Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas
Abstract
:1. Introduction
2. Data and Methods
2.1. Yucatan Pre-Summer Drougth
2.2. Data
2.3. Indices Creation
2.4. Validation of the Indices
3. Results
3.1. Application of the Indices
3.2. Identification of Extreme Episodes
3.3. Times-Series Trends
3.4. Validation of the Indices with NDVI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CRED EM-DAT, The International Disaster Database. Available online: http://www.emdat.be/ (accessed on 10 April 2018).
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Routledge: Abingdon-on-Thames, UK, 2000; pp. 3–18. [Google Scholar]
- Esparza, M. La sequía y la escasez de agua en México: Situación actual y perspectivas futuras. Secuencia 2014, 89, 193–219. [Google Scholar]
- Graniel, E.; Vera, I.; González Hita, L. Dinámica de la interfase salina y calidad del agua en la Costa Nororiental de Yucatán. Ingeniería 2004, 8, 15–25. [Google Scholar]
- Hayes, M.J. Drought Indices. In Van Nostrand’s Scientific Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 978-0-471-74398-9. [Google Scholar]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett. 1998, 25, 3367–3370. [Google Scholar]
- World Meteorological Organization; Global Water Partnership. Handbook of Drought Indicators and Indices; Integrated Drought Management Programme, Integrated Drought Management Tools and Guidelines Series 2; Svoboda, M., Fuchs, B.A., Eds.; World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 978-92-63-11173-9. [Google Scholar]
- Tsakiris, G.; Vangelis, H. Towards a drought watch system based on spatial SPI. Water Resour. Manag. 2004, 18, 1–12. [Google Scholar]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar]
- Giddings, L.; Soto, M.; Rutherford, B.M.; Maarouf, A. Standardized Precipitation Index Zones for México. ATM 2009, 18, 33–56. [Google Scholar]
- Hallack-Alegria, M.; Watkins, D.W. Annual and Warm Season Drought Intensity–Duration–Frequency Analysis for Sonora, Mexico. J. Clim. 2007, 20, 1897–1909. [Google Scholar]
- Quesada-Hernández, L.E.; Calvo-Solano, O.D.; Hidalgo, H.G.; Pérez-Briceño, P.M.; Alfaro, E.J. Dynamical delimitation of the Central American Dry Corridor (CADC) using drought indices and aridity values. Prog. Phys. Geogr. Earth Environ. 2019, 43, 627–642. [Google Scholar]
- Livada, I.; Assimakopoulos, V.D. Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153. [Google Scholar]
- Climate Prediction Center Drought Indices: Standardized Precipitation Index. Available online: https://www.cpc.ncep.noaa.gov/products/Drought/Monitoring/spi.shtml (accessed on 19 June 2019).
- Gómez Díaz, J.D.; Monterroso Rivas, A.I.; Lechuga Gayosso, L.M. Frecuencia y severidad de la sequía en la Península de Yucatán como instrumento para el ordenamiento del territorio. In Clima, Sociedad, Riesgos y Ordenación del Territorio; Olcina Cantos, J., Rico Amorós, A.M., Moltó Mantero, E., Eds.; Servicio de Publicaciones de la UA: Alicante, Sevilla, 2016; pp. 525–533. [Google Scholar]
- Servicio Meteorológico Nacional Monitor de Sequía en México. Available online: https://smn.cna.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed on 19 June 2019).
- Wang, H.; Gao, J.E.; Zhang, M.; Li, X.; Zhang, S.; Jia, L. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. Catena 2015, 127, 80–91. [Google Scholar]
- Amador, J.A. The Intra-Americas Sea Low-level Jet. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [PubMed] [Green Version]
- Magaña, V.; Amador, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar]
- Perdigón-Morales, J.; Romero-Centeno, R.; Pérez, P.O.; Barrett, B.S. The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database: Midsummer Drought IN Mexico Through The Chirps Database. Int. J. Climatol. 2018, 38, 2174–2186. [Google Scholar]
- Romero, D.; Torres-Irineo, E.; Kern, S.; Orellana, R.; Hernandez-Cerda, M.E. Determination of the soil moisture recession constant from satellite data: A case study of the Yucatan peninsula. Int. J. Remote Sens. 2017, 38, 5793–5813. [Google Scholar]
- Magaña, V.O.; Vázquez, J. Interannual variability of Northern activity over the Americas. In Proceedings of the 24th Conference on Hurricanes and Tropical Meteorology, Lauderdale, FL, USA, 29 May–2 June 2000; Volume 29. [Google Scholar]
- Orellana, L.R.; Espadas, C.; González, I.J.A. Aplicaciones de los diagramas ombrotérmicos de Gaussen modificados en la Península de Yucatán. Mex. Unid. Divers. Ter. 2002, 1, 60–68. [Google Scholar]
- Vidal, R. Las Regiones Climáticas de México; Temas selectos de la Geografía de México; Instituto de Geografía UNAM: México DF, México, 2005. [Google Scholar]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611, 657–679. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Universidad Nacional Autónoma de México, Instituto de Geografía: CDMX, México, 2004; ISBN 970-32-1010-4. [Google Scholar]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar]
- García, E. CONABIO “Climas” (clasificación de Koppen, modificado por García) Escala 1:1000000; CONABIO: Mexcico City, Mexico, 1998.
