Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Synoptic Climatology of Cut-Off Lows (COLs)
2.2. Current and Future Climate Weather Research and Forecasting (WRF) Simulations of COLs
3. Results
3.1. Synoptic Climatology of COLs
3.2. WRF Current and Future Climate Simulations
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortesi, N.; Gonzalez-Hidalgo, J.; Trigo, R.M.; Ramos, A.M. Weather Types and Spatial Variability of Precipitation in the Iberian Peninsula. Int. J. Climatol. 2014, 34, 2661–2677. [Google Scholar] [CrossRef]
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and Analysis of a 50-Year High-Resolution Daily Gridded Precipitation Dataset Over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Cardoso Pereira, S.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Extreme Precipitation Events Under Climate Change in the Iberian Peninsula. Int. J. Climatol. 2020, 40, 1255–1278. [Google Scholar] [CrossRef]
- Martín León, F. Las Gotas Frías/DANAs, Ideas Y Conceptos Básicos. Nota Técnica Serv. Técnicas Análisis Predicción STAP 2003, 38, 14. [Google Scholar]
- Porcù, F.; Carrassi, A.; Medaglia, C.M.; Prodi, F.; Mugnai, A. A Study on Cut-Off Low Vertical Structure and Precipitation in the Mediterranean Region. Meteorol. Atmos. Phys. 2007, 96, 121–140. [Google Scholar] [CrossRef]
- Observatorio de la Sostenibilidad. Población en Riesgo de Inundación en España en la Franja de los Primeros 10 Kilómetros de Costa. Available online: https://www.observatoriosostenibilidad.com/tag/inundaciones/ (accessed on 28 June 2021).
- Llasat, M.-C.; Martín, F.; Barrera, A. From the Concept of “Kaltlufttropfen” (Cold Air Pool) to the Cut-Off Low. the Case of September 1971 in Spain as an Example of their Role in Heavy Rainfalls. Meteorol. Atmos. Phys. 2007, 96, 43–60. [Google Scholar] [CrossRef]
- Nieto, R.; Gimeno, L.; Añel, J.; de la Torre, R.; Gallego, D.; Barriopedro, D.; Gallego, M.; Gordillo-Guerrero, A.; Redaño, A.; Delgado, G. Analysis of the Precipitation and Cloudiness Associated with COLs Occurrence in the Iberian Peninsula. Meteorol. Atmos. Phys. 2007, 96, 103–119. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Hoskins, B.J.; McIntyre, M.E. Two Paradigms of Baroclinic-Wave Life-Cycle Behaviour. Q. J. R. Meteorol. Soc. 1993, 119, 17–55. [Google Scholar] [CrossRef]
- Muñoz, C.; Schultz, D.; Vaughan, G. A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows. J. Clim. 2021, 33, 2201–2222. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T. Contribution of Cutoff Lows to Precipitation Across the United States. J. Appl. Meteor. Climatol. 2016, 55, 893–899. [Google Scholar] [CrossRef]
- Campetella, C.M.; Possia, N.E. Upper-Level Cut-Off Lows in Southern South America. Meteorol. Atmos. Phys. 2007, 96, 181–191. [Google Scholar] [CrossRef]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A.; Ferreira, N.J. A New Perspective of the Climatological Features of Upper-Level Cut-Off Lows in the Southern Hemisphere. Clim. Dyn. 2017, 48, 541–559. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.; Reeder, M.J.; Low, D.J.; Vincent, R.A. Observations of a Cut-Off Low Over Southern Australia. Q. J. R. Meteorol. Soc. 1998, 124, 1109–1132. [Google Scholar] [CrossRef]
- Singleton, A.T.; Reason, C.J.C. Variability in the Characteristics of Cut-Off Low Pressure Systems Over Subtropical Southern Africa. Int. J. Climatol. 2007, 27, 295–310. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Global Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Annex I: Atlas of Global and Regional Climate Projections Supplementary Material RCP8.5. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Van Olden-Borgh, G.J., Collins, M., Arblaster, J., Christensen, J.H., Marotzke, J., Power, S.B., Rummukainen, M., Zhou, T., Eds.; IPCC: Geneva, Switzerland, 2013; Available online: Www.climatechange2013.Org; Www.Ipcc.Ch; (accessed on 28 June 2021). [Google Scholar]
- Costa, A.C.; Soares, A. Trends in Extreme Precipitation Indices Derived from a Daily Rainfall Database for the South of Portugal. Int. J. Climatol. 2009, 29, 1956–1975. [Google Scholar] [CrossRef]
