch, multi-layer
diffusion version of SURFEX ISBA model (LDAS-Monde), was pointed out in [9,22]. The
evolution of the above-ground biomass changes in a lagged response to the modified
soil moisture conditions. The model sensitivity to the observed SSM decreases from the
top to the deep layers and there was almost no impact from 60 cm downwards, and the
assimilation is more efficient in summer and autumn than in winter and spring. It was
shown that the assimilation worked effectively, but the impact of the assimilation on
the vegetation phenology and the water and carbon fluxes varied from season to season.
Besides, the global LDAS-Monde model can detect, monitor, and forecast extreme weather,
such as drought, or heat-wave events, which were performed by computing anomalies.

A wide range of satellite-based biophysical products are provided by the Coperni-
cus Land Service, which had been built in the framework of the FP7 Geoland2 project
(http://www.gmes-geoland.info, accessed on 21 July 2021). The developments were
continued in the ImagineS (Implementation of Multi-scale AGricultural INdicators Ex-
ploiting Sentinels) project to support the operations of the global component of the Coper-
nicus Land service, preparing for the use of the Sentinel data in an operational context
(http://fp7-imagines.eu/, accessed on 21 July 2021). Both projects aimed to organise a
qualified production network, to set up user-driven biophysical products describing the
vegetation and the energy and water budgets. Within the framework of these projects,
several studies demonstrated the added values of regional or global LDAS, to monitor
crop/fodder production together with carbon and water fluxes [7,9]. The aim of the Hun-
garian Meteorological Service in both projects was to adopt, develop and validate the
regional LDAS and quasi-real-time modeling of biomass, soil moisture, natural carbon
dioxide, and water vapor fluxes for the territory of Hungary, using satellite measurements.

Vegetation monitoring is an important task in Hungary. As the inter-annual variability
of the vegetation is quite high in Hungary (considering its dry continental climate), and
since the proportion of irrigated areas is rather small (1–2%, https://data.worldbank.org/
indicator/AG.LND.IRIG.AG.ZS?locations=HU, accessed on 21 July 2021), the drought
exposure of agriculture is very high. In addition, agriculture accounts for a significant
share of the national economy. Therefore, it is important to estimate the evolution of
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the vegetation using numerical methods (e.g., LDAS). The main objective of this study is
to assess the performance of the system established in Geoland2 and ImagineS projects
over the Carpathian Basin, i.e., how SURFEX can provide the above-ground biomass, soil
moisture, water and carbon fluxes, and how LDAS captures the benefits of the assimilation
of the remote sensing observations and improves the biomass as well as the soil moisture
response under different climatic conditions. In this paper, evaluations of the model runs
against satellite data, and in-situ measurements are shown. The paper is structured in the
following way. In Section 2 the SURFEX model and the ISBA-A-gs scheme are introduced,
and then the applied data and assimilation methods are described. The seasonal-based
CDF technique is also explained. In Section 3, the results are presented: the impact of
assimilation and the seasonal cycle of LAI, soil moisture, carbon and water fluxes, the
inter-annual variability of LAI and soil moisture through the drought monitoring. Finally,
the main conclusions and outlooks are summarised in Section 4.

2. Materials and Methods
2.1. SURFEX Model and ISBA-A-gs Scheme

In the SURFEX system, each surface grid point is separated into 4 different tiles: nature,
sea, lake, and town. The model handles each tile independently. In our work, only the
nature tile was treated, and was further divided into 12 patches according to the vegetation
or surface type: bare soil, rock, permanent snow, deciduous tree, coniferous trees, broadleaf
evergreen tree, C3 crops, C4 crops, irrigated crops, grassland, tropical grassland, parks,
and gardens. The model solves the prognostic equations for soil moisture and temperature
and calculates the surface fluxes separately for the different patches. Each patch uses
the same atmospheric forcing (air temperature, humidity, wind speed, downward long-
and shortwave radiation, pressure, precipitation), but the parameter settings are different
and independent of each other. The resulting surface fluxes (momentum, sensible- and
latent heat) are averaged according to the area fraction of the patches and returned to the
atmosphere. Surface parameters are defined by physiographic databases: GTOPO30 for
orography, ECOCLIMAP-II for surface covers [23], and FAO for soil texture. The dominant
ecosystems in our domain are C3 crops (27%), grassland (21%), deciduous trees (19%), C4
crops (15%), bare soil (8%), and a coniferous tree (6%).

The nature tile is simulated with the ISBA scheme [24,25], which computes the ex-
changes of energy and water between the continuum soil–vegetation–snow and the at-
mosphere above. In ISBA, a 3-layer soil scheme is used (surface 0–1 cm, root zone 0–2 m,
and deep soil 2–3 m). The soil prognostic variables (temperature, water content, and inter-
cepted water content) are calculated using the force–restore method [25]. The force terms
for temperature are radiation, latent and sensible heat flux. The restore term relaxes the
temperature to the mean soil temperature. The force terms for soil water content are precip-
itation and evaporation. The restoring term describes how the system reaches equilibrium.

