# Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area and Data

^{2}and lies between 00°07′44″ E and 03°31′07″ E and between 33°53′13″ N and 36°26′34″ N (Figure 1). The topography of the basin is complex and rugged. The altitude varies from −4 m to 1969 m.

#### 2.2. The Standardized Precipitation Index (SPI)

_{0}, c

_{1}, c

_{2}, d

_{1}, d

_{2}and d

_{3}are coefficients whose values are:

_{0}= 2.515517, c

_{1}= 0.802853, c

_{2}= 0.010328

_{1}= 1.432788, d

_{2}= 0.189269 d

_{3}= 0.001308

#### 2.3. Run Theory

#### 2.4. Theil–Sen Estimator

_{1}, x

_{2}, …, x

_{n}precipitation observations at times t

_{1}, t

_{2},…, t

_{n}(with t

_{1}< t

_{2}< … < t

_{n}), for each N pairs of observations x

_{j}and x

_{i}taken at times t

_{j}and t

_{i}, the gradient Q

_{k}can be calculated as:

_{j}> t

_{i}.

_{1}, x

_{2}, …, x

_{n}can then be calculated as the median Q

_{med}of the N values of Q

_{k}, ranked from the smallest to the largest:

_{med}sign reveals the trend behavior, while its value indicates the magnitude of the trend.

#### 2.5. Mann–Kendall Test

_{j}and x

_{i}are the observations taken at times j and i (with j > i), respectively, and n is the dimension of the series.

_{0}, the distribution of S is symmetrical and is normal in the limit as n becomes large, with zero mean and variance:

_{i}indicates the number of ties with extend i.

_{MK}as:

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Dracup, J.A.; Lee, K.S.; Edwin, G.; Paulson, J.R. On the definition of droughts. Water Resour. Res.
**1980**, 16, 297–302. [Google Scholar] [CrossRef] - Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int.
**1985**, 10, 111–120. [Google Scholar] [CrossRef] [Green Version] - Kováčová, M.; Bárek, V.; Kišš, V. DENDROMETRIC CHANGES AS WATER STRESS INDICATOR FOR SUNFLOWER (HELIANTHUS ANNUS L.) AND MAIZE (ZEA MAYS L.)—BASIC RESEARCH IN LABORATORY CONDITIONS. Acta Sci. Pol. Form. Circumiectus
**2020**, 19, 77–85. [Google Scholar] [CrossRef] - Almendra-Martín, L.; Martínez-Fernández, J.; González-Zamora, Á.; Benito-Verdugo, P.; Herrero-Jiménez, C.M. Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products. Atmosphere
**2021**, 12, 236. [Google Scholar] [CrossRef] - Palmer, W.C. Meteorological droughts. In U.S. Department of Commerce Weather Bureau Research Paper 45; US Deptartment of Commerce: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Zhou, J.; Wang, Y.; Su, B.; Wang, A.; Tao, H.; Zhai, J.; Kundzewicz, Z.; Jiang, T. Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. Atmos. Res.
**2020**, 242, 104979. [Google Scholar] [CrossRef] - McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- WMO. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges, WMO-No. 1006; World Meteorological Organization: Geneva, Switzerland, 2006; 26p. [Google Scholar]
- Svoboda, M.; Hayes, M.; Wood, M. (Eds.) WMO Standardized Precipitation Index User Guide; World Meteorological Organization Report WMO-No. 1090; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Hayes, M.J.; Svoboda, M.; Wall, N.A.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc.
**2011**, 92, 485–488. [Google Scholar] [CrossRef] [Green Version] - Fellag, M.; Achite, M.; Wałęga, A. Spatial-temporal characterization of meteorological drought using the Standardized precipitation index. Case study in Algeria. Acta Sci. Pol. Form. Circumiectus
**2021**, 20, 19–31. [Google Scholar] - Ekwazuo, C.S.; Ezeh, C.U. Regional characterization of meteorological drought and floods over West Africa. Sustain. Water Resour. Manag.
**2020**, 6, 1–15. [Google Scholar] - Ojeda, M.G.-V.; Gámiz-Fortis, S.R.; Romero-Jiménez, E.; Rosa-Cánovas, J.J.; Yeste, P.; Castro-Díez, Y.; Esteban-Parra, M.J. Projected changes in the Iberian Peninsula drought characteristics. Sci. Total Environ.
**2021**, 757, 143702. [Google Scholar] [CrossRef] - Zechiel, P.; Chiao, S. Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019. Atmosphere
**2021**, 12, 201. [Google Scholar] [CrossRef] - Vijay, A.; Sivan, S.D.; Mudbhatkal, A.; Mahesha, A. Long-Term Climate Variability and Drought Characteristics in Tropical Region of India. J. Hydrol. Eng.
**2021**, 26, 05021003. [Google Scholar] [CrossRef] - Hadour, A.; Mahé, G.; Meddi, M. Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. J. Hydrol. Reg. Stud.
**2020**, 28, 100671. [Google Scholar] [CrossRef] - Taibi, S.; Meddi, M.; Mahé, G.; Assani, A. Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor. Appl. Clim.
**2015**, 127, 241–257. [Google Scholar] [CrossRef] - Zeroual, A.; Meddi, M.; Bensaad, S. The impact of climate change on river flow in arid and semi-arid rivers in Algeria. In Climate and Land-Surface Changes in Hydrology, Proceedings of the H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; IAHS Publicaions: Wallingford, UK, 2013; Volume 359, pp. 105–110. [Google Scholar]
- Meddi, H.; Meddi, M. Variabilité spatiale et temporelle des précipitations du Nord-Ouest de l’Algérie. Géogr. Tech.
**2007**, 2, 49–55. [Google Scholar] - Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.M.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett.
**2014**, 9, 044001. [Google Scholar] [CrossRef] - Markonis, Y.; Hanel, M.; Máca, P.; Kyselý, J.; Cook, E.R. Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries. Nat. Commun.
**2018**, 9, 1767. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Parry, S.; Prudhomme, C.; Hannaford, J.; Lloyd-Hughes, B. Examining the spatio-temporal evolution and characteristics of large-scale European droughts. In Proceedings of the BHS Third International Symposium, Newcastle, UK, 19–23 July 2010; British Hydrological Society: Loindon, UK, 2010; pp. 135–142. [Google Scholar]
- Littmann, T. An empirical classification of weather types in the Mediterranean Basin and their interrelation with rainfall. Theor. Appl. Clim.
**2000**, 66, 161–171. [Google Scholar] [CrossRef] - Kingston, D.G.; Stagge, J.H.; Tallaksen, L.M.; Hannah, D.M. European-Scale Drought: Understanding Connections between Atmospheric Circulation and Meteorological Drought Indices. J. Clim.
**2015**, 28, 505–516. [Google Scholar] [CrossRef] - López-Moreno, J.I.; Vicente-Serrano, S.M. Positive and negative phases of the winter time North Atlantic Oscillation and drought occurrence over Europe: A multi temporal scale approach. J. Clim.
**2008**, 21, 1220–1243. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Wu, R. Asian meteorological droughts on three time scales and different roles of sea surface temperature and soil moisture. Int. J. Climatol.
**2021**, 1–18. [Google Scholar] [CrossRef] - Hu, Y.; Wang, S. Associations between winter atmospheric teleconnections in drought and haze pollution over Southwest China. Sci. Total Environ.
**2021**, 766, 142599. [Google Scholar] [CrossRef] [PubMed] - Elmeddahi, Y.; Mahmoudi, H.; Issaadi, A.; Goosen, M.F.; Ragab, R. Evaluating the Effects of Climate Change and Variability on Water Resources: A Case Study of the Cheliff Basin in Algeria. Am. J. Eng. Appl. Sci.
**2016**, 9, 835–845. [Google Scholar] [CrossRef] [Green Version] - Achite, M.; Caloiero, T.; Wałęga, A.; Krakauer, N.; Hartani, T. Analysis of the Spatiotemporal Annual Rainfall Variability in the Wadi Cheliff Basin (Algeria) over the Period 1970 to 2018. Water
**2021**, 13, 1477. [Google Scholar] [CrossRef] - Thom, H.C.S. A Note on the Gamma Distribution. Mon. Weather. Rev.
**1958**, 86, 117–122. [Google Scholar] [CrossRef] - Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1970. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M. Seasonal prediction of European spring precipitation from El Niño-Southern Oscillation and Local sea-surface temperatures. Int. J. Clim.
**2002**, 22, 1–14. [Google Scholar] [CrossRef] - Yevjevich, V. An Objective Approach to Definitions and Investigation of Continental Hydrologic Droughts. In Hydrology Paper 23; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Lee, S.-H.; Yoo, S.-H.; Choi, J.-Y.; Bae, S. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100. Water
**2017**, 9, 579. [Google Scholar] [CrossRef] [Green Version] - Caloiero, T.; Caroletti, G.; Coscarelli, R. IMERG-Based Meteorological Drought Analysis over Italy. Climate
**2021**, 9, 65. [Google Scholar] [CrossRef] - Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc.
**1968**, 63, 1379–1389. [Google Scholar] [CrossRef] - Kendall, M.G. Rank Correlation Methods; Hafner Publishing Company: New York, NY, USA, 1962. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica
**1945**, 13, 245–259. [Google Scholar] [CrossRef] - Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water
**2018**, 10, 1043. [Google Scholar] [CrossRef] [Green Version] - Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag.
**2007**, 21, 821–833. [Google Scholar] [CrossRef] - Caloiero, T. SPI Trend Analysis of New Zealand Applying the ITA Technique. Geosciences
**2018**, 8, 101. [Google Scholar] [CrossRef] [Green Version] - Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang.
**2020**, 20, 15. [Google Scholar] [CrossRef] [Green Version] - Vicente-Serrano, S.M.; López-Moreno, J.I.; Lorenzo-Lacruz, J.; Kenawy, A.; Azorin-Molina, C.; Morán-Tejeda, E.; Pasho, E.; Zabalza, J.; Beguería, S.; Angulo-Martínez, M. The NAO Impact on Droughts in the Mediterranean Region. In Advances in Global Change Research; Springer Science and Business Media LLC: Berlin, Germany, 2011; pp. 23–40. [Google Scholar]
- Hoerling, M.P.; Eischeid, J.K.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P.J. On the Increased Frequency of Mediterranean Drought. J. Clim.
**2012**, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version] - Meddi, H.; Meddi, M.; Assani, A.A. Study of Drought in Seven Algerian Plains. Arab. J. Sci. Eng.
**2013**, 39, 339–359. [Google Scholar] [CrossRef] - Quadrelli, R.; Pavan, V.; Molteni, F. Wintertime variability of Mediterranean precipitation and its links with large-scale cir-culation anomalies. Clim. Dyn.
**2001**, 17, 457–466. [Google Scholar] [CrossRef] - Giannini, A.; Saravanan, R.; Chang, P. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science
**2003**, 302, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys.
**2018**, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Location of the study area and of the selected 150 rain gauges on an elevation map, along with the distribution of the average annual precipitation evaluated from the 150 rain gauges with a spline interpolation.