- Rico-Amoros, A.M.; Olcina-Cantos, J.; Sauri, D. Tourist Land use Patterns and Water Demand: Evidence from the Western Mediterranean. Land Use Policy 2009, 26, 493–501. [Google Scholar] [CrossRef]
- Olcina, J. Clima, Cambio Climático Y Riesgos Climáticos En El Litoral Mediterráneo. Oportunidades Para La Geografía. Documents d’Anàlisi Geogràfica 2020, 66, 159–182. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the Regional Pattern of Projected Future Changes in Extreme Precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Bador, M.; Donat, M.G.; Geoffroy, O.; Alexander, L.V. Assessing the Robustness of Future Extreme Precipitation Intensification in the CMIP5 Ensemble. J. Clim. 2018, 31, 6505–6525. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Caselles, V.; Gómez, I. Spatial and Temporal Rainfall Changes in the Júcar and Segura Basins (1955–2016): Fine-Scale Trends. Int. J. Climatol. 2018, 38, 4699–4722. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A.; Belo-Pereira, M. WRF High Resolution Simulation of Iberian Mean and Extreme Precipitation Climate. Int. J. Climatol. 2013, 33, 2591–2608. [Google Scholar] [CrossRef]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Castro-Díez, Y. Evaluation of WRF Mean and Extreme Precipitation Over Spain: Present Climate (1970–1999). J. Clim. 2012, 25, 4883–4897. [Google Scholar] [CrossRef]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Dudhia, J.; Castro-Díez, Y. Evaluation of WRF Parameterizations for Climate Studies Over Southern Spain using a Multistep Regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- Frei, C.; Schär, C.; Lüthi, D.; Davies, H.C. Heavy Precipitation Processes in a Warmer Climate. Geophys. Res. Lett. 1998, 25, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Kimura, F.; Kitoh, A. Projection of Global Warming onto Regional Precipitation over Mongolia Using a Regional Climate Model. J. Hydrol. 2007, 333, 144–154. [Google Scholar] [CrossRef]
- Nieto Ferreira, R.; Nissenbaum, M.R.; Rickenbach, T.M. Climate Change Effects on Summertime Precipitation Organization in the Southeast United States. Atmos. Res. 2018, 214, 348–363. [Google Scholar] [CrossRef]
- Hill, K.A.; Lackmann, G.M. The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach. J. Clim. 2011, 24, 4644–4661. [Google Scholar] [CrossRef]
- Kanada, S.; Wada, A.; Sugi, M. Future Changes in Structures of Extremely Intense Tropical Cyclones using a 2-km Mesh Nonhydrostatic Model. J. Clim. 2013, 26, 9986–10005. [Google Scholar] [CrossRef]
- Manda, A.; Nakamura, H.; Asano, N.; Iizuka, S.; Miyama, T.; Moteki, Q.; Yoshioka, M.K.; Nishii, K.; Miyasaka, T. Impacts of a Warming Marginal Sea on Torrential Rainfall Organized Under the Asian Summer Monsoon. Sci. Rep. 2014, 4, 5741. [Google Scholar] [CrossRef] [Green Version]
- Lackmann, G.M. The South-Central US Flood of May 2010: Present and Future. J. Clim. 2013, 26, 4688–4709. [Google Scholar] [CrossRef]
- Trapp, R.J.; Hoogewind, K.A. The Realization of Extreme Tornadic Storm Events Under Future Anthropogenic Climate Change. J. Clim. 2016, 29, 5251–5265. [Google Scholar] [CrossRef]
- Tsunematsu, N.; Kuze, H.; Sato, T.; Hayasaki, M.; Cui, F.; Kondoh, A. Potential Impact of Spatial Patterns of Future Atmospheric Warming on Asian Dust Emission. Atmos. Environ. 2011, 45, 6682–6695. [Google Scholar] [CrossRef]
- Hara, M.; Yoshikane, T.; Kawase, H.; Kimura, F. Estimation of the Impact of Global Warming on Snow Depth in Japan by the Pseudo-Global-Warming Method. Hydrol. Res Lett. 2008, 2, 61–64. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Ferreira, R.N.; Hall, L.; Rickenbach, T.M. A Climatology of the Structure, Evolution, and Propagation of Midlatitude Cyclones in the Southeast United States. J. Clim. 2013, 26, 8406–8421. [Google Scholar] [CrossRef]
- Nieto Ferreira, R.; Earl Hall, L. Midlatitude Cyclones in the Southeastern United States: Frequency and Structure Differences by Cyclogenesis Region. Int. J. Climatol. 2015, 35, 3798–3811. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Powers, J.G. A Description of the Advanced Research WRF Version 3. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 28 June 2021).