A more recent version of the model named ISBA-A-gs [26–29] accounts for a simplified
photosynthesis model where the evaporation is controlled by the aperture of the stomata
and this mechanism regulates the balance between the transpiration and the assimilation
of CO2. The model is suitable for describing the evolution of the vegetation because
biomass is a prognostic variable. The growing of vegetation is due to photosynthesis (CO2
assimilation) while its decrease is due to soil moisture stress or senescence. The model
considers the soil moisture stress in photosynthesis [28]. Plants can have two strategies to
the stress: a drought avoiding and a drought tolerant strategy. The growth of the biomass
is proportional to the daily net assimilated CO2, while the decrease is described by an
exponential function.

One of the carbon-fluxes, GPP (Gross Primary Production), is the assimilated CO2 by
the plants. Photosynthesis is first calculated at the leaf scale. The sensitivity of the plant to
the specific humidity of the air is also included in the calculations. The net assimilation is
integrated over the canopy, and GPP is calculated as the sum of the total assimilation and
the dark respiration. NEE is the net CO2 flux of the ecosystem.
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2.2. Data

To improve the accuracy of the initial fields, data assimilation is used. The analyzed
variables are the Leaf Area Index (LAI) and the root-zone soil moisture (WG2). These
variables have a long memory (slow variability in time), and furthermore LAI and soil
moisture influence to a great extent the evolution of photosynthesis, and through this, the
value of carbon fluxes.

2.2.1. Atmospheric Forcing Data

SURFEX was run in offline mode, this means that the surface fluxes have no effect
on the atmospheric fields, but the model needs meteorological data (air temperature,
humidity, wind speed, precipitation, long- and short-wave radiation). This information
was obtained from the ALADIN (Aire Limitée Adaptation dynamique Développement
InterNational) numerical weather prediction model [30], except for the radiation, which is
derived from LandSAF (Land Surface Analysis Satellite Applications Facility) observation.
The reason for this choice is that radiation influences to a great extent the photosynthesis
and the output fields of NWP are not as accurate as of the satellite observations. ALADIN
is a numerical weather prediction model used operationally at HMS to produce daily
weather forecasts [31]. It is a hydrostatic, spectral limited area model which describes the
time evolution of the processes in the atmosphere. The model has its data assimilation
system: incremental 3D-Var and an OI technique for the upper-air and surface analysis
respectively [32]. The model is applied for a domain over Europe with 8 km x 8 km
horizontal resolution and 49 vertical layers. The lateral boundary conditions are provided
by ECMWF/IFS model at 3-hourly time intervals.

The forcing dataset covered the period 2007–2015 and included meteorological infor-
mation at 3-hourly time intervals.

2.2.2. GEOV1 Leaf Area Index

Satellite observations for LAI are derived from SPOT-VGT (until May 2014) and
PROBA-V (from June 2014) satellite data produced by European Copernicus Global Land
Service (https://land.copernicus.eu/global/, accessed on 21 July 2021). The SPOT/VGT
LAI Version 1 (GEOV1) is derived from the SPOT/VGT Top of Atmosphere (TOA) re-
flectances provided by the SPOT/VEGETATION program [33], while the PROBA-V LAI
Version 1 is derived from the SPOT/VGT-like Top of Atmosphere (TOA) PROBA-V re-
flectances generated by the PROBA2VGT module. This module ensures the consistency
of the time series when moving from SPOT/VGT to PROBA-V data. Both products are
provided at a spatial resolution of 1 km and 10 days sampling time in a regular lati-
tude/longitude grid. The accuracy (RMSE) of GEOV1 products compared to the reference
in-situ data set is 0.7 for LAI [34].

The satellite information is extrapolated to the 8 km model grids by averaging. The
filtered satellite GEOV1 and the extrapolated LAI are shown in Figure 1. Figure 1 also
illustrates the studied domain.

2.2.3. ASCAT Soil Water Index

For analyzing the root-zone soil moisture, the surface soil moisture (SSM) needs to be
assimilated, which is derived from an SWI (Soil Water Index) product. SWI is calculated
from MetOp. ASCAT observations using a recursive exponential filter [35]. SWI is obtained
at 0.1 degree spatial resolution with daily sampling [36]. To get an SSM value from SWI
information, the following relation is used: SSM = SWI× (wmax − wmin) + wmin, where wmin
and wmax are the minimal and maximal SSM values that the model can produce at a given
grid point during the 2008–2015 period. Since the soil moisture quantity observed by remote
sensors differs from that defined in models, soil moisture data must be rescaled before
assimilation, to be consistent with the model climatology [37]. The ASCAT data are bias-
corrected concerning the model climatology by using a seasonal-based CDF (Cumulative
Distribution Function) matching technique, as described in [37]. Figure 2 compares the

https://land.copernicus.eu/global/


Atmosphere 2021, 12, 944 5 of 17

open-loop model simulation with the raw ASCAT and the CDF rescaled ASCAT time series
at Hegyhátsál (located in the western part of Hungary). The CDF matching with seasonal
correction improves the temporal correlations between the data and the model.
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2.2.4. FLUXNET Site, Hegyhátsál

FLUXNET is a global network of micrometeorological tower sites that measure the
exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and
the atmosphere using eddy covariance methods [38]. Hegyhátsál is a FLUXNET site [39]
located in the flat region of western Hungary (Figure 3), surrounded by semi-natural grass
fields (hay meadows), agricultural fields (mostly crops), and forest patches. The soil type
of the region is brown forest soil.

