Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Generation and Statistical Evaluation of δ18OTRC Time Series
2.3. Evaluation of Climate-Proxy Relationships
3. Results
3.1. Time Series Characteristics of the Val Bever δ18OTRC Site Chronology
3.2. Evaluation of Climate-Proxy Relationships with the δ18OTRC Site Chronology
3.3. General Characteristics of the Individual δ18OTRC Chronologies
3.4. Climatic Imprints Within δ18OTRC Time Series in Permafrost and Non-Permafrost Terrains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martínez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Chang. 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Pepin, N.C.; Seidel, D.J. A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res. 2005, 110, 161. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okai, W., Péan, C., Pidcock, R., et al., Eds.; IPCC Secretariat: Geneva, Switzerland, 2018. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W. Mountain permafrost—Research frontiers and a special long-term challenge. Cold Reg. Sci. Technol. 2013, 96, 71–76. [Google Scholar] [CrossRef]
- Lavergne, A.; Daux, V.; Villalba, R.; Pierre, M.; Stievenard, M.; Srur, A.M. Improvement of isotope-based climate reconstructions in Patagonia through a better understanding of climate influences on isotopic fractionation in tree rings. Earth Planet. Sci. Lett. 2017, 459, 372–380. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Grießinger, J.; Dawadi, B.; Bräuning, A. High-elevation shrub-ring δ18O on the northern slope of the central Himalayas records summer (May–July) temperatures. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 524, 230–239. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Grießinger, J.; Wernicke, J.; Yu, W.; Hochreuther, P.; Risi, C.; Zeng, Y.; Fremme, A.; et al. Temperature signals in tree-ring oxygen isotope series from the northern slope of the Himalaya. Earth Planet. Sci. Lett. 2019, 506, 455–465. [Google Scholar] [CrossRef]
- Edwards, T.W.; Birks, S.J.; Luckman, B.H.; MacDonald, G.M. Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat. Res. 2008, 70, 188–197. [Google Scholar] [CrossRef]
- Reynolds-Henne, C.E.; Siegwolf, R.T.W.; Treydte, K.S.; Esper, J.; Henne, S.; Saurer, M. Temporal stability of climate-isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Xu, C.; Sano, M.; Nakatsuka, T. A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ18O. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 588–598. [Google Scholar] [CrossRef]
- Grießinger, J.; Bräuning, A.; Helle, G.; Hochreuther, P.; Schleser, G. Late Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ18O record: Recent decrease and conditions during the last 1500 years. Quat. Int. 2017, 430, 52–59. [Google Scholar] [CrossRef]
- Liu, X.; Xu, G.; Grießinger, J.; An, W.; Wang, W.; Zeng, X.; Wu, G.; Qin, D. A shift in cloud cover over the southeastern Tibetan Plateau since 1600: Evidence from regional tree-ring δ18O and its linkages to tropical oceans. Quat. Sci. Rev. 2014, 88, 55–68. [Google Scholar] [CrossRef]
- Berkelhammer, M.B.; Stott, L.D. Recent and dramatic changes in Pacific storm trajectories recorded in δ18O from Bristlecone Pine tree ring cellulose. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Ferrio, J.P.; Díez-Herrero, A.; Tarrés, D.; Ballesteros-Cánovas, J.A.; Aguilera, M.; Bodoque, J.M. Using stable isotopes of oxygen from tree-rings to study the origin of past flood events: First results from the iberian peninsula. Quaternaire 2015, 26, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.L.; Mora, C.I.; Grissino-Mayer, H.D.; Mock, C.J.; Uhle, M.E.; Sharp, Z. Tree-ring isotope records of tropical cyclone activity. Proc. Natl. Acad. Sci. USA 2006, 103, 14294–14297. [Google Scholar] [CrossRef] [Green Version]