**Figure 2.**Example of drought characteristics evaluated using the run theory for a given threshold level [34].

**Figure 3.**Characterization through boxplots of frequency (%), average duration (in years), average severity, and average intensity (year

^{−1}). The top and the bottom of the boxes are the third and the second quartiles, respectively; the band inside the box is the median and the ends of the whiskers represent the minimum and maximum of all of the data.

**Figure 4.**Spatial distribution of the (

**a**) dry frequency in %, (

**b**) average dry duration in years, (

**c**) average dry severity and (

**d**) average dry intensity in year

^{−1}.

**Figure 5.**Spatial distribution of the (

**a**) wet frequency in %, (

**b**) average wet duration in years, (

**c**) average wet severity and (

**d**) average wet intensity in year

^{−1}.

**Figure 6.**Spatial results of the trend analysis performed on the SPI values. The trend magnitude has been evaluated with the Theil–Sen estimator; the statistical significance of the trends, with a SL = 95%, has been assessed with the Mann–Kendall test. Colored points indicate significant trends.

**Figure 7.**Spatial results of the correlation analysis computed, with the Pearson method and for each station, between the SPI values and the NAO. Large sized points reveal a significant correlation, while small points show non-significant correlations.

SPI Value | Class | Probability (%) |
---|---|---|

SPI ≥ 2.00 | Extremely wet | 2.3 |

1.50 ≤ SPI < 2.00 | Severely wet | 4.4 |

1.00 ≤ SPI < 1.50 | Moderately wet | 9.2 |

0.00 ≤ SPI < 1.00 | Mildly wet | 34.1 |

−1.00 ≤ SPI < 0.00 | Mild drought | 34.1 |

−1.50 ≤ SPI < −1.00 | Moderate drought | 9.2 |

−2.00 ≤ SPI < −1.50 | Severe drought | 4.4 |

SPI < −2.00 | Extreme drought | 2.3 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Achite, M.; Krakauer, N.Y.; Wałęga, A.; Caloiero, T.
Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria. *Atmosphere* **2021**, *12*, 798.
https://doi.org/10.3390/atmos12060798

**AMA Style**

Achite M, Krakauer NY, Wałęga A, Caloiero T.
Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria. *Atmosphere*. 2021; 12(6):798.
https://doi.org/10.3390/atmos12060798

**Chicago/Turabian Style**

Achite, Mohammed, Nir Y. Krakauer, Andrzej Wałęga, and Tommaso Caloiero.
2021. "Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria" *Atmosphere* 12, no. 6: 798.
https://doi.org/10.3390/atmos12060798