Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling
Abstract
:1. Introduction
2. Methods, Model Description and Experimental Setup
3. Results
3.1. Diagnostic of Control Simulation
3.2. Nudged Simulation
3.3. Impact of Atmosphere-Ocean Coupling
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cassou, C.; Terray, L.; Phillips, A.S. Tropical Atlantic influence on European Heat Waves. J. Clim. 2005, 18, 2805–2811. [Google Scholar] [CrossRef]
- Brunet, G.; Hoskins, M.; Moncrieff, M.; Dole, R.; Kiladis, G.N.; Kirtman, B.; Lorenc, A.; Mills, B.; Morss, R.; Polavarapu, S.; et al. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc. 2010, 91, 1397–1406. [Google Scholar] [CrossRef]
- Bretherton, C.; Balaji, V.; Delworth, T.; Dickinson, R.E.; Edmonds, J.A.; Famiglietti, J.S.; Smarr, L.L. A National Strategy for Advancing Climate Modeling; The National Academies Press: Washington, DC, USA, 2012; pp. 197–208. [Google Scholar]
- Jung, T.; Tompkins, A.M.; Rodwell, M.J. Some aspects of systematic error in the ECMWF model. Atmos. Sci. Lett. 2005, 6, 133–139. [Google Scholar] [CrossRef]
- Buizza, R.; Balsamo, G.; Haiden, T. IFS upgrade brings more seamless coupled forecasts. ECMWF Newsl. 2018, 156, 18–22. [Google Scholar]
- Smith, G.C.; Bélanger, J.M.; Roy, F.; Pellerin, P.; Ritchie, H.; Onu, K.; Roch, M.; Zadra, A.; Colan, D.S.; Winter, B.; et al. Impact of coupling with an ice−ocean model on global medium-range NWP forecast skill. Mon. Weather Rev. 2018, 46, 1157–1180. [Google Scholar] [CrossRef]
- DeMott, C.A.; Klingaman, N.P.; Woolnough, S.J. Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys. 2015, 53, 1099–1154. [Google Scholar] [CrossRef]
- Shelly, A.; Xavier, P.; Copsey, D.; Johns, T.; Rodriguez, J.M.; Milton, S.; Klingaman, N. Coupled versus uncoupled hindcast simulations of the Madden–Julian Oscillation in the Year of Tropical Convection. Geophys. Res. Lett. 2014, 41, 5670–5677. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, B. Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere–Ocean Coupled Model and an Atmosphere-Only Model. J. Clim. 2004, 17, 1263–1271. [Google Scholar] [CrossRef]
- Feng, X.; Haines, K.; Liu, C.; de Boisséson, E.; Polo, I. Improved SST–precipitation intraseasonal relationships in the ECMWF coupled climate reanalysis. Geophys. Res. Lett. 2018, 45, 3664–3672. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.J.; Lee, S.W.; Lee, K.W.; Kim, J.; Song, E.J.; Seo, K.H. Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5. Asia-Pac. J. Atmos. Sci. [CrossRef]
- Feng, X.; Klingaman, N.P.; Hodges, K.I. The effect of atmosphere–ocean coupling on the prediction of 2016 western North Pacific tropical cyclones. Q. J. R. Meteorol. Soc. 2019, 145, 2425–2444. [Google Scholar] [CrossRef]
- Ito, K.; Kuroda, T.; Saito, K.; Wada, A. Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Weather Forecast. 2015, 30, 793–808. [Google Scholar] [CrossRef]
- Ren, X.; Perrie, W.; Long, Z.; Gyakum, J. Atmosphere–Ocean Coupled Dynamics of Cyclones in the Midlatitudes. Mon. Weather Rev. 2004, 132, 2432–2451. [Google Scholar] [CrossRef]
- Mogensen, K.S.; Magnusson, L.; Bidlot, J.R. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Ocean. 2017, 122, 4392–4412. [Google Scholar] [CrossRef]
- Kim, T.; Jin, E.K. Impact of an interactive ocean on numerical weather prediction: A case of a local heavy snowfall event in eastern Korea. J. Geophys. Res. Atmos. 2016, 121, 8243–8253. [Google Scholar] [CrossRef] [Green Version]
- KMA. Weather Characteristic in August 2016. Korea Meteorol. Adm. Rep.. 2016. Available online: http://web.kma.go.kr/notify/press/kma_list.jsp?bid=press&mode=view&num=1193250&page=11&field=&text= (accessed on 22 March 2020).