- Delgado Carranza, C. Zonificación agroecológica del estado de Yucatán con base en índices agroclimáticos y calidad agrícola del agua subterránea. Ph.D. Thesis, Centro de Investigación Científica de Yucatán, Merida, Mexico, 2010. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar]
- Granados-Ramírez, R.; Reyna-Trujillo, T.; Gómez-Rodríguez, G.; Soria-Ruiz, J. Analysis of NOAA-AVHRR-NDVI images for crops monitoring. Int. J. Remote Sens. 2004, 25, 1615–1627. [Google Scholar]
- Silva, F.B.; Shimabukuro, Y.E.; Aragao, L.E.; Anderson, L.O.; Pereira, G.; Cardozo, F.; Arai, E. Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environ. Res. Lett. 2013, 8, 024011. [Google Scholar]
- García, E.; Hernández, M.E.; Cardozo, N.D. Las gráficas ombrotérmicas y los regímenes pluviométricos en la República Mexicana. In Proceedings of the Memoria del IX Congreso Nacional de Geografía, Sociedad Mexicana de Geografía y Estadística, Guadalajara, Mexico, February 1983; pp. 140–149. [Google Scholar]
- Márdero, S.; Nickl, E.; Schmook, B.; Schneider, L.; Rogan, J.; Christman, Z.; Lawrence, D. Sequías en el sur de la península de Yucatán: Análisis de la variabilidad anual y estacional de la precipitación. Investig. Geográficas 2012, 19–33. [Google Scholar] [CrossRef]
- Hall, F.R. Base-Flow Recessions—A Review. Water Resour. Res. 1968, 4, 973–983. [Google Scholar]
- Mariño, M.A.; Luthin, J.N. Seepage and Groundwater; Elsevier: Amsterdam, The Netherlands, 1982; ISBN 978-0-08-087004-5. [Google Scholar]
- Too, V.K.; Omuto, C.T.; Biamah, E.K.; Obiero, J.P. Review of Soil Water Retention Characteristic (SWRC) Models between Saturation and Oven Dryness. Open J. Mod. Hydrol. 2014, 4, 173–182. [Google Scholar]
- Anderson, M.G.; Burt, T.P. Interpretation of recession flow. J. Hydrol. 1980, 46, 89–101. [Google Scholar]
- Blume, T.; Zehe, E.; Bronstert, A. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrol. Sci. J. 2007, 52, 843–862. [Google Scholar]
- Chevalier, P. L’indice des précipitations antérieures. Cah. ORSTOM Hydrol. 1983, 20, 179–189. [Google Scholar]
- Kohler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall; National Oceanic and Atmospheric Administration Weather Bureau Research Papers; US Dept. of Commerce: Washington, DC, USA, 1951; p. 10.
- Folger, P.; Cody, B.A.; Carter, N.T. Drought in the United States: Causes and Issues for Congress; Congressional Research Service, Library of Congress: Washington, DC, USA, 2012.
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar]
- Milly, P.C.D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 1994, 30, 2143–2156. [Google Scholar]
- Crimmins, S.M.; Dobrowski, S.Z.; Greenberg, J.A.; Abatzoglou, J.T.; Mynsberge, A.R. Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations. Science 2011, 331, 324–327. [Google Scholar]
- Murtaugh, P.A. In defense of P values. Ecology 2014, 95, 611–617. [Google Scholar]
- Tucker, C.; Vanpraet, C.; Boerwinkel, E.; Gaston, A. Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens. Environ. 1983, 13, 461–474. [Google Scholar]
- Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Viña, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Tucker, C.J.; Dregne, H.E.; Newcomb, W.W. Expansion and Contraction of the Sahara Desert from 1980 to 1990. Science 1991, 253, 299–300. [Google Scholar]
- Gómez Rojas, J.C. Atlas Agroclimático de la República Mexicana; Universidad Nacional Autónoma de México: México DF, México, 2013; ISBN 978-607-03-4276-2. [Google Scholar]
- Estrada-Medina, H.; Cobos-Gasca, V.; Acosta-Rodríguez, J.L.; Fierro, S.P.; Castilla-Martínez, M.; Castillo-Carrillo, C.; Franco-Brito, S.; López-Castillo, D.; López-Díaz, M.; Luna-Flores, W.; et al. La sequía de la península de Yucatán. Tecno. Cien. Agua 2016, 7, 151–165. [Google Scholar]
- CENAPRED Características e Impacto Socioeconómico de los Principales Desastres Ocurridos en la República Mexicana en el año 2009; Centro Nacional de Prevención de Desastres: México DF, México, 2010.