- Dinis, L.; Bégin, C.; Savard, M.M.; Marion, J.; Brigode, P.; Alvarez, C. Tree-ring stable isotopes for regional discharge reconstruction in eastern Labrador and teleconnection with the Arctic Oscillation. Clim. Dyn. 2019, 53, 3625–3640. [Google Scholar] [CrossRef]
- Meier, W.J.-H.; Aravena, J.-C.; Jaña, R.; Braun, M.H.; Hochreuther, P.; Soto-Rogel, P.; Grießinger, J. A tree-ring δ18O series from southernmost Fuego-Patagonia is recording flavors of the Antarctic Oscillation. Glob. Planet. Chang. 2020, 195, 103302. [Google Scholar] [CrossRef]
- Grießinger, J.; Langhamer, L.; Schneider, C.; Saß, B.-L.; Steger, D.; Skvarca, P.; Braun, M.H.; Meier, W.J.-H.; Srur, A.M.; Hochreuther, P. Imprints of Climate Signals in a 204 Year δ18O Tree-Ring Record of Nothofagus pumilio From Perito Moreno Glacier, Southern Patagonia (50° S). Front. Earth Sci. 2018, 6, 27. [Google Scholar] [CrossRef]
- Hochreuther, P.; Wernicke, J.; Grießinger, J.; Mölg, T.; Zhu, H.; Wang, L.; Bräuning, A. Influence of the Indian Ocean Dipole on tree-ring δ18O of monsoonal Southeast Tibet. Clim. Chang. 2016, 137, 217–230. [Google Scholar] [CrossRef]
- Xu, C.; Buckley, B.M.; Wang, S.-Y.S.; An, W.; Li, Z.; Nakatsuka, T.; Guo, Z. Oxygen Isotopes in Tree Rings from Greenland: A New Proxy of NAO. Atmosphere 2021, 12, 39. [Google Scholar] [CrossRef]
- Saurer, M.; Schweingruber, F.; Vaganov, E.A.; Shiyatov, S.G.; Siegwolf, R. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. 2002, 29, 7-1–7-4. [Google Scholar] [CrossRef] [Green Version]
- Wernicke, J.; Hochreuther, P.; Grießinger, J.; Zhu, H.; Wang, L.; Bräuning, A. Air mass origin signals in δ18O of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau. Int. J. Biometeorol. 2017, 61, 1109–1124. [Google Scholar] [CrossRef] [PubMed]
- Kress, A.; Saurer, M.; Siegwolf, R.T.W.; Frank, D.C.; Esper, J.; Bugmann, H. A 350 year drought reconstruction from Alpine tree ring stable isotopes. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Dongmann, G.; Nürnberg, H.W.; Förstel, H.; Wagener, K. On the enrichment of H2 18O in the leaves of transpiring plants. Radiat. Environ. Biophys. 1974, 11, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Barbour, M.M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 2007, 34, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Barbour, M.M.; Schurr, U.; Henry, B.K.; Wong, S.C.; Farquhar, G.D. Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Péclet effect. Plant Physiol. 2000, 123, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Roden, J.S.; Ehleringer, J.R. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 2000, 123, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Craig, H.; Gordon, L.I. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures; Tongiorgi, E., Ed.; Consiglio Nazionale delle Richerche, Laboratorio de Geologia Nucleare: Pisa, Italy, 1965. [Google Scholar]
- Gessler, A.; Ferrio, J.P.; Hommel, R.; Treydte, K.; Werner, R.A.; Monson, R.K. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014, 34, 796–818. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; Lloyd, J. Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere. In Stable Isotopes and Plant Carbon-Water Relations; Saugier, B., Ehleringer, J.R., Hall, A.E., Farquhar, G.D., Eds.; Elsevier: Burlington, VT, USA, 1993; pp. 47–70. ISBN 9780122333804. [Google Scholar]
