Evidence of a Diurnal Cycle in Precipitation over the Southern Ocean as Observed at Macquarie Island
Abstract
:1. Introduction
2. Macquarie Island Observations and ERA-Interim Dataset
2.1. MAC Precipitation
2.2. Upper Air Soundings
2.3. ERA-Interim Reanalysis
3. Precipitation Analysis
3.1. Climatology
3.2. Diurnal Cycle
3.3. Precipitation Categories
3.4. Seasonality
4. MABL Stability and Inversion Strength
5. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
SO | Southern Ocean |
MABL | Maritime atmospheric boundary layer |
MAC | Macquarie Island |
ECMWF | European Centre for Medium-Range Weather Forecasts |
LTS | Lower troposphere stability |
EIS | Estimated inversion strength |
LST | Local standard time |
References
- Mace, G.G.; Zhang, Q.; Vaughan, M.; Marchand, R.; Stephens, G.; Trepte, C.; Winker, D. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Lebsock, M.; Wong, S.; Lambrigtsen, B. On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Behrangi, A.; Stephens, G.; Adler, R.F.; Huffman, G.J.; Lambrigtsen, B.; Lebsock, M. An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Clim. 2014, 27, 3957–3965. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Clim. 2010, 23, 440–454. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Siems, S.T.; Belusic, D.; Manton, M.J.; Huang, Y. A climatology of the precipitation over the Southern Ocean as observed at Macquarie Island. J. Appl. Meteorol. Climatol. 2015, 54, 2321–2337. [Google Scholar] [CrossRef]
- Lang, F.; Huang, Y.; Siems, S.T.; Manton, M.J. Characteristics of the marine atmospheric boundary layer over the Southern Ocean in response to the synoptic forcing. J. Geophys. Res. Atmos. 2018, 123, 7799–7820. [Google Scholar] [CrossRef]
- Catto, J.L.; Jakob, C.; Berry, G.; Nicholls, N. Relating global precipitation to atmospheric fronts. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Berry, G.; Reeder, M.J.; Jakob, C. A global climatology of atmospheric fronts. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.; Huang, Y.; Chubb, T.H.; Baumgardner, D.; Isaac, P.; de Hoog, M.; Siems, S.T.; Manton, M.J. In situ observations of wintertime low-altitude clouds over the Southern Ocean. Q. J. R. Meteorol. Soc. 2017, 143, 1381–1394. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus clouds. Mon. Weather. Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Minnis, P.; Harrison, E.F. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Appl. Meteorol. 1984, 23. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Q. J. R. Meteorol. Soc. 1984, 110, 783–820. [Google Scholar] [CrossRef]
- Hignett, P. Observations of diurnal variation in a cloud-capped marine boundary layer. J. Atmos. Sci. 1991, 48, 1474–1482. [Google Scholar] [CrossRef]
- Rémillard, J.; Kollias, P.; Luke, E.; Wood, R. Marine boundary layer cloud observations in the Azores. J. Clim. 2012, 25, 7381–7398. [Google Scholar] [CrossRef] [Green Version]
- Noel, V.; Chepfer, H.; Chiriaco, M.; Yorks, J. The diurnal cycle of cloud profiles over land and ocean between 51∘ S and 51∘ N, seen by the CATS spaceborne lidar from the International Space Station. Atmos. Chem. Phys. 2018, 18, 9457–9473. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B.; et al. CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.E.; Siems, S.T.; Manton, M.J.; Nazarov, A. A modeling case study of mixed-phase clouds over the Southern Ocean and Tasmania. Mon. Weather. Rev. 2010, 138, 839–862. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Hande, L.B.; Haynes, J.M. The structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Clim. 2012, 25, 2535–2546. [Google Scholar] [CrossRef]
- Bennartz, R. Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Williams, K.D.; Field, P.R.; Lock, A.P. The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Clim. 2012, 25, 7467–7486. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Thompson, G. An evaluation of WRF simulations of clouds over the Southern Ocean with A-Train observations. Mon. Weather. Rev. 2014, 142, 647–667. [Google Scholar] [CrossRef]
- Huang, Y.; Protat, A.; Siems, S.T.; Manton, M.J. A-train observations of maritime midlatitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Clim. 2015, 28, 1920–1939. [Google Scholar] [CrossRef]
- Adams, N. Climate trends at Macquarie Island and expectations of future climate change in the sub-Antarctic. In Proceedings of the Royal Society of Tasmania; Royal Society of Tasmania: Hobart, Australia, 2009; Volume 143, pp. 1–8. [Google Scholar]
- Jovanovic, B.; Braganza, K.; Collins, D.; Jones, D. Climate variations and change evident in high-quality climate data for Australia’s Antarctic and remote island weather stations. Aust. Meteorol. Oceanogr. J. 2012, 62, 247–261. [Google Scholar] [CrossRef]
