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Abstract: In this study, drought events over a large area of the Northern Hemisphere, including
continental Europe, Ireland, the United Kingdom, and the Mediterranean basin, were analyzed
using the Standardized Precipitation Index (SPI) at various times scales (3, 6, 12, and 24 months).
To this purpose, the Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product
Version 2018 data set, with spatial resolutions of 0.5◦ longitude/latitude and for the period 1951–2016,
has been used. First, the temporal evolution of the percentage of grid points, falling within the severe
and extreme drought categories, has been evaluated. Then, a trend analysis has been performed at
a seasonal scale, considering the autumn-winter and the spring-summer periods, and at an annual
scale. The results of this paper highlight that the Mediterranean basin and North Africa are the
most consistently vulnerable areas showing a general reduction in SPI values especially for the long
time scale.

Keywords: drought; SPI; trend; Europe; Mediterranean basin

1. Introduction

Climate change is undoubtedly one of the greatest environmental challenges of our times.
Since the beginning of the 20th century, the highest concentration of anthropogenic greenhouse
gases since the pre-industrial era and an increase in mean global temperatures of about 0.9 ◦C have
been detected [1]. As a consequence, anthropic systems and terrestrial ecosystems are becoming
more vulnerable to environmental phenomena and an increase in floods, heat waves, forest fires,
and droughts can be expected [2,3]. In particular, the Intergovernmental Panel on Climate Change
(IPCC) warned about the possible intensification of droughts in this century, especially in some
areas such as the Mediterranean basin [1]. Within this context, in recent years and in several areas
of the world, drought events have been widely described and analyzed. For example, in Asia,
the spatiotemporal drought variability has been studied by Fang et al. [4] and by Hua et al. [5].
Regional drought events have been analyzed in South [6] and North America [7]. Stagge et al. [8]
and Lloyd-Hughes and Saunders [9] analyzed some of the major large-scale droughts in Central and
Eastern Europe. Drought studies at a national scale have also been performed in Central Europe [10,11]
and in some Mediterranean countries [12–14].

Drought indices are a useful tool for monitoring and assessing the different kinds of drought
(meteorological, agricultural, and hydrological drought) since they facilitate communication of
climate anomalies to diverse user audiences. Numerous indices, based on different variables, have
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been developed to identify and quantify drought events. These include, for example, the Palmer
Drought Severity Index (PDSI) [15], the Reconnaissance Drought Index (RDI) [16], the Standardized
Precipitation Index (SPI) [17,18], the Standardized Precipitation Evapotranspiration Index (SPEI) [19],
the Surface Water Supply Index (SWSI) [20], the Streamflow Drought Index (SDI) [21], the Rainfall
Anomaly Index (RAI) [22], and the Standardized Runoff Index (SRI) [23]. The SPI is the most applied
index to analyze meteorological drought defined as temporary lower-than-average precipitation which
results in diminished water resources availability and carrying capacity of the ecosystems, impacting
on economic activities, human lives, and the environment [24,25]. This can be considered one of the
most robust and effective drought indices, as it can be evaluated for different time scales and allows
the analysis of different drought categories [26]. Moreover, the SPI is based on precipitation alone,
and is thus easier to calculate than more complex indices; furthermore, it allows the comparison
between different drought conditions in different time periods and regions [27,28]. Guttman [29] and
Hayes et al. [30] compared the SPI with the PDSI and concluded that the SPI has statistical consistency
advantages, and can describe both short-term and long-term drought impacts through different time
scales of precipitation anomalies. Besides, due to its intrinsic probabilistic nature, the SPI is the ideal
candidate for carrying out drought risk analysis [31,32]. With this aim, the SPI has been extensively
applied in different countries of the world. For example, in Australia the SPI has been found to
correlate well with fluctuations in shallow ground water table in irrigation areas [33]. In Zimbabwe,
an increase of severe and extreme droughts has been detected in the last years of the past century [34].
In Iran, Golian et al. [35] showed that the northern, the northwestern, and the central parts of Iran have
experienced significant drying trends. Similar results have been obtained in China, in particular in the
Yangtze basin [36] and in the Gansu Province [37]. In New Zealand, in every area currently subject
to drought, an increase in this phenomenon can be expected [38,39]. In Europe, the area covered by
dry events increased during the last 50 years of the past century [40] but different results in drought
frequency, duration, and severity are expected following the projections of drought trends until the
end of the 21st century [41,42]. Finally, in the Mediterranean basin, and in particular in Greece [43],
in Turkey [44], and in southern Italy [45–49], an increase in drought frequency has been evidenced.

