Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation
Abstract
:1. Introduction
2. Experiment and Methodology
3. Results
3.1. Changes in Temperature and Precipitation
3.2. Hydrological Climate Extreme Indices
3.3. Characteristics of EASM
4. Summary and Conclusion
- The GSAT increases with increasing atmospheric CO2 and reaches the peak value of 5.4 K above the PI level (130–150 years). The peak temperature changes in EA (5.9 K) and KO (6.1 K) are larger than those in the GSAT. In addition, EA and KO show higher rates of temperature increase and decrease than those shown by the GSAT. The temperature changes remain at 0.91 K (EA) and 0.84 K (KO) in the P2 period, and this value is smaller than the global value (approximately 1.5 K). However, this demonstrates that even if the CO2 concentration is reduced, local climate may or may not return.
- The increasing amount is approximately 9.4% (EA) and 23.2% (KO) at the phase change time (averaged for 130–150 years); however, the largest increase is approximately 16.6% (EA) and 36.5% (KO) in the ramp-down period (150–160 years). After the peak, the precipitation quickly decreases in response to the CO2 reduction. Unlike the temperature response that decreases following CO2 reduction, the global mean precipitation increases slightly due to the fast cooling atmosphere and slow cooling oceans before gradually decreasing. These results demonstrate that the local reversibility of climate varies with spatial differences.
- The differences in the four hydrological extreme indices (between the P2 and P1 periods) have similar spatial distributions in EA. There are strong wet signals over Southern China and Japan and a weak dry signal over the northern Korea peninsula. The differences are below 5 mm/day and 1 day for precipitation intensity indices (R×1day and R×5day) and frequency indices (R95 and R99), respectively.
- We investigate the seasonal transition of EASM precipitation through a time–latitude diagram. The larger precipitation amount south of 30° N is related to the larger rainfall over South China with the southward movement of the monsoon rainband. The monsoon rainband of the P2 period moves northward as the earlier onset with high confidence compared to the P1 period, but it does not move north to the KO region. This analysis may indicate that a reduction in CO2 leads to the southward movement of the monsoon rainband and reduced precipitation in the Korea peninsula. However, a more detailed description mechanism needs to be carried out in further research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B. Global carbon budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [Google Scholar]
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Le Quéré, C.; Marland, G.; Raupach, M.R.; Wilson, C. The challenge to keep global warming below 2 C. Nat. Clim. Chang. 2013, 3, 4–6. [Google Scholar] [CrossRef]
- Cai, Y.; Lenton, T.M.; Lontzek, T.S. Risk of multiple climate tipping points should trigger a rapid reduction in CO2 emissions. Nat. Clim. Chang. 2016, 6, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, E.; Hall, J.W.; Held, H.; Dawson, R.; Schellnhuber, H.J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl. Acad. Sci. USA 2009, 106, 5041–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenton, A.; Matear, R.J.; Keller, D.P.; Scott, V.; Vaughan, N. Assessing carbon dioxide removal through global and regional ocean alkalization under high and low emission pathways. Earth Syst. Dyn. 2018, 9, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Barros, V.R.; Mach, K.J.; Mastrandrea, M.D.; van Aalst, M.; Adger, W.N.; Arent, D.J.; Barnett, J.; Betts, R.; Bilir, T.E. Technical Summary Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- UNFCCC. Paris Agreement of the 21st Session of the Conference of Parties on Climate Change; UNFCCC: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Kriegler, E.; Luderer, G.; Bauer, N.; Baumstark, L.; Fujimori, S.; Popp, A.; Rogelj, J.; Strefler, J.; Van Vuuren, D.P. Pathways limiting warming to 1.5 °C: A tale of turning around in no time? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160457. [Google Scholar] [CrossRef] [Green Version]
- Mignone, B.K.; Socolow, R.H.; Sarmiento, J.L.; Oppenheimer, M. Atmospheric stabilization and the timing of carbon mitigation. Clim. Chang. 2008, 88, 251–265. [Google Scholar] [CrossRef]
- Rogelj, J.; Hare, W.; Lowe, J.; Van Vuuren, D.P.; Riahi, K.; Matthews, B.; Hanaoka, T.; Jiang, K.; Meinshausen, M. Emission pathways consistent with a 2 °C global temperature limit. Nat. Clim. Chang. 2011, 1, 413–418. [Google Scholar] [CrossRef]
- Huntingford, C.; Lowe, J. “Overshoot” scenarios and climate change. Science 2007, 316, 829. [Google Scholar] [CrossRef]
- Mikolajewicz, U.; Gröger, M.; Maier-Reimer, E.; Schurgers, G.; Vizcaíno, M.; Winguth, A.M.E. Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim. Dyn. 2007, 28, 599–633. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zickfeld, K.; Eby, M.; Weaver, A.J.; Alexander, K.; Crespin, E.; Edwards, N.R.; Eliseev, A.V.; Feulner, G.; Fichefet, T.; Forest, C.E. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Clim. 2013, 26, 5782–5809. [Google Scholar] [CrossRef]
- Boucher, O.; Halloran, P.R.; Burke, E.J.; Doutriaux-Boucher, M.; Jones, C.D.; Lowe, J.; Ringer, M.A.; Robertson, E.; Wu, P. Reversibility in an Earth System model in response to CO2 concentration changes. Environ. Res. Lett. 2012, 7, 24013. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Zickfeld, K. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ. Res. Lett. 2015, 10, 94013. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Ridley, J.; Pardaens, A.; Levine, R.; Lowe, J. The reversibility of CO2 induced climate change. Clim. Dyn. 2015, 45, 745–754. [Google Scholar] [CrossRef]
- Zickfeld, K.; MacDougall, A.H.; Matthews, H.D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 2016, 11, 55006. [Google Scholar] [CrossRef]
- Keller, D.P.; Lenton, A.; Scott, V.; Vaughan, N.E.; Bauer, N.; Ji, D.; Jones, C.D.; Kravitz, B.; Muri, H.; Zickfeld, K. The carbon dioxide removal model intercomparison project (CDRMIP): Rationale and experimental protocol for CMIP6. Geosci. Model Dev. 2018, 11, 1133–1160. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Caldeira, K. Atmospheric carbon dioxide removal: Long-term consequences and commitment. Environ. Res. Lett. 2010, 5, 24011. [Google Scholar] [CrossRef]
- MacDougall, A.H. Reversing climate warming by artificial atmospheric carbon-dioxide removal: Can a Holocene-like climate be restored? Geophys. Res. Lett. 2013, 40, 5480–5485. [Google Scholar] [CrossRef]
- Mathesius, S.; Hofmann, M.; Caldeira, K.; Schellnhuber, H.J. Long-term response of oceans to CO2 removal from the atmosphere. Nat. Clim. Chang. 2015, 5, 1107–1113. [Google Scholar] [CrossRef]