For the long-term monitoring of the surface-atmosphere exchange of nitrous oxide in
the region, an eddy covariance system was added to the instrumentation of the Hegyhátsál
tall tower greenhouse gas monitoring station. The eddy covariance system is operated
at 82 m and 3 m height [40–42]. In addition to the daily continuous carbon dioxide and
water vapor exchange measurements, weekly LAI and daily soil moisture (derived from
10–30 cm depth) observations are also conducted.
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2.3. Data Assimilation

Extended Kalman Filter (EKF) assimilation method was performed to analyse LAI
superficial and root-zone water contents [14,43,44]. To determine these values, observations,
and background (model forecast starting from a previous cycle) information need to
be considered. In EKF, dynamically changing coefficients are used, and the analysis
is obtained:

xa = x f + K·
(

yo −H
(

x f

))
(1)

where x is the model state vector (a means analysis, f means forecast), y is the observation
vector, H is the non-linear observation operator, K is the Kalman gain matrix:

K = BHT ( HBHT + R )−1, (2)

The K gain matrix represents the relative importance of the error of the observation
concerning the prior estimate. H is the linearised observation operator, B and R are the
covariance matrices of the background errors and the observation errors, respectively. They
are assumed to be diagonal, and R is time-invariant. In the simplified version of the EKF,
namely SEKF, the background covariance matrix B does not evolve with time. In some
previous studies [7,8,45], diagonal background error covariance was used at the start of
each cycle, but the implicit background covariances are derived from H matrix at the
analysis time.

The analysis equation is solved at each grid point independently, as we assume there
is no correlation between neighbouring grid points. On the other hand, one grid point is
divided into 12 patches, but the observations contain only information from the average
value of the grid. Hence in the model state vector, we have to take into account the values
of all the 12 patches, i.e., it is an Nv*Np matrix, where Nv is the number of assimilated
variables and Np is the number of patches. If EKF is used, patches will depend on each
other and thus B will not be diagonal.

The non-linear observation operator H is a key factor in the data assimilation, which
projects from the model space onto the observation space.

y = H(x), (3)

In SURFEX, each nature tile is divided by 12 patches; therefore, the H operator is
assumed as the average of the corresponding yp values for each patch p with the weighted
fraction of the patches (fp):

y =
12

∑
p=1

fp Hp(xp
)
= H(x) (4)
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H is the Jacobian matrix, and the Jacobian elements are calculated by finite differences,
by perturbing each component xj of the control vector x, resulting from the matrix H for
each integration i:

Hp
ij = fp

∂yp
i

∂xp
j

(5)

The patches are independent, therefore:

∂yp
i

∂xm
j

= 0, i f p 6= m (6)

2.4. Experimental Design

The validation focused on above-ground biomass, LAI, SWI, root zone soil moisture,
and water- and CO2 fluxes. Open-loop (SURFEX run without assimilation) and LDAS
(assimilation with GEOV1 LAI and SWI) runs were compared with each other with the
satellite measurements (GEOV1 LAI and SWI) and with in situ data collected at the
Hegyhátsál site [40] for 2008–2015. The model simulations started in January 2007. The first
year is considered as a spin-up period for the model in order to reach the equilibrium state.

In our experiments, the SURFEX model was run on a regular lat-lon grid with 8 × 8 km
resolution over a domain covering Hungary. The model was running in cycling mode; EKF
assimilated the observations every 24-h and then a 24-h forecast was produced with 6 h
outputs frequency. The following model outputs were evaluated: LAI (Leaf Area Index),
WG2 (root-zone volumetric soil moisture content), GPP (Gross Primary Product), NEE (Net
Ecosystem Exchange), and LE (Latent Heat Flux). Table 1 summarises the experiments
used in this study.

Table 1. Experimental setup of this study.

Name of
Experiment Model Domain Atmospheric

Forcing
Data Assimilation

Method
Assim.

Observations
Control

Variables Time Period Model
Outputs

Open-loop SURFEX,
ISBA-A-gs

Carpathian
Basin

ALADIN,
LandSAF - - - 2008–2015

(2007 spin up)
LAI, WG2,

GPP, NEE, LE

LDAS SURFEX,
ISBA-A-gs

Carpathian
Basin

ALADIN,
LandSAF EKF

ASCAT SWI
SPOT/VGT

and PROBA-V
LAI

WG1, WG2
and LAI

2008–2015
(2007 spin up)

LAI, WG2,
GPP, NEE, LE

3. Results and Discussion
3.1. Examination of Jacobians

In this study, the water contents of two soil layers (superficial (WG1) and root-zones
(WG2)) and LAI were applied as the control vectors in the EKF. The observation terms are
satellite SSM and LAI. The Jacobian matrix is the following:

H =

(
∂SSM
∂LAI

∂SSM
∂WG1

∂SSM
∂WG2

∂LAI
∂LAI

∂LAI
∂WG1

∂LAI
∂WG2

)
(7)

The small perturbations (10−3 or less) used for the calculation of Jacobians lead to a
good approximation of the linear behavior [11]. In this study, the Jacobian perturbations
were assigned 10−4 for soil moisture and 10−3 for LAI. The assimilation window was set
to 24 h [7,11]. In the analysis cycle, the SURFEX was run several times, first to get the
reference forecast, then perturbed runs of the control variables.