- Yeh, S.Y.; Won, Y.J.; Hong, J.S.; Lee, K.J.; Kwon, M.; Seo, K.H.; Ham, Y.G. The Record-Breaking Heat Wave in 2016 over South Korea and Its Physical Mechanism. Mon. Weather Rev. 2018, 146, 1463–1474. [Google Scholar] [CrossRef]
- Lee, W.S.; Lee, M.I. Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol. 2016, 36, 4815–4830. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.R.; Yeh, S.W.; Lee, W.S. Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos. 2019, 124, 7498–7511. [Google Scholar] [CrossRef]
- Kim, H.K.; Moon, B.K.; Kim, M.K.; Kwon, M. Dynamic mechanisms of summer Korean heat waves simulated in a long-term unforced Community Climate System Model version 3. Atmos. Sci. Lett. 2020, 21, e973. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing long wave radiation dataset. Bull. Am. Meteor. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Ham, Y.G.; Na, H.Y. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2017, 53, 445–455. [Google Scholar] [CrossRef]
- Klinker, E. Investigation of systematic errors by relaxation experiments. Q. J. R. Meteorol. Soc. 1990, 116, 573–594. [Google Scholar] [CrossRef]
- Jung, T.; Miller, M.J.; Palmer, T.N. Diagnosing the origin of extended-range forecast errors. Mon. Weather Rev. 2010, 138, 2434–2446. [Google Scholar] [CrossRef]
- Jung, T.; Palmer, T.N.; Rodwell, M.J.; Serrar, S. Understanding the anomalously cold European winter of 2005/06 using relaxation experiments. Mon. Weather Rev. 2010, 138, 3157–3174. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Milton, S.F. East Asian Summer Atmospheric Moisture Transport and Its Response to Interannual Variability of the West Pacific Subtropical High: An Evaluation of the Met Office Unified Model. Atmosphere 2019, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.; Brooks, M.; Boutle, I.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; et al. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model. Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.D.; Harris, C.M.; Bodas-Salcedo, A.; Camp, J.; Comer, R.E.; Copsey, D.; Fereday, D.; Graham, T.; Hill, R.; Hinton, T.; et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 2015, 8, 1509–1524. [Google Scholar] [CrossRef] [Green Version]
- Megann, A.; Storkey, D.; Aksenov, Y.; Alderson, S.; Calvert, D.; Graham, T.; Hyder, P.; Siddorn, J.; Sinha, B. GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev. 2014, 7, 1069–1092. [Google Scholar] [CrossRef] [Green Version]
- Rae, J.G.L.; Hewitt, H.T.; Keen, A.B.; Ridley, J.K.; West, A.E.; Harris, C.M.; Walters, D.N. Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev. 2015, 8, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, H.T.; Copsey, D.; Culverwell, I.D.; Harris, C.M.; Hill, R.S.R.; Keen, A.B.; McLaren, A.J.; Hunke, E.C. Design and implementation of the infrastructure of HadGEM3: The next generation Met Office climate modelling system. Geosci. Model Dev. 2011, 4, 223–253. [Google Scholar] [CrossRef] [Green Version]
- Valcke, S. The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Telford, P.J.; Braesicke, P.; Morgenstern, O.; Pyle, J.A. Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model. Atmos. Chem. Phys. 2008, 8, 1701–1712. [Google Scholar] [CrossRef] [Green Version]
- Clayton, A.M.; Lorenc, A.C.; Barker, D.M. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q. J. R. Meteorol. Soc. 2013, 139, 1445–1461. [Google Scholar] [CrossRef]
- Johns, T.; Shelly, A.; Rodriguez, J.; Copsey, D.; Guiavarc’h, C.; Waters, J.; Sykes, P. Report on extensive coupled ocean-atmosphere trials on NWP (1–15 day) timescales. PWS Key Deliv. Rep. 2012, 29, 56. [Google Scholar]
