Estimation of N2O Emissions from Agricultural Soils and Determination of Nitrogen Leakage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Irrigated Areas in Slovakia
2.2. Estimation of Wet Areas in Slovakia
2.3. Estimation of N2O Emissions from Leached Nitrogen
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bielek, P. Nitrogen in Agricultural Soils of the SR; The Research Institute of Soil Fertility Bratislava: Nitra, Slovakia, 1998; ISBN 80-85361-44-2. [Google Scholar]
- Xu, J.; Cai, H.; Wang, X.; Ma, C.; Lu, Y.; Ding, Y.; Wang, X.; Chen, H.; Wang, Y.; Saddique, Q. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water Manag. 2020, 228. [Google Scholar] [CrossRef]
- Khan, M.; Mohammad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Bouwman, A.F. Exchange of Greenhouse Gases between Terrestrial Ecosystems and the Atmosphere. In Soils and the Greenhouse Effect; Bouwman, A.F., Ed.; John Wiley and Sons: New York, NY, USA, 1990; pp. 61–127. [Google Scholar]
- Smith, K.A.; Thomson, P.E.; Clayton, H.; McTaggart, I.P.; Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 1998, 32, 3301–3309. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Orlando, J.; Tyndall, G. Atmospheric Chemistry and Global Change; Oxford University Press: Oxford, UK, 1999; ISBN 978-0195105216. [Google Scholar]
- Brutin, D. Droplet Wetting and Evaporation; Aix-Marseille University: Marseille, France, 2015; ISBN 978-0-12-800722-8. [Google Scholar] [CrossRef]
- Sahrawat, K.L.; Keeney, D.R. Nitrous Oxide Emission from Soils. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1986; Volume 4. [Google Scholar] [CrossRef]
- Tian, L.; Cai, Y.; Akiyama, H. A review of indirect N2O emission factors from agricultural nitrogen leaching and runoff to update of the default IPCC values. Environ. Pollut. 2019, 245, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, G.K.; Booth, R.E.; Leake, J.R.; Read, D.J.; Grime, P.; Lee, J.A. Effects of enhanced nitrogen deposition and phosphorus limitation on nitrogen budgets of semi-natural grasslands. Glob. Chang. Biol. 2003, 9, 1309–1321. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization of the United Nations, Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper. 1998. Available online: http://www.fao.org/3/x0490e/x0490e00.htm#Contents (accessed on 4 May 2020).
- Mati, R.; Kotorová, D.; Naštáková, J. Evaluation and Pricing of Soil Water-Retention Capacities in the East Slovak lowland. Agriculture 2009, 4, 189–196. Available online: https://www.agriculture.sk/fileadmin/agriculture/files/2009/Issue_4/4-Mati-Kotorova-189-196.pdf (accessed on 13 October 2019).
- Cardenas, L.M.; Gooday, R.; Brown, L.; Scholefield, D.; Cuttle, S.; Gilhespy, S.; Matthews, R.; Misselbrook, T.; Wang, J.; Li, C.; et al. Towards an improved inventory of N2O from Agriculture: Model evaluation of N2O emission factors and N fraction leached from different sources in UK agriculture. Atmos. Environ. 2013, 79, 340–348. [Google Scholar] [CrossRef]
- Bielek, P. The Soil Cultivation for Environmental Managers; The Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2017; p. 318. ISBN 978-80-552-1682-9. [Google Scholar]
- Davies, D.B.; Silvester-Bradly, R. The contribution of fertilizer nitrogen to leachable nitrogen in the UK. A review. J. Sci. Food Agric. 1995, 68, 399–406. [Google Scholar] [CrossRef]
- Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O. Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle—OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosyst. 1998, 52, 225–248. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change, Agriculture. 2006 IPCC Guidelines for National Greenhouse Gas Inventory. In Volume 4 Agriculture, Forestry and Other Land Use Methodology; Chapter 11 N2O emissions from managed soils, and CO2 emissions from lime and urea application; Institute for Global Environmental Strategies: Hayama, Japan, 2006; ISBN 87888-032-4. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 21 May 2020).
- The Statistical Office of Slovak Republic-Data Cube, Land Use Database, 1995–2017. Available online: http://datacube.statistics.sk/#!/view/sk/VBD_SLOVSTAT/pl2001rs/v_pl2001rs_00_00_00_sk (accessed on 2 April 2020).
- The Food and Agriculture Organization of the United Nations, The ET0 Calculator, and Evapotranspiration from a Reference Surface, The Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/3/X0490E/x0490e08.htm (accessed on 13 October 2019).
- Kannappan, K.; Murugappan, A.; Manikumari, N.; Manoharan, A. Reference Evapotranspiration Models for a Certain Location in Tamilnadu; Watershed Hydrology: New Delhi, India, 2003; p. 58. ISBN 81-7764-547-1. [Google Scholar]
- Gabriels, D. Aridity and Drought Indices, Dept. Soil Management, Ghent University, Belgium. Available online: http://indico.ictp.it/event/a06222/material/4/2.pdf (accessed on 18 May 2020).