The SSM observation error was set to 0.04 m3 m−3 as it was suggested by [8]. Back-
ground errors for SSM and root-zone water content were set to 0.2 m3 m−3 and 0.5 m3 m−3,
respectively. The soil moisture observation and background errors were scaled by the model
soil moisture range, which is the difference between the volumetric field capacity and the
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wilting point (wfc-wwilt) [24]. Observation error for GEOV1 LAI and the background error
for the modeled LAI were assumed to be equal to 0.2 m2 m−2 [8].

The Jacobian elements are important in order to understand the efficiency of the data
assimilation. Figure 4 shows that the dLAI/dWG2 Jacobian term was very variable from
year to year. It had generally positive values, but negative values were also found. Small
positive perturbation of the root-zone water content directly affected the development
and the growing of the plants [7]. Large Jacobians corresponded to the water stress, when
WG2 reached the wilting point, a small increase in the WG2 produced a large increase in
biomass production. Furthermore, largely positive and negative values might indicate the
nonlinearity of the Jacobians. Zero Jacobians occurred during the winter season. Small
negative values were generated because the soil water content exceeded the field capacity
in these cases.
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Figure 4. Jacobian values of dLAI/dWG2 for 2008 and 2009.

3.2. Validation
3.2.1. Seasonal Cycle of LAI, WG2, GPP and LE

Domain averaged LAI, WG2, GPP, and LE time series are shown in Figure 5 The LAI
maximums provided by the satellite did not show such annual variability as simulated
by the models. In 2010 the model produced the highest LAI values (Figure 5, first row),
about 4 m2/m2, while the satellite had a maximum 3–3.5 m2/m2. In 2010 and in 2014 the
models significantly overestimated the LAI values, and the cycle was also longer than for
the satellite observations. During these years, large amounts of precipitation fell on the
domain, resulting in a longer growing season and higher amounts of above-ground biomass.
The vegetation in the model was increased due to heavy rainfall predicted by ALADIN
at the beginning of the growing season. The amount of the forecasted precipitation was
about twice as much as it was in reality (not shown). All extra precipitation was going to
run-off above saturation and did not influence vegetation growth negatively.

The assimilation was able to compensate for differences between the open-loop and
the satellite data in 2008, 2011, and 2014. In 2008, LAI values given by the open-loop were
underestimated compared to the satellite data, due to hot and dry springs. The assimilation
compensated for the lack of biomass, creating larger amounts of GPP and LE flux (Figure 5,
second and fourth row). In 2012, there was a drought during the very warm spring and
summer seasons, as well as a small amount of precipitation, which resulted in a short
cycle by both simulations. GPP, LE was also low, suggesting a lack of vegetation. The
precipitation deficits reached 83% of the long-term average and the soil moisture was also
kept low, between 0.15–0.22 m3/m3 (Figure 5, third row).



Atmosphere 2021, 12, 944 9 of 17
Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 18 
 

 

 

 

 

 

Figure 5. Time series of open-loop (blue), observed (green) and assimilation (orange) LAI (first 

row), GPP (second row), WG2 (third row), and LE (fourth row) averaged over Hungary from 2008 

to 2015. 

The impact of the assimilation over Hungary was examined with respect to the re-

siduals (differences between the simulations and the satellite observations) for LAI for the 

period 2008–2015. Figure 6 shows LAI SAT-ASS and SAT-OP points, calculated as the area 

mean of the entire domain. As expected, LDAS was able to reduce the differences com-

pared to the open-loop simulation. The distribution of the residuals shows seasonal pat-

terns, concentrating at around 0 in winter and increasing for the rest of the year. A large 

overestimation produced by both simulations (the simulated LAI values exceeded the sat-

ellite data) occurred in the wet periods of 2010 and 2014, respectively. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2008/1/1 2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1

SAT OP

ASS*Area mean LAI (2008–2015)
m2/m2

0

0.01

0.02

0.03

0.04

2008/01/01 2009/01/01 2010/01/01 2011/01/01 2012/01/01 2013/01/01 2014/01/01 2015/01/01

Area mean GPP (2008–2015) OP ASS*
gC/m2/day

0.1

0.15

0.2

0.25

0.3

0.35

2008/1/1 2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1

m3/m3

OP ASS*

Area mean WG2 (2008–2015)

0

2

4

6

8

2008/1/1 2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1 2014/1/1 2015/1/1

Area mean LE (2008–2015)
OP ASS*10E6*J/m2

Figure 5. Time series of open-loop (blue), observed (green) and assimilation (orange) LAI (first row),
GPP (second row), WG2 (third row), and LE (fourth row) averaged over Hungary from 2008 to 2015.

LAI is an important parameter for carbon and water fluxes, but soil moisture also has
an important effect on these fluxes. The largest impact on WG2 assimilation was in 2012
and the first half of 2013, resulting in lower GPP and LE values.