- Hande, L.B.; Siems, S.T.; Manton, M.J.; Belusic, D. Observations of wind shear over the Southern Ocean. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.A.; Hartmann, D.L. The seasonal cycle of low stratiform clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.; Bretherton, C.S. On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Clim. 2006, 19, 6425–6432. [Google Scholar] [CrossRef]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather. Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Muhlbauer, A.; McCoy, I.L.; Wood, R. Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys. 2014, 14, 6695–6716. [Google Scholar] [CrossRef] [Green Version]
- Naud, C.M.; Booth, J.F.; Del Genio, A.D. The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Clim. 2016, 29, 8129–8149. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tiedtke, M. Representation of clouds in large-scale models. Mon. Weather. Rev. 1993, 121, 3040–3061. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, P.; Chaboureau, J.P.; Beljaars, A.; Betts, A.K.; Köhler, M.; Miller, M.; Redelsperger, J.L. The simulation of the diurnal cycle of convective precipitation over land in a global model. Q. J. R. Meteorol. Soc. 2004, 130, 3119–3137. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, A.M.; Gierens, K.; Rädel, G. Ice supersaturation in the ECMWF integrated forecast system. Q. J. R. Meteorol. Soc. 2007, 133, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Haynes, J.M.; Jakob, C.; Rossow, W.B.; Tselioudis, G.; Brown, J. Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Clim. 2011, 24, 5061–5080. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Trenberth, K.E. The diurnal cycle and its depiction in the Community Climate System Model. J. Clim. 2004, 17, 930–951. [Google Scholar] [CrossRef]
- Sato, T.; Miura, H.; Satoh, M.; Takayabu, Y.N.; Wang, Y. Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Clim. 2009, 22, 4809–4826. [Google Scholar] [CrossRef]
- Dai, A.; Lin, X.; Hsu, K.L. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes. Clim. Dyn. 2007, 29, 727–744. [Google Scholar] [CrossRef]
- Comstock, K.K.; Wood, R.; Yuter, S.E.; Bretherton, C.S. Reflectivity and rain rate in and below drizzling stratocumulus. Q. J. R. Meteorol. Soc. 2004, 130, 2891–2918. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Clim. 2001, 14, 1112–1128. [Google Scholar] [CrossRef]
- Minnis, P.; Heck, P.W.; Young, D.F.; Fairall, C.W.; Snider, J.B. Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteorol. 1992, 31, 317–339. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Austin, P.; Siems, S.T. Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes, and entrainment. J. Atmos. Sci. 1995, 52, 2724–2735. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.; Bretherton, C.S.; Hartmann, D.L. Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Rozendaal, M.A.; Leovy, C.B.; Klein, S.A. An observational study of diurnal variations of marine stratiform cloud. J. Clim. 1995, 8, 1795–1809. [Google Scholar] [CrossRef] [Green Version]
- Leon, D.C.; Wang, Z.; Liu, D. Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Hayden, L.; Liu, C. A multiyear analysis of global precipitation combining CloudSat and GPM precipitation retrievals. J. Hydrometeorol. 2018, 19, 1935–1952. [Google Scholar] [CrossRef]
MAC | ERA-Interim | ||||||
---|---|---|---|---|---|---|---|
Temporality | Category | Prob.Oc. | Amount | Range | Prob. Oc. | Amount | Range |
(%) | (mm h) | (mm h) | (%) | (mm h) | (mm h) | ||
Summer | Light | 26.0 | 0.16 | 0.013 | 24.5 | 0.18 | 0.014 |
Moderate | 5.1 | 0.85 | 0.021 | 4.8 | 0.83 | 0.020 | |
Heavy | 1.3 | 2.22 | 0.011 | 0.8 | 2.09 | 0.020 | |
Autumn | Light | 31.2 | 0.16 | 0.008 | 30.2 | 0.18 | 0.009 |
Moderate | 6.2 | 0.84 | 0.016 | 5.6 | 0.81 | 0.020 | |
Heavy | 1.1 | 2.09 | 0.012 | 0.5 | 1.88 | 0.010 | |
Winter | Light | 28.2 | 0.16 | 0.004 | 31.3 | 0.18 | 0.013 |
Moderate | 4.9 | 0.81 | 0.015 | 4.3 | 0.76 | 0.009 | |
Heavy | 0.6 | 2.04 | 0.006 | 0.2 | 1.71 | 0.006 | |
Spring | Light | 27.7 | 0.16 | 0.012 | 28.9 | 0.17 | 0.015 |
Moderate | 5.2 | 0.82 | 0.020 | 4.8 | 0.78 | 0.017 | |
Heavy | 0.7 | 2.03 | 0.012 | 0.2 | 1.89 | 0.009 | |
Annual | Light | 28.3 | 0.16 | 0.007 | 28.7 | 0.18 | 0.013 |
Moderate | 5.4 | 0.83 | 0.013 | 4.9 | 0.80 | 0.015 | |
Heavy | 0.9 | 2.11 | 0.006 | 0.4 | 1.96 | 0.007 | |
Total | 34.6 | 0.11 | 0.023 | 34.0 | 0.11 | 0.040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, F.; Huang, Y.; Siems, S.T.; Manton, M.J. Evidence of a Diurnal Cycle in Precipitation over the Southern Ocean as Observed at Macquarie Island. Atmosphere 2020, 11, 181. https://doi.org/10.3390/atmos11020181
Lang F, Huang Y, Siems ST, Manton MJ. Evidence of a Diurnal Cycle in Precipitation over the Southern Ocean as Observed at Macquarie Island. Atmosphere. 2020; 11(2):181. https://doi.org/10.3390/atmos11020181
Chicago/Turabian StyleLang, Francisco, Yi Huang, Steven T. Siems, and Michael J. Manton. 2020. "Evidence of a Diurnal Cycle in Precipitation over the Southern Ocean as Observed at Macquarie Island" Atmosphere 11, no. 2: 181. https://doi.org/10.3390/atmos11020181
APA StyleLang, F., Huang, Y., Siems, S. T., & Manton, M. J. (2020). Evidence of a Diurnal Cycle in Precipitation over the Southern Ocean as Observed at Macquarie Island. Atmosphere, 11(2), 181. https://doi.org/10.3390/atmos11020181