- Ma, L.; Tan, Z. Improving the Behavior of the Cumulus Parameterization for Tropical Cyclone Prediction: Convection Trigger. Atmos. Res. 2009, 92, 190–211. [Google Scholar] [CrossRef]
- Hong, S.; Dudhia, J.; Chen, S. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, M.A.; Mitchell, K. Implementation and Verification of the Unified Noah Land-Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction 2004, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Fan, X.; Duan, Q.; Shen, C.; Wu, Y.; Xing, C. Global Surface Air Temperatures in CMIP6: Historical Performance and Future Changes. Environ. Res. Lett. 2020, 15, 104056. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on Future Changes in Climate and the Hydrologic Cycle. Nature 2002, 419, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Barriopedro, D.; García-Herrera, R.; Lupo, A.R.; Hernández, E. A Climatology of Northern Hemisphere Blocking. J. Clim. 2006, 19, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Gimeno, L.; De la Torre, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.; Gordillo, A.; Redaño, A.; Lorente, J. Interannual Variability of Cut-Off Low Systems Over the European Sector: The Role of Blocking and the Northern Hemisphere Circulation Modes. Meteorol. Atmos. Phys. 2007, 96, 85–101. [Google Scholar] [CrossRef]
Simulation | Year/Month | Days | Simulation | Year/Month | Days |
---|---|---|---|---|---|
1 | 2005/11 | 13, 14 * | 8 | 2009/09 | 26, 27 * |
2 | 2007/09 | 13, 14 * | 9 | 2009/09 | 28, 29 * |
3 | 2007/09 | 21, 22 * | 10 | 2011/11 | 21, 22 * |
5 | 2007/10 | 03, 04 * | 11 | 2012/09 | 28 *, 29 |
4 | 2007/10 | 11, 12 * | 12 | 2012/10 | 19, 20 * |
6 | 2007/10 | 16, 17 * | 13 | 2012/11 | 13,14 * |
7 | 2008/10 | 09, 10 * | 14 | 2015/11 | 1, 2 * |
Season | COLs | Other |
---|---|---|
MAM | 21 | 4 |
JJA | 0 | 1 |
SON | 34 | 8 |
DJF | 15 | 7 |
Season | COL Rainfall (mm) |
---|---|
MAM | 700 |
JJA | 0 |
SON | 1217 |
DJF | 499 |
Total | 2416 |
Box | WRF-SSP5-8.5 | WRF-CC | Difference |
---|---|---|---|
1 | 12.3 | 8.7 | 3.6 |
2 | 17.8 | 9.5 | 8.4 |
3 | 33.5 | 25.8 | 7.8 |
4 | 12.6 | 12.3 | 0.3 |
5 | 23.9 | 14.9 | 9.1 |
6 | 3.9 | 7.8 | −3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.N. Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere 2021, 12, 835. https://doi.org/10.3390/atmos12070835
Ferreira RN. Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere. 2021; 12(7):835. https://doi.org/10.3390/atmos12070835
Chicago/Turabian StyleFerreira, Rosana Nieto. 2021. "Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate" Atmosphere 12, no. 7: 835. https://doi.org/10.3390/atmos12070835
APA StyleFerreira, R. N. (2021). Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere, 12(7), 835. https://doi.org/10.3390/atmos12070835