- Flanagan, L.B.; Ehleringer, J.R. Effects of Mild Water Stress and Diurnal Changes in Temperature and Humidity on the Stable Oxygen and Hydrogen Isotopic Composition of Leaf Water in Cornus stolonifera L. Plant Physiol. 1991, 97, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeNiro, M.J.; Epstein, S. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta 1981, 45, 1885–1894. [Google Scholar] [CrossRef]
- Deniro, M.J.; Epstein, S. Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water. Science 1979, 204, 51–53. [Google Scholar] [CrossRef]
- Sternberg, L.d.S.L. Oxygen stable isotope ratios of tree-ring cellulose: The next phase of understanding. New Phytol. 2009, 181, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Gessler, A.; Brandes, E.; Buchmann, N.; Helle, G.; Rennenberg, H.; Barnard, R.L. Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Environ. 2009, 32, 780–795. [Google Scholar] [CrossRef]
- Risi, C.; Noone, D.; Worden, J.; Frankenberg, C.; Stiller, G.; Kiefer, M.; Funke, B.; Walker, K.; Bernath, P.; Schneider, M.; et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.H.; Alaoui, A.; Kuells, C.; Leistert, H.; Meusburger, K.; Stumpp, C.; Weiler, M.; Alewell, C. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water. J. Hydrol. 2014, 519, 340–352. [Google Scholar] [CrossRef]
- Meißner, M.; Köhler, M.; Schwendemann, L.; Hölscher, D.; Dyckmans, J. Soil water uptake by trees using water stable isotopes (δ2H and δ18O)-a method test regarding soil moisture, texture and carbonate. Plant Soil 2014, 376, 327–335. [Google Scholar] [CrossRef]
- Gazis, C.; Feng, X. A stable isotope study of soil water: Evidence for mixing and preferential flow paths. Geoderma 2004, 119, 97–111. [Google Scholar] [CrossRef]
- Saurer, M.; Spahni, R.; Frank, D.C.; Joos, F.; Leuenberger, M.; Loader, N.J.; McCarroll, D.; Gagen, M.; Poulter, B.; Siegwolf, R.T.W.; et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Chang. Biol. 2014, 20, 3700–3712. [Google Scholar] [CrossRef]
- Churakova-Sidorova, O.V.; Lienert, S.; Timofeeva, G.; Siegwolf, R.; Roden, J.; Joos, F.; Saurer, M. Measured and modelled source water δ18O based on tree-ring cellulose of larch and pine trees from the permafrost zone. iForest 2020, 13, 224–229. [Google Scholar] [CrossRef]
- Churakova, O.V.; Shashkin, A.V.; Siegwolf, R.T.; Spahni, R.; Launois, T.; Saurer, M.; Bryukhanova, M.V.; Benkova, A.V.; Kuptsova, A.V.; Peylin, P.; et al. Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia 2016, 39, 51–59. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Kong, Y.; Zhang, F.; Yang, K.; Zhang, T. Most of the Northern Hemisphere Permafrost Remains under Climate Change. Sci. Rep. 2019, 9, 3295. [Google Scholar] [CrossRef] [Green Version]
- Koven, C.D.; Riley, W.J.; Stern, A. Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models. J. Clim. 2013, 26, 1877–1900. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Yanagisawa, N.; Naito, D.; Fujita, N.; Maximov, T.C. Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol. Res. 2002, 17, 493–503. [Google Scholar] [CrossRef]
- Sugimoto, A.; Naito, D.; Yanagisawa, N.; Ichiyanagi, K.; Kurita, N.; Kubota, J.; Kotake, T.; Ohata, T.; Maximov, T.C.; Fedorov, A.N. Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrol. Process. 2003, 17, 1073–1092. [Google Scholar] [CrossRef]
- Bryukhanova, M.V.; Fonti, P.; Kirdyanov, A.V.; Siegwolf, R.T.; Saurer, M.; Pochebyt, N.P.; Churakova, O.V.; Prokushkin, A.S. The response of δ13C, δ18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths. Dendrochronologia 2015, 34, 51–59. [Google Scholar] [CrossRef]