- SAGARPA Programa de Atención a Contingencias Climatológicas (PAAC). Evaluación Externa de Resultados; Universidad Autónoma de Chapingo, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: México DF, México, 2010. [Google Scholar]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 95–114. [Google Scholar]
- Florescano, E. Una historia olvidada: La sequía en México. Nexos 1980, 32, 9–18. [Google Scholar]
- Domínguez, J. Revisión histórica de las sequías en México: De la explicación divina a la incorporación de la ciencia. Tecnol. Cienc Agua 2016, 7, 77–93. [Google Scholar]
- García, E.; Hernandez, M.E. Anomalías de la precipitación en la República Mexicana de 1921 a 1980. Rev. Geogr. 1988, 2, 1–24. [Google Scholar]
- Alfaro, E.J. Eventos cálidos y fríos en el Atlántico Tropical Norte. Atmósfera 2000, 13, 109–119. [Google Scholar]
- Maldonado, T.; Alfaro, E.; Rutgersson, A.; Amador, J.A. The early rainy season in Central America: The role of the tropical North Atlantic SSTs: Early Rainy Season in Central America and The TNA SST. Int. J. Climatol. 2017, 37, 3731–3742. [Google Scholar]
- Taylor, M.A. Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res. 2002, 107, 10–11. [Google Scholar]
- Martinez, C.; Goddard, L.; Kushnir, Y.; Ting, M. Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Clim. Dyn. 2019, 53, 825–846. [Google Scholar]
- Martinez, C.; Kushnir, Y.; Goddard, L.; Ting, M. Interannual variability of the early and late-rainy seasons in the Caribbean. Clim. Dyn. 2020, 55, 1563–1583. [Google Scholar]
- Orellana, R.; Espadas, C.; Conde, C.; Gay, C. Atlas de Escenarios de Cambio Climático en la Península de Yucatán; Centro de Investigación Científica de Yucatán, A.C.: Mérida, México, 2009. [Google Scholar]
- Le, M.H.; Perez, G.C.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate Signals Using Artificial Neural Network—A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016, 154, 1169–1175. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar]
- Park Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar]
ISPP | ISPB | |||||
---|---|---|---|---|---|---|
Year | Extreme | Severe | Moderate | Extreme | Severe | Moderate |
1955 | 0 | 1 | 20 | 0 | 2 | 18 |
1963 | 0 | 1 | 21 | 0 | 2 | 18 |
1971 | 0 | 12 | 27 | 1 | 12 | 23 |
1970 | 0 | 4 | 24 | 1 | 3 | 22 |
1975 | 1 | 4 | 27 | 1 | 6 | 29 |
1976 | 0 | 6 | 17 | 0 | 4 | 18 |
2005 | 0 | 6 | 20 | 0 | 11 | 14 |
2009 | 0 | 11 | 25 | 1 | 10 | 20 |
2011 | 0 | 1 | 29 | 0 | 3 | 28 |
Total | 1 | 91 | 528 | 6 | 98 | 516 |
Index | Trend Coefficient | |||
---|---|---|---|---|
Average | Minimum | Maximum | Average If p-Value < 0.1 | |
SPI 12 months | 0.0032 | −0.0238 | 0.0277 | 0.004 |
SPI drought | 0.0048 | −0.017 | 0.0262 | 0.0089 |
ISPP | 0.0046 | −0.0156 | 0.0273 | 0.0055 |
ISPB | 0.0045 | −0.0135 | 0.0304 | 0.0178 |
Location | SPI 12 Months | SPI Drought | ISPP | ISPB |
---|---|---|---|---|
Average | 0.071 | 0.388 | 0.424 | 0.426 |
Bolonchen | 0.302 | 0.699 | 0.71 | 0.727 |
Tihosuco | 0.065 | 0.549 | 0.669 | 0.664 |
CIAPY | 0.419 | 0.703 | 0.667 | 0.718 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, D.; Alfaro, E.; Orellana, R.; Hernandez Cerda, M.-E. Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas. Atmosphere 2020, 11, 1209. https://doi.org/10.3390/atmos11111209
Romero D, Alfaro E, Orellana R, Hernandez Cerda M-E. Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas. Atmosphere. 2020; 11(11):1209. https://doi.org/10.3390/atmos11111209
Chicago/Turabian StyleRomero, David, Eric Alfaro, Roger Orellana, and Maria-Engracia Hernandez Cerda. 2020. "Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas" Atmosphere 11, no. 11: 1209. https://doi.org/10.3390/atmos11111209
APA StyleRomero, D., Alfaro, E., Orellana, R., & Hernandez Cerda, M.-E. (2020). Standardized Drought Indices for Pre-Summer Drought Assessment in Tropical Areas. Atmosphere, 11(11), 1209. https://doi.org/10.3390/atmos11111209