Former studies [1,7,8] noted that the beginning of the growing season and the senes-
cence were delayed by the models. In our experiment, the maximum of the growing phase
was delayed by the simulations in 2008, 2009, and 2014, and the senescence was shifted in
some years (2008, 2010, and 2014).
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The impact of the assimilation over Hungary was examined with respect to the
residuals (differences between the simulations and the satellite observations) for LAI for
the period 2008–2015. Figure 6 shows LAI SAT-ASS and SAT-OP points, calculated as the
area mean of the entire domain. As expected, LDAS was able to reduce the differences
compared to the open-loop simulation. The distribution of the residuals shows seasonal
patterns, concentrating at around 0 in winter and increasing for the rest of the year. A
large overestimation produced by both simulations (the simulated LAI values exceeded
the satellite data) occurred in the wet periods of 2010 and 2014, respectively.
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3.2.2. Inter-Annual Variability of LAI and WG2

Drought monitoring is an important area of research nowadays. Our interest was
focused on the short-term responses of the vegetation to agricultural drought. The ability
of the modeling system to simulate inter-annual variability has also been demonstrated
in the Pannonian Basin. Eight years (2008–2015) were simulated using assimilation and
open-loop runs. These eight years were used as a baseline for calculating the monthly
anomalies for the year 2012 when an extremely severe drought affected Hungary. Most of
2012 was characterised by drought. It was also recorded dry for two months, March, and
August, accompanied by severe frosts in February and prolonged heatwaves in summer.
The normalised anomaly was calculated as noted in [46]:

AnoX =
X− 〈X〉

stdev (X)
(8)

where <X> stands for the monthly average and stdev (X) indicates the standard deviation.
X can denote variables such as LAI or root-zone soil moisture (WG2), respectively. AnoX
could be calculated for monthly or 10-day periods for simulations and satellite data. When
the root-zone soil moisture was examined, SWI-10 was used from the satellite, which is
a recursive formulation for the exponential filter of SWI over 10 days and correlates well
with WG2.

Figure 7 shows monthly AnoLAI values calculated from satellite products and the
simulations (open-loop and assimilation). Both experiments were able to reproduce the
extremely low LAI anomalies in the summer of 2012, and the root-zone soil moisture
anomalies (Figure 8) were represented only by the assimilation run in the summer and
autumn of 2012. Higher soil moisture deficits were observed over the Carpathian Basin
between July and September by the satellite and assimilation products. In early summer, a
positive anomaly was observed in the southern and eastern part of the domain for GEOV1
LAI, while the assimilation was unable to maintain this higher LAI anomaly in these
regions. This may be due to a negative anomaly in assimilated WG2 values in spring. The
lack of precipitation reached 6% of the March average. Drought occurred at the beginning
of the growing phase of the vegetation, which reduced crop productivity.
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Figure 9 illustrates the time series of AnoLAI and AnoWG2 in Hegyhátsál calculated
with LDAS and open-loop model runs as well as satellite and in-situ data. Instead of
AnoWG2, AnoSWI-10 was calculated based on the satellite SWI-10 information. AnoWG2
was also determined with the in-situ soil moisture data for Hegyhátsál. The wet years
of 2010 and 2014, as well as the drought in 2012, were very well represented by the
simulations and the observations. In winter 2013, the AnoLAI values showed opposite
behaviors. Satellite values became positive, while the simulated ones were negative over
that period. Higher GEOV1 LAI values were noticed in winter and early spring of 2013
(see the mean values on Figure 5, and this was observed at Hegyhátsál by the satellite
data (not shown)) compared to the seasonal mean; however, the open-loop run was not
able to localise this extreme behavior. At the same time, LDAS was able to compensate by
assimilation of LAI. Higher AnoWG2 in-situ series were detected at the beginning of 2008,
which did not appear in the rest of the data. In the second half of 2010, heavy precipitation
fell in the region, causing high soil moisture anomalies. The simulations were able to
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follow the processes and capture the maximum values; however, the in-situ measurements
showed a wider positive anomaly, while the rest of AnoWG2 data declined rapidly.
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Figure 9. AnoLAI and AnoWG2/AnoSWI-10 time series for 2008–2015 at Hegyhátsál (OL: blue, ASS:
orange, GEOV1 LAI and SWI-10: green, in-situ: yellow).

3.2.3. Verification of LAI and SWI

The consistency over time is essential if long-term datasets are assimilated [1]; there-
fore, anomaly correlation of satellite observation with simulated data was performed for
the period 2008–2015. Standard statistics such as correlation, BIAS and RMSE are calculated
against the satellite information for both simulations. The monthly area-average LAI and
SWI scores are illustrated in Figure 10. Year-to-year correlation ranged within very wide
intervals, especially for open-loop simulation. The open-loop experiment produced a low
correlation for LAI in every springtime repeatedly, especially in May, and these weak
correlations disappeared in the summer or autumn period. In the assimilation, these low
correlations did not appear, the extended Kalman filter was relatively stable and worked
properly between 0.4 and 0.82 (Figure 10, top). Simulated LAI was controlled by soil mois-
ture, which had high BIAS and RMSE at the beginning of the vegetation period (Figure 10,
bottom). Similar to [7], a low correlation was produced by opposite anomalies occurring
for some periods where the LAI anomaly in the model was driven by soil moisture over
the domain. Besides, the start of the growing season generally occurred later in the model
than in the observations. The strong seasonal dependency of the RMSE was notable with
1 m2 m−2 values from May to October. The correlation was also higher in these months.
High RMSE and low correlation were achieved in 2014 by open-loop. LAI was underesti-
mated by the simulations (negative bias), especially for the summer months, except for 2010
and 2014, when the amount of biomass was overestimated throughout the year (Figure 10,
bottom). Under unusually wet conditions, the biomass production due to photosynthesis
was overestimated by ISBA-A-gs.
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Figure 10. Seasonal correlation (top); BIAS (bottom, dashed line) and RMSE (bottom full line)) for
LAI for open-loop (blue) and assimilation (orange) runs.