- Sidorova, O.V.; Siegwolf, R.T.W.; Saurer, M.; NAURZBAEV, M.M.; Vaganov, E.A. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J. Geophys. Res. 2008, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sidorova, O.V.; Siegwolf, R.T.W.; Saurer, M.; Naurzbaev, M.M.; Shashkin, A.V.; Vaganov, E.A. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Chang. Biol. 2010, 16, 1003–1018. [Google Scholar] [CrossRef] [Green Version]
- Holzkämper, S.; Tillman, P.K.; Kuhry, P.; Esper, J. Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada. Quat. Res. 2012, 78, 295–302. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Saurer, M.; Siegwolf, R.; Knorre, A.A.; Prokushkin, A.S.; Churakova, O.V.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 34061. [Google Scholar] [CrossRef]
- Haeberli, W.; Noetzli, J.; Arenson, L.; Delaloye, R.; Gärtner-Roer, I.; Gruber, S.; Isaksen, K.; Kneisel, C.; Krautblatter, M.; Phillips, M. Mountain permafrost: Development and challenges of a young research field. J. Glaciol. 2010, 56, 1043–1058. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, R.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S.; et al. Permafrost creep and rock glacier dynamics. Permafr. Periglac. Processes 2006, 17, 189–214. [Google Scholar] [CrossRef]
- Konecky, B.L.; McKay, N.P.; Churakova, O.V.; Comas-Bru, L.; Dassié, E.P.; DeLong, K.L.; Falster, G.M.; Fischer, M.J.; Jones, M.D.; Jonkers, L.; et al. The Iso2k database: A global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate. Earth Syst. Sci. Data 2020, 12, 2261–2288. [Google Scholar] [CrossRef]
- Kneisel, C. The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. Holocene 2010, 20, 423–445. [Google Scholar] [CrossRef]
- Kneisel, C.; Hauck, C.; Mhll, D.V. Permafrost below the Timberline Confirmed and Characterized by Geoelectrical Resistivity Measurements, Bever Valley, Eastern Swiss Alps. Permafr. Periglac. Processes 2000, 11, 295–304. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Holtmeier, K.F. Die Verbreitung der Holzarten im Oberengadin unter dem Einfluss des Menschen und des Lokalklimas. Erdkunde 1967, 21, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Kenner, R. Permafrost and Ground Ice Map of Switzerland. Available online: https://zenodo.org/record/1470165#.YNnmnUwRVPY (accessed on 28 June 2021).
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0; Technical Report; Global Land Ice Measurements from Space: Boulder, CO, USA, 2017. [Google Scholar]
- Rist, A.; Roth, L.; Veit, H. Elevational ground/air thermal gradients in the Swiss inner Alpine Valais. Arct. Antarct. Alp. Res. 2020, 52, 341–360. [Google Scholar] [CrossRef]
- Magnes, M.; Kirschner, P.; Janišová, M.; Mayrhofer, H.; Berg, C.; Mora, A.; Willner, W.; Belonovskaya, E.; Berastegi, A.; Cancellieri, L.; et al. On the trails of Josias Braun-Blanquet—Changes in the grasslands of the inneralpine dry valleys during the last 70 years. First results from the 11th EDGG Field Workshop in Austria. Palaearct. Grassl. 2020, 45, 34–58. [Google Scholar] [CrossRef]
- Schüepp, M. Klimatologie der Schweiz. Teil C. Lufttemperatur. In Beiheft zu den Analen der Schweizerischen Meteorologischen Zentralanstalt Zürich; City-Druck AG: Zürich, Switzerland, 1986; pp. 1–46. [Google Scholar]
- Gensler, G.A. Das Klima von Graubünden. Ein Beitrag zur Regionalklimatologie in der Schweiz. Working Reports of the Swiss Meteorological Institute 1978, 77. Available online: https://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/Ungebundene-Seiten/Publikationen/Fachberichte/doc/arbeitsbericht77.pdf (accessed on 28 June 2021).