- SHMI. Climate Atlas of Slovakia; The Slovak Hydrometeorological Institute: Bratislava, Slovakia, 2015; p. 132. ISBN 978-80-88907-90-9. [Google Scholar]
- Hungarian Meteorological Service (OMSZ). National Inventory Report (Online). Available online: https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018 (accessed on 19 June 2019).
- The Common Agricultural Policy, European Commission. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy_en (accessed on 2 April 2020).
- Kocur-Bera, K. Data compatibility between the Land and Building Cadastre (LBC) and the Land Parcel Identification System (LPIS) in the context of area-based payments: A case study in the Polish Region of Warmia and Mazur. Land Use Policy 2019, 80, 370–379. [Google Scholar] [CrossRef]
- The Slovak Hydrometeorological Institute (SHMÚ). National Inventory Report. Available online: https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2018 (accessed on 19 June 2019).
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 2013, 368. [Google Scholar] [CrossRef]
- Mosier, A.; Syers, J.K.; Freney, J.R. (Eds.) Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment; Island Press: Washington, DC, USA, 2004; Available online: https://ebookcentral-1proquest-1com-1f8y3dxhq0d47.hanproxy.cvtisr.sk/lib/cvtisr-ebooks/detail.action?docID=3317459 (accessed on 4 December 2019).
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycle 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- The Central Control and Testing Institute in Agriculture. Available online: https://www.uksup.sk/odbor-pody-hnojiv-a-obnovitelnych-zdrojov-energii (accessed on 2 April 2020).
- Eder, A.; Blöschl, G.; Feichtinger, F.; Herndl, M.; Klammler, G.; Hösch, J.; Erhart, E.; Strauss, P. Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: Results from lysimeter studies. Nutr. Cycl. Agroecosyst. 2015, 101, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Bielek, P. Nitrogen transformations to carbon mineralization in soil. In Plant Nutrition for Sustainable Food Production and Environment; Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J., Eds.; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1997; Volume 78, pp. 763–764. [Google Scholar] [CrossRef]
- Silgram, M.; Waring, R.; Anthony, S.; Webb, J. Intercomparison of national & IPCC methods for estimating N loss from agricultural land. Nutr. Cycl. Agroecosyst. 2001, 60, 189–195. [Google Scholar] [CrossRef]
- Ryan, M.; Brophy, C.; Connolly, J.; McNamara, K.; Carton, O.T. Monitoring of nitrogen leaching on a dairy farm during four drainage seasons. Ir. J. Agric. Food Res. 2006, 45, 115–134. Available online: https://t-stor.teagasc.ie/handle/11019/608 (accessed on 13 October 2019).
- Costantini, E.A.C.; L’Abate, G. IT\GeoDataBase Pedoclimatico D’italia (Senza Elaborazioni HTM); EN\Soil and Climate GeoDataBase of Italy. Version 1.0. Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA). Database. 2004. Available online: http://ring.ciard.net/soil-and-climate-geodatabase-italy (accessed on 10 March 2020).
- The European Environmental Agency, The Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019. Available online: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019 (accessed on 13 October 2019).
Year | Total Irrigated Areas (ha) | Utilized Agricultural Area (ha) | Share of Irrigated Areas to Total Areas of Agricultural Use (FracIRR) | Share of Irrigated Areas According to Eurostat |
---|---|---|---|---|
2002 | 268,738 | 1,497,354 | 17.9% | |
2003 | 294,202 | 1,499,323 | 19.6% | |
2004 | 220,861 | 1,501,425 | 14.7% | |
2005 | 147,519 | 1,504,147 | 9.8% | |
2006 | 196,749 | 1,507,400 | 13.1% | 2.4% |
2007 | 226,548 | 1,507,698 | 15.0% | |
2008 | 225,436 | 1,507,278 | 15.0% | 2.0% |