As the latest IPCC report [1] has shown, there is medium confidence that droughts will intensify
in the 21st century in some seasons and areas, including southern Europe and the Mediterranean
region due to reduced precipitation or increased evapotranspiration, or both. However, none of the
previously cited papers provides a complete analysis of the meteorological drought both in Europe
and the Mediterranean basin. Although drought should be studied within a large area, because
of its large-scale character, the majority of the cited studies refer to regional or national analyses,
providing only local results without any spatial connection with the others. Given this research context,
this study is an attempt to explore the spatial coherence of drought on a large area of the Northern
Hemisphere, which has never been investigated simultaneously in order to address the gaps in our
understanding identified in the previous works. In particular, there is a need for an examination of
large-scale spatial coherence of meteorological drought, in all seasons, to enable improved assessments
of large-scale drought propagation. Compared to the works already existing on drought, in this paper
some important novelties have been introduced. Firstly, the analysis is based on one of the newest
gridded databases (latest release in 2018) with monthly rainfall data evaluated for a large area of the
Northern Hemisphere in the period 1951–2016. Secondly, meteorological drought has been evaluated
using the SPI at different time scales (3, 6, 12, and 24 months) in order to consider not simply the effect
of drought on plant life and farming but also on the management of water supplies.

2. Methodology

In this work, dry periods were evaluated using the SPI at different time scales (3, 6, 12,
and 24 months). While the 3- and 6-month SPI describe droughts that affect plant life and farming,
the 12- and 24-month SPI influence the way water supplies and reserves are managed [50,51].
Angelidis et al. [52] offered a meticulous description of the method to compute the SPI.
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In order to calculate the index, for each time scale, an appropriate probability density function
(PDF) must be fitted to the frequency distribution of the cumulated precipitation. In particular,
a gamma function is considered. The shape and the scale parameters must be estimated for each month
of the year and for each time aggregation, for example by using the approximation of Thom [53].

Since the gamma distribution is undefined for a rainfall amount x = 0, in order to take into account
the zero values that occur in a sample set, a modified cumulative distribution function (CDF) must be
considered:

H(x) = q + (1 − q) G(x) , (1)

with G(x) the CDF, q the probability of zero precipitation, given by the ratio between the number of
zero in the rainfall series (m) and the number of observations (n).

Finally, the CDF is changed into the standard normal distribution by using the approximate
conversion provided by Abramowitz and Stegun [54]:

z = SPI = −
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, t =

√√√√ln

(
1

(H(x))2

)
f or 0 < H(x) < 0.5, (2)

z = SPI = +

(
t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, t =

√√√√ln

(
1

(1 − H(x))2

)
f or 0 < H(x) < 0.5, (3)

with c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 =
0.001308 mathematical constants.

Table 1 reports the climatic classification according to the SPI, provided by the National Drought
Mitigation Center [55]. This index is now habitually used in the classification of wet periods, even though
the original classification provided by McKee et al. [17] was limited to drought periods only.

Table 1. Climate classification according to the Standardized Precipitation Index (SPI) values.

SPI Value Class Probability (%)

SPI ≥ 2.00 Extremely wet 2.3
1.50 ≤ SPI < 2.00 Severely wet 4.4
1.00 ≤ SPI < 1.50 Moderately wet 9.2
0.00 ≤ SPI < 1.00 Mildly wet 34.1
−1.00 ≤ SPI < 0.00 Mild drought 34.1
−1.50 ≤ SPI < −1.00 Moderate drought 9.2
−2.00 ≤ SPI < −1.50 Severe drought 4.4

SPI < −2.00 Extreme drought 2.3

In order to determine the possible existence of temporal tendencies in the SPI values the
well-known Mann–Kendall (MK) non-parametric test has been applied [56,57].