The soil moisture correlation, BIAS, and RMSE of simulated SWI against ASCAT SWI
are illustrated in Figure 11, respectively. SWI values were calculated from the simulations
using WG2 (root-zone water content): SWI = (WG2 − WG2min)/(WG2max − WG2min),
where WG2min and WG2max were obtained from the model results for the period 2008–2015
ASCAT SWI-10 satellite data were used to calculate SWI scores. The weak SWI statistics can
be explained by the weak vertical coupling of the model [1]. The assimilation run showed
a higher correlation over the entire period compared to the open-loop (Figure 11 top). The
improvement of assimilating SWI in the root-zone soil moisture was about 14%, as found
in [1]. The RMSE was slightly reduced by the assimilation run, especially in spring periods.
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4. Conclusions

A Land Data Assimilation System was developed in Hungary to monitor the above-
ground biomass, surface fluxes (carbon and water), and the associated root-zone soil
moisture at the regional scale in quasi-real time. It was based on the SURFEX model
using the ISBA-A-gs photosynthesis scheme to describe the evolution of vegetation. Our
study focused on the ability of the model to describe the inhomogeneity of the ecosys-
tems. Firstly, SURFEX was run in an open-loop mode (i.e., without assimilation) for the
period of 2008–2015. Secondly, the Extended Kalman Filter method was used to assimi-
late SPOT/VGT and PROBA-V LAI and ASCAT/Metop SWI satellite observations. The
use of different satellite data at different resolutions challenges for the construction of
the EKF observation operator. It was demonstrated in this study that the CDF tool can
provide important, meaningful information that makes the observations more suitable for
the assimilation.

The comparison generally showed a good agreement between the satellite data and
the simulated values for LAI and soil moisture. Both simulations were able to reproduce the
variability of the amount of biomass and the soil moisture in different weather situations.
The assimilation was able to correct some shortcomings of the open-loop LSM run. It was
observed that the maximum of the growing phase was delayed by the simulations, probably
because ISBA-A-gs underestimates the photosynthesis in spring. These discrepancies may
be partly responsible for a delay of a month in the LAI seasonal cycle. The assimilation
significantly reduced this delay and increases the correlation between the model and
satellite GEOV1 LAI by more than 0.2–0.3. Due to the high BIAS and RMSE of LAI and
WG2, their inter-annual variability was also examined through their scaled anomalies. They
were also very well represented by the simulations, especially in the dry summer of 2012.
The scaled anomaly can be used as a drought indicator for a period of interest. A regional
LDAS system can be used operationally at HMS, and is being developed as follows:

• The results of the assimilation depend on the quality of the data to be assimilated,
although the assimilation efficiently corrected LAI high RMSE and BIAS values re-
mained. By applying a finer resolution and assimilating more advanced products of
LAI (provided by Sentinel-3/OLCI and PROBA-V) and SWI (provided by Sentinel-1
C-SAR and Metop ASCAT), more precise results can be obtained [47,48]. New types
of satellite information can be included in the assimilation system, such as FAPAR,
surface albedo, or VOD (Vertical Optical Depth) in the future.

• In this study, the three layers ISBA-A-gs force restore model were used. This means
that a single, thick root-zone layer represents soil hydrology, causing a slow response
to dry or wet conditions. The propagation of surface soil moisture in the deeper layers
may be affected by the lack of vertical resolution of the model. Increasing the number
of soil layers allows a more accurate representation of the vertical distribution of soil
moisture and the vegetation response to the water stress [1,18,19]. Therefore, the
multi-layer version of soil model (diffusion version, ISBA-DIF) is expected to improve
the system.

• It is planned that the operational non-hydrostatic AROME NWP forecasts will be
corrected by using updated LAI instead of the climatic values. The updated LAI will
be provided by daily assimilation of satellite LAI (Sentinel-3). Thus, LDAS should be
extended to an AROME Lambert grid with finer 2.5 km resolution.

• The main advantage of LDAS is that it provides a consistent state (analysis) of veg-
etation and soil variables (moisture and temperature) for a given location and time.
This analysis can be used as a starting point for the prediction component of the
system, thus implementing a Land Monitoring and Forecasting System. The forecast
length depends on the applied atmospheric forcings—the soil and vegetation forecasts
can range even up to six months with forcings from ECMWF seasonal predictions.
Consequently, the proposed Earth Observation-based information service is not only
providing a picture of the current state of soil and vegetation, but is also able to predict
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the evolution of the vegetation even in seasonal time scale. This capability would
make the system attractive for users and stakeholders in the agricultural sector.