- Lea, D.; Mirouze, I.; Martin, M.; King, R.; Hines, A.; Walters, D.; Thurlow, M. Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon. Weather Rev. 2015, 143, 4678–4694. [Google Scholar] [CrossRef]
- Yanamoto, M.; Hirose., N. Regional atmospheric simulation of monthly precipitation using high-resolution SST obtained from an ocean assimilation model: Application to the wintertime Japan Sea. Mon. Weather Rev. 2009, 137, 2164–2174. [Google Scholar] [CrossRef]
- Craig, J.D.; Matthew, M.; John, S.; Jonah, R.-J.; Emma, F.; Werenfrid, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar]
- Yang, B.; Zhang, Y.; Qian, Y.; et al. Better monsoon precipitation in coupled climate models due to bias compensation. NPJ Clim. Atmos. Sci. 2019, 2, 43. [Google Scholar] [CrossRef]
- Thompson, B.; Sanchez, C.; Sun, X.; Song, G.; Liu, J.; Huang, X.-Y.; Tkalich, P. A high-resolution atmosphere–ocean coupled model for the western Maritime Continent: Development and preliminary assessment. Clim. Dyn. 2019, 52, 3951–3981. [Google Scholar] [CrossRef]
- Shelly, A.; Johns, T.; Rodríguez, J.; Thorpe, L.; Copsey, D. Assessing the Physical Mechanisms for Improved Skill of Coupled NWP Forecasts on 1–15 Day Lead Times for Both Tropical and Extra-Tropical Air-Sea Interactions; PWS Key Deliverable Report; Met Office: Exeter, UK, 2015; Volume 32. [Google Scholar]
- Iwasaki, S.; Isobe, A.; Kako, S. Atmosphere–Ocean Coupled Process along Coastal Areas of the Yellow and East China Seas in Winter. J. Clim. 2014, 27, 155–167. [Google Scholar] [CrossRef]
- Mulholland, D.P.; Laloyaux, P.; Haines, K.; Balmaseda, M.A. Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Weather Rev. 2015, 143, 4631–4644. [Google Scholar] [CrossRef]
- Bryan, F.O.; Tomas, R.; Dennis, J.M.; Chelton, D.B.; Loeb, N.G.; McClean, J.L. Frontal scale air–sea interaction in high-resolution coupled climate models. J. Clim. 2010, 23, 6277–6291. [Google Scholar] [CrossRef]
Experiment Name | Nudged Area | Description |
---|---|---|
GL | 0° E–360° E, 90° S–90° N | Full global area |
MO | 90° E–120° E, 35° N–50° N | Mongolia |
PA | 120° E–150° E, 10° N–30° N | Western subtropical Pacific |
WE | 40° E–80° E, 53° N–73° N | Western Eurasia |
KP | 150° E–175° E, 40° N–65° N | Kamchatka Peninsula |
Variables | CTL | GL | MO | PA | WE | KP |
---|---|---|---|---|---|---|
500 hPa geopotential height (m) | 31.16 | 3.97 | 19.99 | 18.49 | 26.97 | 30.73 |
200 hPa horizontal wind (m/s) | 8.16 | 1.55 | 3.72 | 5.65 | 6.56 | 7.71 |
Maximum temperature at 1.5 m (K) | 1.62 | 0.96 | 1.10 | 1.48 | 1.47 | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.-J.; Marzin, C.; Milton, S.F.; Boo, K.-O.; Kim, Y.; Oh, J.; Kang, H.-S. Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling. Atmosphere 2020, 11, 1275. https://doi.org/10.3390/atmos11121275
Kim E-J, Marzin C, Milton SF, Boo K-O, Kim Y, Oh J, Kang H-S. Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling. Atmosphere. 2020; 11(12):1275. https://doi.org/10.3390/atmos11121275
Chicago/Turabian StyleKim, Eun-Jung, Charline Marzin, Sean F. Milton, Kyung-On Boo, Yoonjae Kim, Jiyoung Oh, and Hyun-Suk Kang. 2020. "Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling" Atmosphere 11, no. 12: 1275. https://doi.org/10.3390/atmos11121275
APA StyleKim, E. -J., Marzin, C., Milton, S. F., Boo, K. -O., Kim, Y., Oh, J., & Kang, H. -S. (2020). Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling. Atmosphere, 11(12), 1275. https://doi.org/10.3390/atmos11121275