3. Study Area and Data

The study area (21.25 ÷ 70.75◦ N and −11.75◦ W ÷ 39.25◦ E) includes Continental Europe, Ireland,
the United Kingdom, and the Mediterranean basin reaching portions of three continents; Europe, Asia,
and Africa (Figure 1). Climate is very variable within this area. In Eastern Europe, the rainy season
occurs in early summer and the dry season occurs in winter, in Western Europe, the rainy season
is in the early winter and the dry season is in spring, while in the Mediterranean basin climate is
characterized by warm to hot, dry summers and mild to cool, wet winters.

The SPI has been evaluated for the period 1951–2016 using a globally gridded precipitation data
set: the GPCC Full Data Monthly Product Version 2018 data set [58]. It is based on data that were
observed in situ from rain gauge networks of more than 65,000 stations, originating from several
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sources. In fact, historical data sets from the Food and Agriculture Organization of the UN (FAO),
the Climate Research Unit (CRU), the Global Historical Climatology Network (GHCN), and data
obtained directly from national meteorological and hydrological services, and regional research projects
have been used. Although the high number of stations used, it should be noted, however, that the
station density is very irregular, being very high over Germany and France and rather low in areas
such as the Sahara Desert [59]. The database contains monthly precipitation data at 0.5◦ resolution
(excluding Antarctica) starting from the beginning of the past century; however, due to the low number
of rain gauges used for the creation of the gridded database, in this work data before 1950s were not
considered. Several papers thoroughly used and explained the GPCC data set [60–62].

Water 2018, 10, x FOR PEER REVIEW  4 of 13 

 

sources. In fact, historical data sets from the Food and Agriculture Organization of the UN (FAO), 

the Climate Research Unit (CRU), the Global Historical Climatology Network (GHCN), and data 

obtained directly from national meteorological and hydrological services, and regional research 

projects have been used. Although the high number of stations used, it should be noted, however, 

that the station density is very irregular, being very high over Germany and France and rather low 

in areas such as the Sahara Desert [59]. The database contains monthly precipitation data at 0.5° 

resolution (excluding Antarctica) starting from the beginning of the past century; however, due to 

the low number of rain gauges used for the creation of the gridded database, in this work data before 

1950s were not considered. Several papers thoroughly used and explained the GPCC data set [60–

62]. 

 

Figure 1. Mean annual rainfall distribution on the study area for the period 1951–2016. 

4. Results and Discussion 

Figure 2 shows the temporal distribution, for the period 1951–2016, of the percentage of grid 

points which fell within severe or extreme dry conditions (SPI < −1.5) and allows researchers to 

immediately detect the worst dry events. As a result, for the short-time scale (3- and the 6-month SPI) 

the twentieth century has been characterized by numerous dry periods. The first and most diffused 

drought event took place between November 1953 and May 1954 with more than 30% of the grid 

points showing severe or extreme dry conditions. This event involved most of the countries of 

Europe. Within the 3- and 6-month intervals, another significant occurrence dates back to summer-

autumn 1959, with more than 17% (3 month) and 19% (6 month) of the grid points presenting drought 

conditions, especially in North, Central, and Eastern Europe. Dry conditions for both the 3- and the 

6-month SPI were also present in the years 1964 (in North, Central, and Eastern Europe), 1976 (in 

Central Europe and UK), and 1996 (in North and Central Europe) with 15% plus grid points affected 

by severe or extreme drought. In the twenty-first century, the most diffused drought events (more 

Figure 1. Mean annual rainfall distribution on the study area for the period 1951–2016.

