Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 °C Global Warming Levels with CORDEX-EA Phase 2 Projection
Abstract
:1. Introduction
2. Data and Method
2.1. Climate Data
2.2. Bias Correction
2.3. Rice Phenology Model
3. Results
3.1. The Impact of Mean Temperature Changes
3.2. The Impact of Extreme Temperature Change
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 20 December 2015).
- Knutti, R.; Rogelj, J. The Legacy of Our CO2 Emissions: A Clash of Scientific Facts, Politics and Ethics. Clim. Chang. 2015, 133, 361–373. [Google Scholar] [CrossRef]
- Raftery, A.E.; Zimmer, A.; Frierson, D.M.W.; Startz, R.; Liu, P. Less than 2 °C Warming by 2100 Unlikely. Nat. Clim. Chang. 2017, 7, 637–641. [Google Scholar] [CrossRef]
- Mauritsen, T.; Pincus, R. Committed Warming Inferred from Observations. Nat. Clim. Chang. 2017, 7, 652–655. [Google Scholar] [CrossRef]
- Ruff, T.W.; Neelin, J.D. Long Tails in Regional Surface Temperature Probability Distributions with Implications for Extremes under Global Warming. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kirtman, B.; Power, S.B.; Adedoyin, A.J.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.; Fiore, A.M.; Kimoto, M.; Meehl, G.; et al. Near-term climate change: Projections and predictability. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057, pp. 953–1028. [Google Scholar] [CrossRef]
- James, R.; Washington, R.; Schleussner, C.F.; Rogelj, J.; Conway, D. Characterizing Half-a-Degree Difference: A Review of Methods for Identifying Regional Climate Responses to Global Warming Targets. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e457. [Google Scholar] [CrossRef] [Green Version]
- KMA. Annual Report for 2018 Extreme Climate; Korean Meteorological Administration: Seoul, Korea, 2019; pp. 1–198. Available online: https://climate.go.kr/home/bbs/view.php?bname=abnormal&vcode=6232 (accessed on 31 January 2019).
- Im, E.S.; Thanh, N.X.; Kim, Y.H.; Ahn, J.B. 2018 Summer Extreme Temperatures in South Korea and Their Intensification under 3 °C Global Warming. Environ. Res. Lett. 2019, 14, 094020. [Google Scholar] [CrossRef]
- WMO. WMO Statement on the State of the Global Climate in 2019; WMO-No. 1248; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Iizumi, T.; Ramankutty, N. How Do Weather and Climate Influence Cropping Area and Intensity? Glob. Food Sec. 2015, 4, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, C.; Müller, C.; Wang, C.; Ciais, P.; Janssens, I.; Peñuelas, J.; Asseng, S.; Li, T.; Elliott, J.; et al. Emergent Constraint on Crop Yield Response to Warmer Temperature from Field Experiments. Nat. Sustain. 2020, 3, 908–916. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, W.; Du, M.; Liu, X.; Wang, J.; Bryant, C.R. Modeling Climate Change Impacts on Rice Growth and Yield under Global Warming of 1.5 and 2.0 °C in the Pearl River Delta, China. Atmosphere 2019, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Z.; Tao, F. Impacts of Climate Change and Climate Extremes on Major Crops Productivity in China at a Global Warming of 1.5 °C & 2.0 °C. Earth Syst. Dyn. Discuss. 2018, 9, 1–27. [Google Scholar] [CrossRef]
- Kim, J.; Sang, W.; Shin, P.; Cho, H.; Seo, M.; Yoo, B.; Kim, K.S. Evaluation of Regional Climate Scenario Data for Impact Assessment of Climate Change on Rice Productivity in Korea. J. Crop Sci. Biotechnol. 2015, 18, 257–264. [Google Scholar] [CrossRef]
- Ahn, J.B.; Hong, J.Y.; Shim, K.M. Agro-Climate Changes over Northeast Asia in RCP Scenarios Simulated by WRF. Int. J. Climatol. 2016, 36, 1278–1290. [Google Scholar] [CrossRef]
- Ahn, J.B.; Kim, Y.H.; Shim, K.M.; Suh, M.S.; Cha, D.H.; Lee, D.K.; Hong, S.Y.; Min, S.K.; Park, S.C.; Kang, H.S. Climatic Yield Potential of Japonica-Type Rice in the Korean Peninsula under RCP Scenarios Using the Ensemble of Multi-GCM and Multi-RCM Chains. Int. J. Climatol. 2020, 1–16. [Google Scholar] [CrossRef]
- Sylla, M.B.; Pal, J.S.; Faye, A.; Dimobe, K.; Kunstmann, H. Climate Change to Severely Impact West African Basin Scale Irrigation in 2 °C and 1.5 °C Global Warming Scenarios. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikulin, G.; Lennard, C.; Dosio, A.; Kjellström, E.; Chen, Y.; Hansler, A.; Kupiainen, M.; Laprise, R.; Mariotti, L.; Maule, C.F.; et al. The Effects of 1.5 and 2 Degrees of Global Warming on Africa in the CORDEX Ensemble. Environ. Res. Lett. 2018, 13, 065003. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for Downscaling over Multiple Regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.R.; Knutti, J.; Arblaster, J.-L.; Dufresne, T.; Fichefet, P.; Friedlingstein, X.; Gao, W.J.; Gutowski, T.; Johns, G.; Krinner, M.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility Pages 1029 to 1076. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057, pp. 1029–1136. [Google Scholar] [CrossRef]
- Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.; Masson-Delmotte, V.; Mignot, J.; et al. Estimating Changes in Global Temperature since the Preindustrial Period. Bull. Am. Meteorol. Soc. 2017, 98, 1841–1856. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Jo, S.; Ahn, J.B.; Cha, D.; Min, S.K.; Suh, M.S.; Byun, Y.H.; Kim, J.U. The Köppen-Trewartha Climate-Type Changes Over the CORDEX-East Asia Phase 2 Domain Under 2 and 3 °C Global Warming. Geophys. Res. Lett. 2019, 46, 14030–14041. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Aphrodite Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S. The ERA-Interim Archive. ERA Rep. Ser. 2009, 1, 1–16. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kug, J.S.; Lee, J.Y.; Kang, I.S. Systematic Error Correction of Dynamical Seasonal Prediction of Sea Surface Temperature Using a Stepwise Pattern Project Method. Mon. Weather Rev. 2008, 136, 3501–3512. [Google Scholar] [CrossRef]
- Ahn, J.B.; Lee, J.L.; Im, E.S. The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J. Meteorol. Soc. Jpn. 2012, 90, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.; Ahn, J.B. Improvement of CGCM Prediction for Wet Season Precipitation over Maritime Continent Using a Bias Correction Method. Int. J. Climatol. 2015, 35, 3721–3732. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, J.B. A New Statistical Correction Strategy to Improve Long-Term Dynamical Prediction. Int. J. Climatol. 2019, 39, 2173–2185. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ahn, J.; Jeong, H. A Study on the Method for Estimating the 30 m-Resolution Daily Temperature Extreme Value Using PRISM and GEV Method. Atmosphere 2016, 26, 697–709, (In Korean with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Cho, D.; Yoo, C.; Im, J.; Cha, D.H. Comparative Assessment of Various Machine Learning-Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth Sp. Sci. 2020, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Pierce, D.W. Bias Correction Can Modify Climate Model Simulated Precipitation Changes without Adverse Effect on the Ensemble Mean. Hydrol. Earth Syst. Sci. 2014, 18, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.M.; Hall, A.; et al. Towards Process-Informed Bias Correction of Climate Change Simulations. Nat. Clim. Chang. 2017, 7, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Eum, H.I.; Cannon, A.J. Intercomparison of Projected Changes in Climate Extremes for South Korea: Application of Trend Preserving Statistical Downscaling Methods to the CMIP5 Ensemble. Int. J. Climatol. 2017, 37, 3381–3397. [Google Scholar] [CrossRef]
- Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent Increases in Tropical Cyclone Intensification Rates. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ketring, D.L.; Wheless, T.G. Thermal Time Requirements for Phenological Development of Peanut. Agron. J. 1989, 81, 910–917. [Google Scholar] [CrossRef]
- Gouri, V.; Reddy, D.R.; Rao, S.B.S.N.; Rao, A.Y. Thermal requirement of Rabi groundnut in southern Telangana zone of Andhra Pradesh. J. Agrometeorol. 2005, 7, 90–94. [Google Scholar]
- Dar, E.A.; Brar, A.S.; Yousuf, A. Growing Degree Days and Heat Use Efficiency of Wheat as Influenced by Thermal and Moisture Regimes. J. Agrometeorol. 2018, 20, 168–170. [Google Scholar]
- Islam, M.R.; Sikder, S. Phenology and Degree Days of Rice Cultivars under organic culture. Bangladesh J. Bot. 2011, 40, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Jayapriya, S.; Ravichandran, V.; Boominathan, P.; Guru, G. Study of weather based agro indices on grain yield of rice genotypes. J. Agrometeorol. 2017, 19, 80–85. [Google Scholar]
- Lee, S.S. Utilization of Growing Degree Days as an Index of Growth Duration of Rice Varieties. Korean J. Crop Sci. 1983, 28, 173–183. [Google Scholar]
- Nam, J.-K.; Park, H.-S.; Baek, M.-K.; Cho, Y.-C.; Kim, W.-J.; Kim, J.-J.; Kim, B.-K.; Kim, K.-Y.; Shin, W.-C.; Ko, J.-C.; et al. Bacterial Blight-Resistant Medium Maturing Rice Cultivar ‘Haepum’ with High Grain Quality. Korean J. Breed. Sci. 2019, 51, 222–233. [Google Scholar] [CrossRef]
- RDA. Implementation of an Early Warning Service for Weather Risk Management in Climate-Smart Agriculture; Rural Development Administration: Wanju-si, Korea, 2018.