- Reisigl, H.; Keller, R. Lebensraum Bergwald: Alpenpflanzen in Bergwald, Baumgrenze und Zwergstrauchheide; Vegetationsökologische Informationen für Studien, Exkursionen und Wanderungen; Fischer: Stuttgart, Germany, 1989; ISBN 3437204513. [Google Scholar]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. Permafrost distribution in the European Alps: Calculation and evaluation of an index map and summary statistics. Cryosphere 2012, 6, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Rich, P.M. Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at Landscape Scales. In Proceedings of the Nineteenth Annual ESRI User Conference, San Diego, CA, USA, 26–30 July 1999. [Google Scholar]
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Kneisel, C.; Hauck, C. Multi-method geophysical investigation of a sporadic permafrost occurence. Z. Geomorph. Suppl. 2003, 132, 145–159. [Google Scholar]
- Kneisel, C. Sporadic and discontinous mountain permafrost occurrence in the Upper Engadine, eastern Swiss Alps. In Permafrost, Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; Phillips, M., Springman, S.M., Arenson, L.U., Eds.; Balkema: Lisse, The Netherlands, 2003; pp. 561–566. ISBN 90 5809 582 7. [Google Scholar]
- Kneisel, C.; Schwindt, D. Geophysical Mapping of Isolated Permafrost Lenses at a Sporadic Permafrost Site at Low Altitude in the Swiss Alps. In Permafrost on a Warming Planet: Impacts on Ecosystems, Infrastructure and Climate, Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 23 June–3 July 2008; Kane, D.L., Hinkel, K.M., Eds.; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; Volume 1, pp. 959–964. ISBN 978-0-9800179-2-2. [Google Scholar]
- Hauck, C.; Kneisel, C. Quantifying the ice content in low-altitude scree slopes using geophysical methods. In Applied Geophysics in Periglacial Environments; Hauck, C., Kneisel, C., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 153–164. ISBN 9780511535628. [Google Scholar]
- Schwindt, D. Permafrost in Ventilated Talus Slopes below the Timberline: A Multi-Methodological Study on the Ground Thermal Regime and Its Impact on the Temporal Variability and Spatial Heterogeneity of Permafrost at Three Sites in the Swiss Alps. Ph.D. Thesis, Juluis Maximilians University, Würzburg, Germany, 2013. [Google Scholar]
- Gärtner-Roer, I.; Bast, A. (Ground) Ice in the Proglacial Zone. In Geomorphology of Proglacial Systems; Heckmann, T., Morche, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 85–98. [Google Scholar]
- Noetzli, J.; Arenson, L.U.; Bast, A.; Beutel, J.; Delaloye, R.; Farinotti, D.; Gruber, S.; Gubler, H.; Haeberli, W.; Hasler, A.; et al. Best Practice for Measuring Permafrost Temperature in Boreholes Based on the Experience in the Swiss Alps. Front. Earth Sci. 2021, 9, 607875. [Google Scholar] [CrossRef]
- Boaga, J.; Phillips, M.; Noetzli, J.; Haberkorn, A.; Kenner, R.; Bast, A. A Comparison of Frequency Domain Electro-Magnetometry, Electrical Resistivity Tomography and Borehole Temperatures to Assess the Presence of Ice in a Rock Glacier. Front. Earth Sci. 2020, 8, 593. [Google Scholar] [CrossRef]
- Gude, M.; Dietrich, S.; Mäusbacher, R.; Hauck, C.; Molenda, R.; Ruzicka, V.; Zacharda, M. Probable occurrence of sporadic permafrost in non-alpine scree slopes in central Europe. In Permafrost, Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; Phillips, M., Springman, S.M., Arenson, L.U., Eds.; Balkema: Lisse, The Netherlands, 2003; pp. 331–336. ISBN 90 5809 582 7. [Google Scholar]
- Gärtner-Roer, I.; Hoelzle, M. Rockglaciers of the Engadine. In Landscapes and Landforms of Switzerland; Reynard, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 235–248. ISBN 978-3-030-43203-4. [Google Scholar]
- Luetschg, M.; Stoeckli, V.; Lehning, M.; Haeberli, W.; Ammann, W. Temperatures in two boreholes at Flüela Pass, Eastern Swiss Alps: The effect of snow redistribution on permafrost distribution patterns in high mountain areas. Permafr. Periglac. Processes 2004, 15, 283–297. [Google Scholar] [CrossRef]
- Bast, A.; Gärtner, H.; Gärtner-Roer, I. If trees have cold feet: Tree-ring analyses of Larix decidua Mil. at a sporadic permafrost site in the Swiss Alps. In Proceedings of the Abstract Volume 8th Swiss Geoscience Meeting, Fribourg, Switzerland, 19–20 November 2010; Swiss Academy of Sciences: Bern, Switzerland, 2010; pp. 150–151. [Google Scholar]
- Bast, A.; Gärtner, H.; Gärtner-Roer, I.; Kneisel, C. Tree-ring analyses at a sporadic permafrost site below timberline, Bever Valley, Switzerland. In Proceedings of the Annual meeting of the Association for Tree-Ring Research, Riga, Latvia, 3–6 May 2007. [Google Scholar]
- Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28, 251–258. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 17 May 2019).