4. Results and Discussion

Figure 2 shows the temporal distribution, for the period 1951–2016, of the percentage of grid
points which fell within severe or extreme dry conditions (SPI < −1.5) and allows researchers to
immediately detect the worst dry events. As a result, for the short-time scale (3- and the 6-month SPI)
the twentieth century has been characterized by numerous dry periods. The first and most diffused
drought event took place between November 1953 and May 1954 with more than 30% of the grid
points showing severe or extreme dry conditions. This event involved most of the countries of Europe.
Within the 3- and 6-month intervals, another significant occurrence dates back to summer-autumn 1959,
with more than 17% (3 month) and 19% (6 month) of the grid points presenting drought conditions,
especially in North, Central, and Eastern Europe. Dry conditions for both the 3- and the 6-month SPI
were also present in the years 1964 (in North, Central, and Eastern Europe), 1976 (in Central Europe
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and UK), and 1996 (in North and Central Europe) with 15% plus grid points affected by severe or
extreme drought. In the twenty-first century, the most diffused drought events (more than 15% of
the grid points) have been detected in 2003 (in Central and Eastern Europe and in the Mediterranean
basin) and 2011 (in UK, Central Europe, and in the Mediterranean basin) only for the 3-month SPI.
Regarding the 12- and 24-month SPI, the most diffused events of the past century occurred before 1990.
In fact, after the 1990s, only between summer and autumn 1990 drought involved about 15% of the
grid points, especially in Southern Europe and in the Mediterranean. On the contrary, before the 1990s,
various drought episodes were registered, such as the prolonged drought event detected between
1959 and 1960 (in North, Central, and Eastern Europe) with more than 23% and about 19% of the
grid points showing drought conditions, respectively, for the 12-month and the 24-month timescales.
Remarkable events have been also observed in 1964, (in North, Central, and Eastern Europe) and
between 1976 and 1977 (in Central Europe and UK) even though with a different behavior. In fact,
while the first is the most diffuse event for the 24-month SPI (21.5% of the grid point), the second event
was particularly relevant for the 12-month SPI (21.2% of the grid points). Another diffuse drought
event, involving more than 15% of the grid points, was detected in 1973 (in most of the countries of
Europe). In the twenty-first century, the worst drought events have been detected between October
2001 and August 2002 (in Southern and Eastern Europe and in the Mediterranean basin) with about
12% and 13.5% of the grid points showing drought conditions, respectively, for the 12-month and the
24-month timescales.
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Figure 2. Temporal evolution of the percentage of grid points which fell within severe or extreme dry
conditions (Standardized Precipitation Index SPI < −1.5) for the period 1951–2016. (a) 3-month SPI;
(b) 6-month SPI; (c) 12-month SPI, and (d) 24-month SPI.

In order to detect drought temporal evolution in the period 1951–2016, the SPI grid point series
were tested for trends through the Mann–Kendall test. In particular, trend analysis has been initially
conducted at a seasonal scale, considering the 3-month SPI values in February for winter, in May for
spring, in August for summer, and in November for autumn (Figure 3). Very different results have
been obtained among the seasons and between Continental Europe and the Mediterranean basin.
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Specifically, in winter, a marked positive trend (Significant Level SL = 99%) has been detected in the
north-eastern side of the study area, and in particular in Scotland, Belarus, Russia, Scandinavian
countries, and Baltic republics, while a clear negative trend (SL = 99%) has been mainly evidenced
in the Mediterranean basin and, in particular, in the Adriatic regions of Italy, Greece, Turkey, Egypt,
Libya, Algeria, and in the eastern side of the study area.
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Figure 3. Spatial distribution of the grid points presenting positive or negative rainfall trends (seasonal
scale). The trend analysis has been conducted at a seasonal scale, considering the 3-month SPI
values in February for winter, in May for spring, in August for summer, and in November for
autumn. Colored squares indicate significant positive or negative trends while white squares refer to a
non-significant trend.