2009 | 214,326 | 1,503,561 | 14.3% | |
2010 | 206,523 | 1,501,997 | 13.7% | |
2011 | 194,215 | 1,500,905 | 12.9% | 0.8% |
2012 | 187,574 | 1,499,568 | 12.5% | |
2013 | 168,277 | 1,498,986 | 11.2% | |
2014 | 154,698 | 1,498,119 | 10.3% | 1.3% |
2015 | 62,239 | 1,495,789 | 4.2% | |
2016 | 60,818 | 1,494,900 | 4.1% | |
2017 | 54,421 | 1,494,566 | 3.6% |
Name of Station | Latitude | Longitude | (P/ET0) |
---|---|---|---|
Kuchyňa | 48.40 | 17.12 | 0.6 |
Trenčín | 48.88 | 18.05 | 0.7 |
Senica | 48.69 | 17.40 | 0.7 |
Bratislava–Koliba | 48.17 | 17.11 | 0.5 |
Bratislava–Airport | 48.17 | 17.21 | 0.4 |
Jaslovské Bohunice | 48.49 | 17.66 | 0.5 |
Žihárec | 48.07 | 17.88 | 0.6 |
Piešťany | 48.61 | 17.83 | 0.5 |
Žilina | 49.23 | 18.61 | 1.2 |
Topoľčany | 48.56 | 18.15 | 0.6 |
Podhájska | 48.11 | 18.34 | 0.7 |
Nitra | 48.28 | 18.14 | 0.5 |
Mochovce | 48.29 | 18.46 | 0.7 |
Hurbanovo | 47.87 | 18.19 | 0.6 |
Čadca | 49.43 | 18.81 | 1.7 |
Prievidza | 48.77 | 18.59 | 0.8 |
Oravská Lesná | 49.37 | 19.18 | 2.5 |
Dudince | 48.17 | 18.88 | 0.8 |
Banská Bystrica | 48.73 | 19.12 | 1.2 |
Žiar nad Hronom | 48.59 | 18.85 | 0.9 |
Banská Štiavnica | 48.45 | 18.92 | 1.2 |
Sliač | 48.64 | 19.14 | 1.0 |
Boľkovce | 48.34 | 19.73 | 0.7 |
Poprad | 49.07 | 20.25 | 0.9 |
Telgárt | 48.85 | 20.19 | 1.5 |
Rimavská Sobota | 48.37 | 20.01 | 0.8 |
Švedlár | 48.81 | 20.71 | 1.0 |
Spišské Vlachy | 48.94 | 20.80 | 1.0 |
Podolínec | 49.25 | 20.53 | 1.1 |
Gánovce | 49.03 | 20.32 | 0.9 |
Prešov | 49.03 | 21.30 | 0.8 |
Bardejov | 49.28 | 21.27 | 1.3 |
Čaklov | 48.90 | 21.63 | 0.9 |
Košice | 48.67 | 21.24 | 0.6 |
Tisinec | 49.21 | 21.65 | 1.2 |
Medzilaborce | 49.25 | 21.91 | 1.7 |
Milhostov | 48.66 | 21.72 | 0.8 |
Somotor | 48.42 | 21.82 | 1.0 |
Michalovce | 48.74 | 21.94 | 1.0 |
Orechová | 48.71 | 22.22 | 1.2 |
Kamenica nad Cirochou | 48.93 | 21.99 | 1.2 |
Nitrogen from mineral fertilizers (FSN) | 122,541 |
Nitrogen from organic fertilizers (FON) | 23,548 |
Nitrogen from postharvest residues (FCR) | 40,037 |
Nitrogen produced during grazing of farm animals (FPRP) | 8448 |
Total nitrogen applied to agricultural land | 194,574 |
Area | ha | Share of Total Agricultural Area | Share of Total Area of Slovakia |
---|---|---|---|
Agricultural soils | 1,972,260 | 100% | 47.4% |
Total wet areas | 524,875 | 22.6% | 10.9% |
Results | Leached Nitrogen (kg) | Emissions of N2O (Gg) | Emission Factor (kg N2O–N/kg N) |
---|---|---|---|
Default FracLEACH | 58,372,923 | 0.688 | 0.0075 |
National FracLEACH | 18,653,779 | 0.179 | 0.0075 |
Emissions decrease compared to default FracLEACH value | −74% | - |
EU Country | Austria * | Spain * | UK * | Italy * | Ireland * | Lithuania * | Slovakia |
---|---|---|---|---|---|---|---|
FracLEACHN (%) | 15.2 | 8.3 | 18.0 | 20.7 | 10.0 | 23.0 | 7.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonhauzer, K.; Tonhauzer, P.; Szemesová, J.; Šiška, B. Estimation of N2O Emissions from Agricultural Soils and Determination of Nitrogen Leakage. Atmosphere 2020, 11, 552. https://doi.org/10.3390/atmos11060552
Tonhauzer K, Tonhauzer P, Szemesová J, Šiška B. Estimation of N2O Emissions from Agricultural Soils and Determination of Nitrogen Leakage. Atmosphere. 2020; 11(6):552. https://doi.org/10.3390/atmos11060552
Chicago/Turabian StyleTonhauzer, Kristína, Peter Tonhauzer, Janka Szemesová, and Bernard Šiška. 2020. "Estimation of N2O Emissions from Agricultural Soils and Determination of Nitrogen Leakage" Atmosphere 11, no. 6: 552. https://doi.org/10.3390/atmos11060552
APA StyleTonhauzer, K., Tonhauzer, P., Szemesová, J., & Šiška, B. (2020). Estimation of N2O Emissions from Agricultural Soils and Determination of Nitrogen Leakage. Atmosphere, 11(6), 552. https://doi.org/10.3390/atmos11060552