The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia
Abstract
:1. Introduction
2. Regional Setting
3. Data
3.1. GNIP Isotope Data
3.2. Weather Station Precipitation Data
4. Methods
5. Results and Discussion
5.1. Precipitation Origin from the HYSPLIT Framework
5.2. The Effect of Synoptic Weather Types on δ18Op
5.3. The Effect of Synoptic Weather Types on Deuterium Excess
5.4. Implications for SHWW Reconstruction
5.5. Implications for Paleoaltimetry Reconstruction
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gat, J.R. Isotope Hydrology: A Study of the Water Cycle; Imperial College Press: London, UK, 2010. [Google Scholar]
- Dansgaard, W. The abundance of O18 in atmospheric water and water vapour. Tellus 1953, 5, 461–469. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washingtong, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Jouzel, J.; Hoffmann, G.; Koster, R.D.; Masson, V. Water isotopes in precipitation:: Data/model comparison for present-day and past climates. Quat. Sci. Rev. 2000, 19, 363–379. [Google Scholar] [CrossRef]
- Libby, L.M.; Pandolfi, L.J.; Payton, P.H.; Marshall, J.; Becker, B.; Giertz-Sienbenlist, V. Isotopic tree thermometers. Nature 1976, 261, 284–288. [Google Scholar] [CrossRef]
- Jouzel, J.; Lorius, C.; Petit, J.R.; Genthon, C.; Barkov, N.I.; Kotlyakov, V.M.; Petrov, V.M. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 1987, 329, 403–408. [Google Scholar] [CrossRef]
- von Grafenstein, U.; Erlenkeuser, H.; Brauer, A.; Jouzel, J.; Johnsen, S.J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 1999, 284, 1654–1657. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Yu, Z. Applications of stable isotopes to studies of paleohydrology and paleoclimatology. In Encyclopedia of Water: Science, Technology, and Society; Maurice, P.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Poage, M.A. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 2000, 28, 115–118. [Google Scholar] [CrossRef]
- Blisniuk, P.M.; Stern, L.A.; Chamberlain, C.P.; Idleman, B.; Zeitler, P.K. Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth Planet. Sci. Lett. 2005, 230, 125–142. [Google Scholar] [CrossRef]
- Rindsberger, M.; Magaritz, M.; Carmi, I.; Gilad, D. The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area. Geophys. Res. Lett. 1983, 10, 43–46. [Google Scholar] [CrossRef]
- Bailey, H.L.; Klein, E.S.; Welker, J.M. Synoptic and mesoscale mechanisms drive winter precipitation δ18O/δ2H in south-central Alaska. J. Geophys. Res. Atmos. 2019, 124, 4252–4266. [Google Scholar] [CrossRef]
- Sjostrom, D.J.; Welker, J.M. The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J. Geochem. Explor. 2009, 102, 103–112. [Google Scholar] [CrossRef]
- Crawford, J.; Hollins, S.E.; Meredith, K.T.; Hughes, C.E. Precipitation stable isotope variability and subcloud evaporation processes in a semi-arid region. Hydrol. Process. 2017, 31, 20–34. [Google Scholar] [CrossRef]
- Risi, C.; Bony, S.; Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 2008, 113, D19306. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Romatschke, U.; Araguas-Araguas, L.; Belachew, D.; Longstaffe, F.J.; Berg, P.; Schumacher, C.; Funk, A. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 2016, 9, 624–629. [Google Scholar] [CrossRef] [Green Version]
- Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories. J. Geophys. Res. Atmos. 2002, 107, ACL-14. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth Planet. Sci. Lett. 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Galewsky, J. Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies. Geology 2009, 37, 791–794. [Google Scholar] [CrossRef]
- Lechler, A.R.; Galewsky, J. Refining paleoaltimetry reconstructions of the Sierra Nevada, California, using air parcel trajectories. Geology 2013, 41, 259–262. [Google Scholar] [CrossRef]
- Guan, H.; Simmons, C.T.; Love, A.J. Orographic controls on rain water isotope distribution in the Mount Lofty Ranges of South Australia. J. Hydrol. 2009, 374, 255–264. [Google Scholar] [CrossRef]
- Sinclair, K.E.; Marshall, S.J.; Moran, T.A. A Lagrangian approach to modelling stable isotopes in precipitation over mountainous terrain. Hydrol. Process. 2011, 25, 2481–2491. [Google Scholar] [CrossRef]
- Callow, N.; McGowan, H.; Warren, L.; Speirs, J. Drivers of precipitation stable oxygen isotope variability in an alpine setting, Snowy Mountains, Australia. J. Geophys. Res. Atmos. 2014, 119, 3016–3031. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.; Hughes, C.E.; Parkes, S.D. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? J. Hydrol. 2013, 507, 213–226. [Google Scholar] [CrossRef]
- Mayr, C.; Lücke, A.; Stichler, W.; Trimborn, P.; Ercolano, B.; Oliva, G.; Ohlendorf, C.; Soto, J.; Fey, M.; Haberzettl, T.; et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H). J. Hydrol. 2007, 334, 53–63. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Crawford, J.; Hughes, C.E.; Du, M.; Liu, X. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. J. Geophys. Res. Atmos. 2017, 122, 2667–2682. [Google Scholar] [CrossRef]
- Barras, V.J.I.; Simmonds, I. Synoptic controls upon δ18O in southern Tasmanian precipitation. Geophys. Res. Lett. 2008, 35, L02707. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Putman, A.L.; Feng, X.; Sonder, L.J.; Posmentier, E.S. Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region. Atmos. Chem. Phys. 2017, 17, 4627–4639. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Shanahan, T.M.; Partin, J. Controls on the isotopic composition of precipitation in the south-central United States. J. Geophys. Res. Atmos. 2019, 124, 8320–8335. [Google Scholar] [CrossRef]
- IAEA/WMO. The Global Network of Isotopes in Precipitation Database. Available online: https://nucleus.iaea.org/wiser/ (accessed on 22 April 2020).