- Armour, K.C.; Roe, G.H. Climate commitment in an uncertain world. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Sun, M.-A.; Kim, B.-H.; Moon, H.; Sung, H.M.; Kim, J.; Byun, Y.-H. Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia Pac. J. Atmos. Sci. 2020, 56, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.M.; Kim, J.; Shim, S.; Seo, J.; Kwon, S.-H.; Sun, M.-A.; Moon, H.; Lee, J.-H.; Lim, Y.-J.; Boo, K.-O.; et al. Evaluation of NIMS/KMA CMIP6 model and future climate change scenarios based on new GHGs concentration pathways. APJAS 2020. accepted. [Google Scholar]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. JAMES 2019, 11, 4513–4558. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.N.; Balaji, V.; Cinquini, L.; Denvil, S.; Duffy, D.; Evans, B.; Ferraro, R.; Hansen, R.; Lautenschlager, M.; Trenham, C. A global repository for planet-sized experiments and observations. Bull. Am. Meteorol. Soc. 2016, 97, 803–816. [Google Scholar] [CrossRef]
- Wang, B. Rainy season of the Asian–Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Ziehn, T.; Lenton, A.; Law, R. An assessment of land-based climate and carbon reversibility in the Australian Community Climate and Earth System Simulator. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 713–731. [Google Scholar] [CrossRef]
- Wu, P.; Wood, R.; Ridley, J.; Lowe, J. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Cao, L.; Bala, G.; Caldeira, K. Why is there a short-term increase in global precipitation in response to diminished CO2 forcing? Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Yang, F.; Kumar, A.; Schlesinger, M.E.; Wang, W. Intensity of hydrological cycles in warmer climates. J. Clim. 2003, 16, 2419–2423. [Google Scholar] [CrossRef]
- Sperber, K.R.; Annamalai, H.; Kang, I.-S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Seo, K.H.; Son, J.H.; Lee, J.Y. A new look at Changma. Atmosphere 2011, 21, 109–121. [Google Scholar]
- Ha, K.; Heo, K.; Lee, S.; Yun, K.; Jhun, J. Variability in the East Asian monsoon: A review. Meteorol. Appl. 2012, 19, 200–215. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Wang, S.-Y.S.; Jeong, J.-H.; Lim, K.-S.; LaPlante, M.; Yoon, J.-H. Intensification of the East Asian summer monsoon lifecycle based on observation and CMIP6. Environ. Res. Lett. 2020, 15, 0940b9. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Ninomiya, K.; Muraki, H. Large-scale circulations over East Asia during Baiu period of 1979. J. Meteorol. Soc. Japan. Ser. II 1986, 64, 409–429. [Google Scholar] [CrossRef] [Green Version]
Region | Onset | Withdrawal | Duration | Amount (mm/day) | Max (mm/day) |
---|---|---|---|---|---|
East Asia | −0.4 | 0.2 | 0.6 | 16.7 | 0.7 |
EA1 | −0.5 | −0.1 | 0.6 | 24.1 | 0.7 |
EA2 | −0.3 | 0.3 | 0.6 ** | 13.2 | 0.8 |
EA3 | −0.2 | 0.2 | 0.4 | 9.6 | 0.3 |
Korea | −0.6 ** | −0.02 | 0.6 ** | 11.6 | 0.3 |
KO1 | −1.6 ** | 0.2 | 1.8 ** | 38.3 | 3.8 |
KO2 | −0.4 | −0.4 | 0.05 | 3.0 | −1.8 |
KO3 | −0.3 | −0.1 | 0.2 | 0.3 | −0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.-A.; Sung, H.M.; Kim, J.; Lee, J.-H.; Shim, S.; Boo, K.-O.; Byun, Y.-H.; Marzin, C.; Kim, Y.-H. Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation. Atmosphere 2021, 12, 72. https://doi.org/10.3390/atmos12010072
Sun M-A, Sung HM, Kim J, Lee J-H, Shim S, Boo K-O, Byun Y-H, Marzin C, Kim Y-H. Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation. Atmosphere. 2021; 12(1):72. https://doi.org/10.3390/atmos12010072
Chicago/Turabian StyleSun, Min-Ah, Hyun Min Sung, Jisun Kim, Jae-Hee Lee, Sungbo Shim, Kyung-On Boo, Young-Hwa Byun, Charline Marzin, and Yeon-Hee Kim. 2021. "Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation" Atmosphere 12, no. 1: 72. https://doi.org/10.3390/atmos12010072
APA StyleSun, M. -A., Sung, H. M., Kim, J., Lee, J. -H., Shim, S., Boo, K. -O., Byun, Y. -H., Marzin, C., & Kim, Y. -H. (2021). Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation. Atmosphere, 12(1), 72. https://doi.org/10.3390/atmos12010072