Author Contributions: Conceptualization, H.T.; methodology, H.T. and B.S.; software, H.T., B.S.;
validation, H.T.; writing—original draft preparation, H.T.; writing—review and editing, H.T. and B.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was a contribution to the ImagineS project funded by the European Commis-
sion under Framework Programme 7 (Grant Agreement No 311766).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ALADIN and SURFEX ISBA-A-gs simulation data used in this
study are stored locally at the Hungarian Meteorological Service. SPOT-VGT, PROBA-V, and ASCAT
satellite products were retrieved from European Copernicus Global Land Service (https://land.
copernicus.eu/global/, accessed on 21 July 2021). Carbon-, latent heat-flux, LAI, and soil moisture
measurements from Hegyhatsal were provided by Eötvös Loránd University in the framework of the
ImagineS project and are available upon request.

Acknowledgments: The authors wish to thank László Kullmann for his contribution to the imple-
mentation and validation of SURFEX and Gabriella Szépszó for her useful ideas and comments to
improve the paper. The authors acknowledge useful discussions with partners in the framework
of the PannEx initiative. The authors would like to express their gratitude to the three anonymous
reviewers for their detailed and valuable reviews.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohr, K.I.; Famiglietti, J.S.; Boone, A.; Starks, P.J. Modeling Soil Moisture and Surface Flux Variability with an Untuned Land

Surface Scheme: A Case Study from the Southern Great Plains 1997 Hydrology Experiment. J. Hydrometeorol. 2000, 1, 154–169.
[CrossRef]

2. Viterbo, P. The Representation of Surface Processes in General Circulation Models. Ph.D. Thesis, University of Lisbon, Lisbon,
Portuga, 1996; 201p.

3. Mahfouf, J.F.; Viterbo, P.; Douville, H.; Beljaars, A.; Saarinen, S. A Revised Land-Surface Analysis Scheme in the Integrated
Forecasting System. ECMWF Newsl. 2000, 88, 8–13.

4. Drusch, M.; Scipal, K.; de Rosnay, P.; Balsamo, G.; Andersson, E.; Bougeault, P.; Viterbo, P. Towards a Kalman Filter Based Soil
Moisture Analysis System for the Operational ECMWF Integrated Forecast System. Geophys. Res. Lett. 2009, 36. [CrossRef]

5. Balsamo, G.; Mahfouf, J.F.; Bélair, S.; Deblonde, G. A Land Data Assimilation System for Soil Moisture and Temperature: An
Information Content Study. J. Hydrometeorol. 2007, 8, 1225–1242. [CrossRef]

6. Reichle, R.H.; Walker, J.P.; Koster, R.D.; Houser, P.R. Extended Versus Ensemble Kalman Filtering for Land Data Assimilation.
J. Hydrometeorol. 2002, 3, 728–740. [CrossRef]

7. Barbu, A.L.; Calvet, J.-C.; Mahfouf, J.-F.; Albergel, C.; Lafont, S. Assimilation of Soil Wetness Index and Leaf Area Index Into the
Isba-A-Gs Land Surface Model: Grassland Case Study. Biogeosciences 2011, 8, 1971–1986. [CrossRef]

8. Barbu, A.L.; Calvet, J.-C.; Mahfouf, J.-F.; Lafont, S. Integrating ASCAT Surface Soil Moisture and GEOV1 Leaf Area Index into
the SURFEX Modelling Platform: A Land Data Assimilation Application over France. Hydrol. Earth Syst. Sci. 2014, 18, 173–192.
[CrossRef]

9. Albergel, C.; Munier, S.; Leroux, D.J.; Dewaele, H.; Fairbairn, D.; Barbu, A.L.; Gelati, E.; Dorigo, W.; Faroux, S.; Meurey, C.;
et al. Sequential Assimilation of Satellite-Derived Vegetation and Soil Moisture Products Using SURFEX_v8.0: LDAS-Monde
Assessment over the Euro-Mediterranean Area. Geosci. Model Dev. 2017, 10, 3889–3912. [CrossRef]

10. Parrens, M.; Mahfouf, J.-F.; Barbu, A.; Calvet, J.-C. Assimilation of Surface Soil Moisture into a Multilayer Soil Model: Design and
Evaluation at Local Scale. Hydrol. Earth Syst. Sci. 2014, 18, 673–689. [CrossRef]

11. Draper, C.S.; Mahfouf, J.-F.; Walker, J.P. An EKF Assimilation of AMSR-E Soil Moisture into the ISBA Land Surface Scheme.
J. Geophys. Res. 2009, 114, D20104. [CrossRef]

12. Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W. Assimilation of ASCAT Near-Surface Soil Moisture into the SIM
Hydrological Model over France. Hydrol. Earth Syst. Sci. 2011, 15, 3829–3841. [CrossRef]

13. Rüdiger, C.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C.; Walker, J.P. Evaluation of the Observation Operator Jacobian for Leaf Area
Index Data Assimilation with an Extended Kalman Filter. J. Geophys. Res. 2010, 115, D09111. [CrossRef]

14. Mahfouf, J.-F. Assimilation of Satellite-Derived Soil Moisture from ASCAT in a Limited-Area NWP Model. Q. J. Roy. Meteorol. Soc.
2010, 136, 784–798. [CrossRef]

https://land.copernicus.eu/global/
https://land.copernicus.eu/global/
http://doi.org/10.1175/1525-7541(2000)001&lt;0154:MSMASF&gt;2.0.CO;2
http://doi.org/10.1029/2009GL037716
http://doi.org/10.1175/2007JHM819.1
http://doi.org/10.1175/1525-7541(2002)003&lt;0728:EVEKFF&gt;2.0.CO;2
http://doi.org/10.5194/bg-8-1971-2011
http://doi.org/10.5194/hess-18-173-2014
http://doi.org/10.5194/gmd-10-3889-2017
http://doi.org/10.5194/hess-18-673-2014
http://doi.org/10.1029/2008JD011650
http://doi.org/10.5194/hess-15-3829-2011
http://doi.org/10.1029/2009JD012912
http://doi.org/10.1002/qj.602