- Bailey, H.L.; Kaufman, D.S.; Henderson, A.C.G.; Leng, M.J. Synoptic scale controls on the δ18O in precipitation across Beringia. Geophys. Res. Lett. 2015, 42, 4608–4616. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.; Lopez, P.; Minvielle, M.; Rojas, M. Large-scale control on the Patagonian climate. J. Clim. 2013, 26, 215–230. [Google Scholar] [CrossRef]
- Colwyn, D.A.; Brandon, M.T.; Hren, M.T.; Hourigan, J.; Pacini, A.; Cosgrove, M.G.; Midzik, M.; Garreaud, R.D.; Metzger, C. Growth and steady state of the Patagonian Andes. Am. J. Sci. 2019, 319, 431–472. [Google Scholar] [CrossRef]
- Colwyn, D.A.; Hren, M.T. An abrupt decrease in Southern Hemisphere terrestrial temperature during the Eocene–Oligocene transition. Earth Planet. Sci. Lett. 2019, 512, 227–235. [Google Scholar] [CrossRef]
- Xia, Z.; Yu, Z.; Loisel, J. Centennial-scale dynamics of the Southern Hemisphere Westerly Winds across the Drake Passage over the past two millennia. Geology 2018, 46, 855–858. [Google Scholar] [CrossRef] [Green Version]
- Agosta, E.; Compagnucci, R.; Ariztegui, D. Precipitation linked to Atlantic moisture transport: Clues to interpret Patagonian palaeoclimate. Clim. Res. 2015, 62, 219–240. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, J.T.M.; Van den Broeke, M.R.; Van Wessem, J.M.; Van de Berg, W.J.; Van Meijgaard, E.; Van Ulft, L.H.; Schaefer, M. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J. Clim. 2014, 27, 4607–4621. [Google Scholar] [CrossRef]
- Berman, A.L.; Silvestri, G.; Compagnucci, R. Eastern Patagonia seasonal precipitation: Influence of Southern Hemisphere circulation and links with subtropical South American precipitation. J. Clim. 2012, 25, 6781–6795. [Google Scholar] [CrossRef]
- NOAA. National Centers for Environmental Information: Global Historical Climatology Network (GHCN). Available online: https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn/ (accessed on 22 April 2020).
- Weidemann, S.S.; Sauter, T.; Kilian, R.; Steger, D.; Butorovic, N.; Schneider, C. A 17-year record of meteorological observations across the Gran Campo Nevado Ice Cap in southern Patagonia, Chile, related to synoptic weather types and climate modes. Front. Earth Sci. 2018, 6, 53. [Google Scholar] [CrossRef]
- Schneider, C.; Glaser, M.; Kilian, R.; Santana, A.; Butorovic, N.; Casassa, G. Weather observations across the southern Andes at 53° S. Phys. Geogr. 2003, 24, 97–119. [Google Scholar] [CrossRef]
- Mayr, C.; Wille, M.; Haberzettl, T.; Fey, M.; Janssen, S.; Lücke, A.; Ohlendorf, C.; Oliva, G.; Schäbitz, F.; Schleser, G.H.; et al. Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52° S). Quat. Sci. Rev. 2007, 26, 579–584. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Open File Rep. 2011-1073; U.S. Geological Survey: Reston, VA, USA, 2011; 26p.