- Labuhn, I.; Daux, V.; Pierre, M.; Stievenard, M.; Girardclos, O.; Féron, A.; Genty, D.; Masson-Delmotte, V.; Mestre, O. Tree age, site and climate controls on tree ring cellulose δ18O: A case study on oak trees from south-western France. Dendrochronologia 2014, 32, 78–89. [Google Scholar] [CrossRef]
- Duffy, J.E.; McCarroll, D.; Barnes, A.; Bronk Ramsey, C.; Davies, D.; Loader, N.J.; Miles, D.; Young, G.H. Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. Chem. Geol. 2017, 472, 1–7. [Google Scholar] [CrossRef]
- Dorado Liñán, I.; Gutiérrez, E.; Helle, G.; Heinrich, I.; Andreu-Hayles, L.; Planells, O.; Leuenberger, M.; Bürger, C.; Schleser, G. Pooled versus separate measurements of tree-ring stable isotopes. Sci. Total Environ. 2011, 409, 2244–2251. [Google Scholar] [CrossRef] [PubMed]
- Grießinger, J.; Bräuning, A.; Helle, G.; Schleser, G.; Hochreuther, P.; Meier, W.; Zhu, H. A Dual Stable Isotope Approach Unravels Common Climate Signals and Species-Specific Responses to Environmental Change Stored in Multi-Century Tree-Ring Series from the Tibetan Plateau. Geosciences 2019, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Cook, E.R.; Briffa, K.R. A comparison of Some Tree-Ring Standardization Methods. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 153–162. ISBN 978-94-015-7879-0. [Google Scholar]
- Obojes, N.; Meurer, A.; Newesely, C.; Tasser, E.; Oberhuber, W.; Mayr, S.; Tappeiner, U. Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner-alpine dry valley. New Phytol. 2018, 220, 460–475. [Google Scholar] [CrossRef] [Green Version]
- Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Cook, E.R.; Pederson, N. Uncertainty, Emergence, and Statistics in Dendrochronology. In Dendroclimatology; Hughes, M.K., Swetnam, T.W., Diaz, H.F., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 77–112. ISBN 978-1-4020-4010-8. [Google Scholar]
- Esper, J.; Frank, D.; Büntgen, U.; Verstege, A.; Luterbacher, J.; Xoplaki, E. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Baltensweiler, W.; Weber, U.M.; Cherubini, P. Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 2008, 117, 161–172. [Google Scholar] [CrossRef]
- Kress, A.; Saurer, M.; Büntgen, U.; Treydte, K.S.; Bugmann, H.; Siegwolf, R.T.W. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia 2009, 160, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Bader, S.; Bantle, H. Das Schweizer Klima im Trend Temperatur- und Niederschlagsentwicklung 1864–2001; Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz: Zürich, Switzerland, 2004; ISBN 1422-1381. [Google Scholar]
- Füllemann, C.; Begert, M.; Croci-Maspoli, M.; Brönnimann, S. Digitalisieren und Homogenisieren von Historischen Klimadaten des Swiss NBCN—Resultate aus DigiHom; Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz: Zürich, Switzerland, 2011. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M. Package ‘SPEI’. Available online: https://cran.r-project.org/web/packages/SPEI/index.html (accessed on 28 June 2021).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Saurer, M.; Cherubini, P.; Reynolds-Henne, C.E.; Treydte, K.S.; Anderson, W.T.; Siegwolf, R.T.W. An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Saurer, M.; Kress, A.; Leuenberger, M.; Rinne, K.T.; Treydte, K.S.; Siegwolf, R.T.W. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Różański, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Ed.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. ISBN 1118664027. [Google Scholar]