Less marked trends (SL = 95%) have been also identified in France, Germany, southern Italy, Libya,
and Tunisia (positive values), and in Morocco, Spain, France, Bulgaria, Romania, and Ukraine (negative
values). In the other seasons, this marked difference in the SPI trend between Continental Europe and
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Mediterranean basin has not been detected, and only few areas showed positive or negative trends with
a SL = 99%. Indeed, a positive SPI trend (SL = 99%) has been identified in the Scandinavian countries,
Poland, Belarus, Ukraine, Scotland, and Ireland in spring. Conversely, Bulgaria, Egypt, Morocco, Italy,
Libya, and Spain for a SL = 99% and Greece, Algeria, and Portugal for a SL = 95% showed negative
trend values. In summer, very few significant trends (SL ≥ 95%) have been detected, mainly involving
Northern Europe and western North Africa for the positive values, and eastern North Africa and
especially Spain for the negative ones. Finally, in autumn, a clear spatial difference has emerged with
positive SPI trend values (SL ≥ 95%) detected in almost all the European continent and the western
North Africa, and negative values (SL = 99%) identified in the south-eastern sector of the study area.

As previously pointed out, climate is very variable within the study area. For this reason, in order
to take into account the dry and the wet seasons in the various regions, two 6-month periods have
been considered. In particular, the 6-month SPI series evaluated in February (autumn-winter period)
and August (spring-summer period) have been analyzed for trends through the Mann–Kendall test
(Figure 4). Results clearly showed that in the Mediterranean basin, where the autumn-winter period is
generally the rainy period, a negative trend has been detected in Greece, Turkey, Albania, Bulgaria,
Italy, Egypt, Libya, and Algeria for a SL = 99%, and in Croatia, Spain, and Morocco for a SL = 90%.
On the contrary, similarly to the results of the winter SPI, northern Europe showed marked positive
trends (SL = 99%) in Scotland, Belarus, Russia, Scandinavian countries, and Baltic republics. A positive
trend has also been detected in Sicily. According to the results obtained for the 3-month SPI in spring
and summer, the 6-month SPI trend in the spring-summer period evidenced a positive SPI trend
(SL = 99%) in almost every country in central and eastern Europe, but limited to few grid points.
Conversely, some areas of Bulgaria, Greece, Italy, Libya, Egypt, Morocco, Spain, and Portugal showed
negative trend values with a SL = 99%.
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Figure 4. Spatial distribution of the grid points presenting positive or negative rainfall trends
(autumn-winter and spring-summer periods). Colored squares indicate significant positive or negative
trends while white squares refer to a non-significant trend.

Finally, at an annual scale, a prevalent negative trend can be observed for both the 12-month
and the 24-month SPI in the Mediterranean basin (Figure 5). In particular, regarding the 12-month
SPI, a marked negative trend has been detected in Italy, Greece, Albania, Bulgaria, Egypt, Libya,
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Algeria, Morocco, Spain, and the south-eastern sector of the study area for a SL = 99%, and in Portugal,
southern France, Croatia, Slovenia, and Tunisia for a SL = 95%. Conversely, northern France, Scotland,
Ireland, Poland, Belarus, Russia, Scandinavian countries, and the Baltic republics showed a positive
trend (SL = 99%).