- Park, K.H.; Lee, B.-W.; Hong, B.-H.; Kim, S.-C. Introduction of Rice Cultivation Technology; Hyangmoon Press: Seoul, Korea, 2004; 21p. (In Korean) [Google Scholar]
- Cho, D.S.; Jong, S.K.; Heo, H.; Yuk, C.S. Quantitative analysis of dry matter production and its partition in rice. I. Leaf development as affected by transplanting date. Korean J. Crop Sci. 1990, 35, 265–272. [Google Scholar]
- Shim, K.; Kim, G.; Roh, K.; Jeong, H.; Lee, D. Evaluation of Agro-Climatic Indices under Climate Chang. Korean J. Agric. For. Meteorol. 2008, 10, 113–120. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981; pp. 65–109. [Google Scholar]
- Kim, J.; Shon, J.; Choi, K.; Yang, W.; Lee, C.K. Study on improving high-temperature tolerance for grain filling through adjusting sink size. Korean J. Crop Sci. 2013, 58, 107–112, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- KOSTAT. Rice Production in 2018; Korean National Statistical Office: Seoul, Korea, 2018.
- FAO (Food and Agriculture Organization of the United Nations). Crop Prospects and Food Situation; FAO: Rome, Italy, 2007; No. 3. [Google Scholar]
- FAO. Crop Prospects and Food Situation; FAO: Rome, Italy, 2010; No. 4. [Google Scholar]
- FAO. Crop Prospects and Food Situation; FAO: Rome, Italy, 2012; No. 5. [Google Scholar]
- Wang, W.; Zhou, W.; Li, X.; Wang, X.; Wang, D. Synoptic-Scale Characteristics and Atmospheric Controls of Summer Heat Waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Yeh, S.W.; Won, Y.J.; Hong, J.S.; Lee, K.J.; Kwon, M.; Seo, K.H.; Ham, Y.G. The Record-Breaking Heat Wave in 2016 over South Korea and Its Physical Mechanism. Mon. Weather Rev. 2018, 146, 1463–1474. [Google Scholar] [CrossRef]
- Min, K.H.; Chung, C.H.; Bae, J.H.; Cha, D.H. Synoptic Characteristics of Extreme Heatwaves over the Korean Peninsula Based on ERA Interim Reanalysis Data. Int. J. Climatol. 2020, 40, 3179–3195. [Google Scholar] [CrossRef]
- Lee, H.-Y. The Nopsae, A Foehn type wind over the Young Suh region of Central Korea. J. Korea Geogr. Soc. 1994, 29, 266–280. [Google Scholar]
- Nishi, A.; Kusaka, H. Effect of Foehn Wind on Record-Breaking High Temperature Event (41.1 °C) at Kumagaya on 23 July 2018. Sola 2019, 15, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Cha, D.H.; Lee, G.; Park, C.; Lee, M.I.; Min, K.H. Impacts of Synoptic and Local Factors on Heat Wave Events Over Southeastern Region of Korea in 2015. J. Geophys. Res. Atmos. 2018, 123, 12081–12096. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically Increasing Chance of Extremely Hot Summers since the 2003 European Heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Hu, Q.; Weiss, A.; Feng, S.; Baenzinger, P.S. Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric. For. Meteor. 2005, 135, 284–290. [Google Scholar]
- Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteor. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Estrella, N.; Sparks, T.H.; Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Chang. Biol. 2007, 13, 1737–1747. [Google Scholar] [CrossRef]
- Kamoutsis, A.; Matsoukis, A.; Chronopoulou-Sereli, A. Triticum aestivum L. Phenological response to air temperature in Greece. Ital. J. Agrometeorol. 2010, 2, 51–55. [Google Scholar]
- Zhang, R.; Sun, C.; Zhu, J.; Zhang, R.; Li, W. Increased European Heat Waves in Recent Decades in Response to Shrinking Arctic Sea Ice and Eurasian Snow Cover. NPJ Clim. Atmos. Sci. 2020, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Arblaster, J.M. Historical and Projected Trends in Temperature and Precipitation Extremes in Australia in Observations and CMIP5. Weather Clim. Extrem. 2017, 15, 34–56. [Google Scholar] [CrossRef]