- Saurer, M.; Kirdyanov, A.V.; Prokushkin, A.S.; Rinne, K.T.; Siegwolf, R.T.W. The impact of an inverse climate-isotope relationship in soil water on the oxygen-isotope composition of Larix gmelinii in Siberia. New Phytol. 2016, 209, 955–964. [Google Scholar] [CrossRef]
- Rank, D.; Wyhlidal, S.; Schott, K.; Jung, M.; Heiss, G.; Tudor, M. A 50 Years’ Isotope Record of the Danube River Water and Its Relevance for Hydrological, Climatological and Environmental Research. Acta Zool. Bulg. 2014, 7, 109–115. [Google Scholar]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Büntgen, U.L.; Frank, D.; Wilson, R.O.; Carrer, M.; Urbinati, C.; Esper, J.A. Testing for tree-ring divergence in the European Alps. Glob. Chang. Biol. 2008, 14, 2443–2453. [Google Scholar] [CrossRef]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D. Divergence pitfalls in tree-ring research. Clim. Chang. 2009, 94, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Daux, V.; Edouard, J.L.; Masson-Delmotte, V.; Stievenard, M.; Hoffmann, G.; Pierre, M.; Mestre, O.; Danis, P.A.; Guibal, F. Can climate variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue. Earth Planet. Sci. Lett. 2011, 309, 221–233. [Google Scholar] [CrossRef]
- Seftigen, K.; Linderholm, H.W.; Loader, N.J.; Liu, Y.; Young, G.H. The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chem. Geol. 2011, 286, 84–93. [Google Scholar] [CrossRef]
- Loader, N.J.; McCarroll, D.; Miles, D.; Young, G.H.F.; Davies, D.; Ramsey, C.B. Tree ring dating using oxygen isotopes: A master chronology for central England. J. Quat. Sci. 2019, 34, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Grießinger, J.; Bräuning, A.; Helle, G.; Thomas, A.; Schleser, G. Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
δ18OTRC | Period | GLK | RBar | IC | AC1 | SNR | SD |
---|---|---|---|---|---|---|---|
MEAN-δ18OTRC | 1830–2011 | 0.70 | 0.41 | 0.54 | 0.26 | 4.90 | 0.90 |
PF-δ18OTRC | 1830–2011 | 0.61 | 0.37 | 0.36 | 0.22 | 1.78 | 0.93 |
nPF-δ18OTRC | 1830–2011 | 0.69 | 0.47 | 0.53 | 0.24 | 2.55 | 1.02 |
Temperature | MEAN-δ18OTRC | PF-δ18OTRC | nPF-δ18OTRC |
---|---|---|---|
Mean annual | 0.41 * | 0.16 | 0.63 ** |
July-August | 0.49 * | 0.30 | 0.62 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grießinger, J.; Meier, W.J.-H.; Bast, A.; Debel, A.; Gärtner-Roer, I.; Gärtner, H. Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere 2021, 12, 836. https://doi.org/10.3390/atmos12070836
Grießinger J, Meier WJ-H, Bast A, Debel A, Gärtner-Roer I, Gärtner H. Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere. 2021; 12(7):836. https://doi.org/10.3390/atmos12070836
Chicago/Turabian StyleGrießinger, Jussi, Wolfgang Jens-Henrik Meier, Alexander Bast, Annette Debel, Isabelle Gärtner-Roer, and Holger Gärtner. 2021. "Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland" Atmosphere 12, no. 7: 836. https://doi.org/10.3390/atmos12070836
APA StyleGrießinger, J., Meier, W. J. -H., Bast, A., Debel, A., Gärtner-Roer, I., & Gärtner, H. (2021). Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere, 12(7), 836. https://doi.org/10.3390/atmos12070836