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Daley, T.J.; Mauquoy, D.; Chambers, F.M.; Street-Perrott, F.A.; Hughes, P.D.M.; Loader, N.J.; Roland, T.P.; van Bellen, S.; Garcia-Meneses, P.; Lewin, S. Investigating late Holocene variations in hydroclimate and the stable isotope composition of precipitation using southern South American peatlands: An hypothesis. Clim. Past 2012, 8, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Gillett, N.P.; Kell, T.D.; Jones, P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006, 33, L23704. [Google Scholar] [CrossRef]
- Moreno, P.I.; Vilanova, I.; Villa-Martínez, R.; Garreaud, R.D.; Rojas, M.; De Pol-Holz, R. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nat. Commun. 2014, 5, 4375. [Google Scholar] [CrossRef] [Green Version]
- Krklec, K.; Domínguez-Villar, D. Quantification of the impact of moisture source regions on the oxygen isotope composition of precipitation over Eagle Cave, central Spain. Geochim. Cosmochim. Acta 2014, 134, 39–54. [Google Scholar] [CrossRef]
- Meteorological Direction of Chile—Cimate Services. Available online: https://climatologia.meteochile.gob.cl/ (accessed on 30 November 2019).
- Terzer-Wassmuth, S. International Atomic Energy Agency; Vienna International Centre: Vienna, Austria, 2019. [Google Scholar]
- Cross, M. PySPLIT: A Package for the Generation, Analysis, and Visualization of HYSPLIT Air Parcel Trajectories. In Proceedings of the 14th Python in Science Conference (SciPy 2015), Austin, TX, USA, 6–12 July 2015. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- NOAA. Air Resources Laboratory Gridded Meteorological Data Archives. Available online: https://www.ready.noaa.gov/archives.php/ (accessed on 22 April 2020).
- Fiorella, R.P.; Poulsen, C.J.; Pillco Zolá, R.S.; Barnes, J.B.; Tabor, C.R.; Ehlers, T.A. Spatiotemporal variability of modern precipitation δ18O in the central Andes and implications for paleoclimate and paleoaltimetry estimates. J. Geophys. Res. Atmos. 2015, 120, 4630–4656. [Google Scholar] [CrossRef] [Green Version]
- Krklec, K.; Domínguez-Villar, D.; Lojen, S. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. J. Hydrol. 2018, 561, 810–821. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 2008, 113, D03107. [Google Scholar] [CrossRef] [Green Version]
- Stern, L.A.; Blisniuk, P.M. Stable isotope composition of precipitation across the southern Patagonian Andes. J. Geophys. Res. Atmos. 2002, 107, ACL-3. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Hafner: New York, NY, USA, 1958. [Google Scholar]
- Bershaw, J.; Penny, S.M.; Garzione, C.N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. Atmos. 2012, 117, D02110. [Google Scholar] [CrossRef] [Green Version]
- Brittingham, A.; Petrosyan, Z.; Hepburn, J.C.; Richards, M.P.; Hren, M.T.; Hartman, G. Influence of the North Atlantic Oscillation on δD and δ18O in meteoric water in the Armenian Highland. J. Hydrol. 2019, 575, 513–522. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Winnick, M.J.; Mix, H.T.; Chamberlain, S.D.; Maher, K. The impact of Neogene grassland expansion and aridification on the isotopic composition of continental precipitation. Glob. Biogeochem. Cycles 2014, 28, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Mix, H.T.; Winnick, M.J.; Mulch, A.; Page Chamberlain, C. Grassland expansion as an instrument of hydrologic change in Neogene western North America. Earth Planet. Sci. Lett. 2013, 377–378, 73–83. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- KNMI Climate Explorer. Available online: https://climexp.knmi.nl/ (accessed on 22 April 2020).