- Ortiz, L.E.; González, J.E.; Horton, R.; Lin, W.; Wu, W.; Ramamurthy, P.; Arend, M.; Bornstein, R.D. High-Resolution Projections of Extreme Heat in New York City. Int. J. Climatol. 2019, 39, 4721–4735. [Google Scholar] [CrossRef]
- Satake, T.; Yoshida, S. High temperature induced sterility in indica rice at flowering. JPN J. Crop Sci. 1978, 47, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Jagadish, S.V.K.; Craufurd, P.Q.; Wheeler, T.R. High Temperature Stress and Spikelet Fertility in Rice (Oryza Sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H.; Sheehy, J.E.; Thomas, J.M.G. Species, Ecotype and Cultivar Differences in Spikelet Fertility and Harvest Index of Rice in Response to High Temperature Stress. Field Crop. Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Weerakoon, W.M.W.; Maruyama, A.; Ohba, K. Impact of Humidity on Temperature-Induced Grain Sterility in Rice (Oryza Sativa L.). J. Agron. Crop Sci. 2008, 194, 135–140. [Google Scholar] [CrossRef]
- Shim, K.M.; Roh, K.A.; So, K.H.; Kim, G.Y.; Jeong, H.C.; Lee, D.B. Assessing Impacts of Global Warming on Rice Growth and Production in Korea. J. Clim. Chang. Res. 2010, 1, 1–11. [Google Scholar]
WRF (v3.7) | Cosmo-CLM (v5.0) | |
---|---|---|
Resolution Horizontal/Vertical | 395 × 250 (25 km)/30-level eta (50 hPa) | 396 × 251 (25 km)/40-level hybrid vertical grid (10 hPa) |
Cumulus Scheme | Betts–Miller–Janjic | Tiedtke |
Microphysics Scheme | WSM3 | Extended DM (cloud ice include) |
Radiation | CAM | Ritter and Geleyn |
Planetary Boundary Layer (PBL) | YSU | Davies and Tumer |
Land Surface Model (LSM) | NOAH LSM | TERRAL ML |
Spectral Nudging | Applied | Applied |
Lateral Boundary Condition | MPI-ESM-LR | |
Analysis Period | Historical experiment (1981~2005) 2 °C warming (2024~2048) 3 °C warming (2049~2073) |
GDD | Stage 1 (Seeding) | Stage 2 (Transplanting) | Stage 3 (Tillering) |
≥110 °C | ≥300 °C | ≥860 °C | |
Stage 4 (Elongation) | Stage 5 (Heading) | Stage 6 (Harvest) | |
≥1160 °C | ≥1640 °C | ≥2180 °C |
REF | Stage 1 | Stage 2 | Stage 3 |
0.13% | 7.43% | 37.75% | |
Stage 4 | Stage5 | Stage 6 | |
19.09% | 0.6% | 0.00% | |
HIS | Stage 1 | Stage 2 | Stage 3 |
0.04% | 9.09% | 32.57% | |
Stage 4 | Stage 5 | Stage 6 | |
19.41% | 0.67% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.; Shim, K.-M.; Hur, J.; Kim, Y.-S.; Ahn, J.-B. Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 °C Global Warming Levels with CORDEX-EA Phase 2 Projection. Atmosphere 2020, 11, 1336. https://doi.org/10.3390/atmos11121336
Jo S, Shim K-M, Hur J, Kim Y-S, Ahn J-B. Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 °C Global Warming Levels with CORDEX-EA Phase 2 Projection. Atmosphere. 2020; 11(12):1336. https://doi.org/10.3390/atmos11121336
Chicago/Turabian StyleJo, Sera, Kyo-Moon Shim, Jina Hur, Yong-Seok Kim, and Joong-Bae Ahn. 2020. "Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 °C Global Warming Levels with CORDEX-EA Phase 2 Projection" Atmosphere 11, no. 12: 1336. https://doi.org/10.3390/atmos11121336
APA StyleJo, S., Shim, K. -M., Hur, J., Kim, Y. -S., & Ahn, J. -B. (2020). Future Changes of Agro-Climate and Heat Extremes over S. Korea at 2 and 3 °C Global Warming Levels with CORDEX-EA Phase 2 Projection. Atmosphere, 11(12), 1336. https://doi.org/10.3390/atmos11121336