Atmosphere 2021, 12, 944 16 of 17

15. de Rosnay, P.; Drusch, M.; Vasiljevic, D.; Balsamo, G.; Albergel, C.; Isaksen, L. A Simplified Extended Kalman Filter for the Global
Operational Soil Moisture Analysis at ECMWF. Q. J. R. Meteorol. Soc. 2013, 139, 1199–1213. [CrossRef]

16. de Rosnay, P.; Balsamo, G.; Albergel, C.; Munoz-Sabater, J.; Isaken, L. Initialisation of Land Surface Variables for Numerical
Weather Prediction. Surv. Geophys. 2014, 35, 607–621. [CrossRef]

17. Bousetta, S.; Balsamo, G.; Dutra, E.; Beljaars, A.; Albergel, C. Assimilation of Surface Albedo and Vegetation States from Satellite
Observations and Their Impact on Numerical Weather Prediction. Remote Sens. Environ. 2015, 163, 111–126. [CrossRef]

18. Albergel, C.; Munier, S.; Bocher, A.; Bonan, B.; Zheng, Y.; Draper, C.; Leroux, D.J.; Calvet, J.-C. LDAS-Monde Sequential
Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface
Variables. Remote Sens. 2018, 10, 1627. [CrossRef]

19. Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Munoz-Sabater, J.; de Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim Driven
ISBA Land Surface Model Simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [CrossRef]

20. Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Bousserez, N.; Boussetta, S.; Brown, A.;
Buizza, R.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sens. 2018,
10, 2038. [CrossRef]

21. Le Moigne, P.; Boone, A.; Calvet, J.-C.; Decharme, B.; Faroux, S.; Gibelin, A.-L.; Lebeaupin, C.; Mahfouf, J.-F.; Martin, E.;
Masson, V.; et al. SURFEX Scientific Documentation; Groupe de Météorologie Àmoyenne Échelle, Note de Centre: Meteo-France,
Toulouse, 2012; Volume 87, p. 237.

22. Albergel, C.; Zheng, Y.; Bonan, B.; Dutra, E.; Rodríguez-Fernández, N.; Munier, S.; Draper, C.; de Rosnay, P.; Muñoz-Sabater, J.;
Balsamo, G.; et al. Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrol. Earth
Syst. Sci. 2020, 24, 4291–4316. [CrossRef]

23. Faroux, S.; Kaptue Tchuente, A.T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A Twofold
Database of Ecosystems and Surface Parameters at 1 km Resolution Based on Satellite Information for Use in Land Surface,
Meteorological and Climate Models. Geosci. Model. Dev. 2013, 6, 563–582. [CrossRef]

24. Noilhan, J.; Planton, S. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon. Weather. Rev. 1989,
117, 536–549. [CrossRef]

25. Noilhan, J.; Mahfouf, J.-F. The ISBA Land Surface Parameterisation Scheme. Glob. Planet. Chang. 1996, 13, 145–149. [CrossRef]
26. Calvet, J.-C.; Noilhan, J.; Roujean, J.-L.; Bessemoulin, P.; Cabelguenne, M.; Olioso, A.; Wigneron, J.-P. An Interactive Vegetation

SVAT Model Tested Against Data from Six Contrasting Sites. Agric. For. Meteorol. 1998, 92, 73–95. [CrossRef]
27. Gibelin, A.-L.; Calvet, J.-C.; Roujean, J.-L.; Jarlan, L.; Los, S.O. Ability of the Land Surface Model ISBA-A-Gs to Simulate Leaf

Area Index at the Global Scale: Comparison with Satellites Products. J. Geophys. Res. 2006, 111, D18102. [CrossRef]
28. Calvet, J.-C.; Lafont, S.; Cloppet, E.; Souverain, F.; Badeau, V.; Le Bas, C. Use of Agricultural Statistics to Verify the Interannual

Variability in Land Surface Models: A Case Study over France with ISBA-A-Gs. Geosci. Model. Dev. 2012, 5, 37–54. [CrossRef]
29. Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; SLafont, S.; Pigeon, G. Evaluation of Root Water Uptake in the ISBA-A-Gs Land

Surface Model Using Agricultural Yield Statistics over France. Hydrol. Earth Syst. Sci. 2014, 18, 4979–4999. [CrossRef]
30. Horányi, A.; Kertész, S.; Kullmann, L.; Radnóti, G. The ARPEGE/ALADIN Mesoscale Numerical Modelling System and its

Application at the Hungarian Meteorological Service. Időjárás 2006, 110, 203–227.
31. Horányi, A.; Ihász, I.; Radnóti, G. ARPEGE/ALADIN: A Numerical Weather Prediction Model for Central-Europe with the

Participation of the Hungarian Meteorological Service. Időjárás 1996, 100, 277–301.
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