- Agosta, E.A.; Martin, P.B.; Serio, L.A. Persistent easterly winds leading to precipitation in the Atlantic Coast of Patagonia. Int. J Climatol. 2019, 39, 5063–5090. [Google Scholar] [CrossRef]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Vimeux, F.; Masson, V.; Jouzel, J.; Stievenard, M.; Petit, J.R. Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 1999, 398, 410–413. [Google Scholar] [CrossRef]
- Gat, J.R.; Bowser, C.J.; Kendall, C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys. Res. Lett. 1994, 21, 557–560. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions—Moisture recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Garreaud, R. Precipitation and circulation covariability in the extratropics. J. Clim. 2007, 20, 4789–4797. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Vimeux, F.; Phipps, S.J.; Turner, J.; England, M.H. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Chang. 2014, 4, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, J.; Rosenthal, Y.; Zhang, X.; Otto-Bliesner, B.L.; Timmermann, A.; Smith, R.S.; Lohmann, G.; Zheng, W.; Elison Timm, O. The Holocene temperature conundrum. Proc. Natl. Acad. Sci. USA 2014, 111, E3501–E3505. [Google Scholar] [CrossRef] [Green Version]
- Butorovic, N. Resumen Metereológico año 2012 Estación “Jorge C. Schythe” (53°08′ S; 70°53′ W; 6m.s.n.m). Anal. Inst. Patag. 2013, 41, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Fogt, R.L.; Bromwich, D.H.; Hines, K.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dynam. 2011, 36, 1555–1576. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, L.B.; Galewsky, J. Atmospheric flow patterns around the Southern Alps of New Zealand and implications for paleoaltimetry. Geophys. Res. Lett. 2017, 44, 11601–11605. [Google Scholar] [CrossRef]
- Sime, L.C.; Kohfeld, K.E.; Le Quéré, C.; Wolff, E.W.; de Boer, A.M.; Graham, R.M.; Bopp, L. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison. Quat. Sci. Rev. 2013, 64, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Lamy, F.; Kilian, R.; Arz, H.W.; Francois, J.-P.; Kaiser, J.; Prange, M.; Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci. 2010, 3, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Groeneveld, J.; Henderiks, J.; Renema, W.; McHugh, C.M.; De Vleeschouwer, D.; Christensen, B.A.; Fulthorpe, C.S.; Reuning, L.; Gallagher, S.J.; Bogus, K.; et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies. Sci. Adv. 2017, 3, e1602567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NOAA. Physical Sciences Laboratory (PSL) Daily Mean Composites. Available online: https://psl.noaa.gov/data/composites/day/ (accessed on 22 April 2020).
GDAS (2005–2017) | NCEP/NCAR (1990–2004) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Season | dE (%) | dN (%) | dW (%) | dS (%) | Season | IBTH (m) | dE (%) | dN (%) | dW (%) | dS (%) |
DJF | 5.8 | 0.4 | 93.0 | 0.8 | DJF | 500 | 3 | 5.1 | 89.9 | 2 |
1000 | 1.8 | 4.1 | 92.2 | 1.9 | ||||||
1500 | 0.9 | 4.3 | 94.1 | 0.6 | ||||||
2000 | 0.8 | 4.3 | 94.3 | 0.6 | ||||||
MAM | 12.6 | 6.1 | 80.1 | 1.1 | MAM | 500 | 6.1 | 6.2 | 84.5 | 3.3 |
1000 | 4.7 | 4.9 | 87.5 | 2.9 | ||||||
1500 | 1.6 | 5.3 | 90.4 | 2.7 | ||||||
2000 | 1.1 | 5.2 | 91.6 | 2.1 | ||||||
JJA | 22.3 | 6.7 | 67.7 | 3.3 | JJA | 500 | 7.1 | 11.3 | 77.6 | 4 |
1000 | 3.8 | 8.6 | 83.3 | 4.3 | ||||||
1500 | 1.1 | 7.5 | 87.4 | 4 | ||||||
2000 | 0.7 | 6.2 | 90.6 | 2.5 | ||||||
SON | 10.0 | 2.7 | 85.7 | 1.6 | SON | 500 | 3.3 | 6.7 | 87.8 | 2.2 |
1000 | 2.2 | 7 | 89.2 | 1.6 | ||||||
1500 | 1.3 | 5.8 | 91.3 | 1.6 | ||||||
2000 | 1.3 | 4.5 | 93.4 | 0.8 |
Meteorological Reanalysis Dataset | Season | δ18Op Change (‰) |
---|---|---|
GDAS | MAM | +0.6 |
GDAS | SON | +1.0 |
NCEP/NCAR (1500 m) | JJA | +1.0 |
NCEP/NCAR (2000 m) | JJA | +1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Butorovic, N.; Yu, Z. The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia. Atmosphere 2020, 11, 514. https://doi.org/10.3390/atmos11050514
Xia Z, Butorovic N, Yu Z. The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia. Atmosphere. 2020; 11(5):514. https://doi.org/10.3390/atmos11050514
Chicago/Turabian StyleXia, Zhengyu, Nicolás Butorovic, and Zicheng Yu. 2020. "The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia" Atmosphere 11, no. 5: 514. https://doi.org/10.3390/atmos11050514
APA StyleXia, Z., Butorovic, N., & Yu, Z. (2020). The Influence of Synoptic Weather Types and Moisture Transport Pathways on Precipitation Isotopes in Southern Patagonia. Atmosphere, 11(5), 514. https://doi.org/10.3390/atmos11050514