The trend behavior evidenced for the 12-month SPI has been confirmed and increased for the
24-month SPI. Indeed, there is an increment of the grid points that show both negative and positive
trends with a SL = 99% and a marked difference between the Mediterranean basin and continental
Europe can be identified. A negative trend has been detected in almost all the Mediterranean basin
and, in particular, in Italy, Slovenia, Albania, Greece, Macedonia, Hungary, Bulgaria, Turkey, Israel,
Egypt, Libya, Algeria, Tunisia, Spain, and Portugal. On the contrary, Ireland, Scotland, northern France,
Benelux, Germany, Scandinavian countries, the Baltic republics, and all the countries from Serbia to
the north-east of the study area evidenced a positive trend in the SPI values.
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Results of this study, which evidenced different trends between continental Europe and the
Mediterranean basin, confirm past studies. Indeed, while in continental Europe dry periods have been
identified in the 20th century [63–65], the 2000s have been characterized by an increase in drought
frequency and severity in Southern Europe and the Mediterranean area [66,67], but also in some
areas of Russia. In particular, Northern and Eastern Europe showed the highest drought frequency
and severity from the early 1950s to the mid-1970s while Southern and Western Europe showed the
highest drought frequency and severity from the early 1990s onwards [68,69]. These trend behaviors
in the Euro-Mediterranean area could be related to teleconnection patterns which reflect large-scale
changes in the atmospheric wave and influence temperature, rainfall, storm tracks, jet stream location
and intensity over vast areas [70,71]. Several past studies [72–74] showed the impacts of the North
Atlantic Oscillation (NAO) especially in the western Mediterranean area. The influence of the NAO
is strongest in winter and early spring. Positive phases of the NAO, such as the one starting around
1970 which is related to the drought from the early 1990s onwards, cause drying across the northern
reaches of the Mediterranean basin, from Spain and Morocco across to the Balkans and western Turkey,
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while favoring wetter conditions in coastal regions of Libya, Egypt, and the Levant [75,76] with a
simultaneous increase in cyclones and precipitation in Northern Europe [77]. On the contrary, negative
phases of the NAO, such as the one between 1950 and 1970, can be related to the Northern and Eastern
Europe droughts. In fact, besides the Mediterranean basin, the Northern Hemisphere is also generally
influenced by the NAO, especially in the last year when the northern center of the NAO dipole moved
close to Scandinavia [78]. For example, due to the NAO influence, in the last decades Scotland has
been subject to increasing rainfall frequencies and total amounts, larger than those available in the
bordering areas; this could be the reason why Scotland is less prone to drought events. Instead, the dry
conditions detected in North Africa could be associated with the well-documented Sahelian drought,
which results from the response of the African summer monsoon to oceanic forcing, amplified by
land-atmosphere interaction [79]. Finally, as evidenced also by Spinoni et al. [42], Central Europe is
known to be the transition area between wetting northeastern and drying southwestern European
countries, which was reflected in mixed or negligible drought tendencies.

Finally, an important remark concerning the accuracy of the obtained gridded results and some
uncertainty issues is necessary in order to better appreciate the results of this study. Indeed, the latter
may differ from those obtained by other regional studies using direct rain gauge measurements. Such a
difference must be ascribed to some uncertainty factors associated with the GPCC gridded products
which, as Becker et al. [60] have evidenced, result from the interpolation of irregularly distributed rain
gauge measurements onto regular grids.

5. Conclusions

In this paper, starting from a globally gridded precipitation data set of monthly rainfall
observations, a drought analysis has been performed over a large area of the Northern Hemisphere
which includes continental Europe, Ireland, the United Kingdom, and the Mediterranean basin and
which reaches portions of three continents, Europe, Asia, and Africa. In particular, the GPCC globally
gridded precipitation data set was used, the SPI has been evaluated, and a trend analysis has been
applied on the SPI values at four different time scales. As a result of the temporal evolution of the
percentage of grid points falling within the severe and extreme drought categories, considering the
3- and 6-month SPI, several dry episodes have been detected during the last century. In particular,
the first and most diffused drought event took place in 1954 involving more than 30% of the grid points.
In the twenty-first century, three main drought events have been detected in 2003, 2011, and 2014 but
only for the 3-month SPI. Regarding the 12- and 24-month SPI, the most diffused events of the past
century occurred before 1990, and in particular between 1959 and 1960, in 1964, in 1973, and between
1976 and 1977. In this century, the worst drought events have been detected between October 2001 and
August 2002 involving only about 12% and 13.5% of the grid points. The trend analysis applied
showed very different results among the different time scales and between continental Europe and
the Mediterranean basin. In particular, at a seasonal scale, a marked positive trend has been detected
in winter in several areas of Central and Northern Europe, while a clear negative trend has been
mainly evidenced in the Mediterranean basin. This trend behavior has been confirmed considering the
autumn-winter period, although in more restricted areas. At an annual scale the difference between
the Mediterranean basin and continental Europe is more marked, in particular considering the trend
analysis on the 24-month SPI when large areas of the Mediterranean basin showed negative trends with
a SL = 99% and a huge number of central and eastern European nations presented marked positive
trends. As a result of this marked trend obtained for the 12- and 24-month SPI, drought in Europe
and in the Mediterranean basin seems to have higher impact on water resource management than on
vegetation and agricultural practices. In fact, while the 3- and 6-month SPI describe droughts that
affect plant life and farming, the 12- and 24-month SPI influence the way water supplies and reserves
are managed.
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