Next Article in Journal
Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy
Previous Article in Journal
Mediterranean Tropical-Like Cyclones (Medicanes)
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Structural Characteristics of the Yangtze-Huaihe Cold Shear Line over Eastern China in Summer

1,2 and 2,*
Chinese Academy of Meteorological Sciences, Beijing 100081, China
China Meteorological Administration Training Centre, Beijing 100081, China
Author to whom correspondence should be addressed.
Atmosphere 2019, 10(4), 207;
Received: 8 April 2019 / Revised: 15 April 2019 / Accepted: 17 April 2019 / Published: 19 April 2019
(This article belongs to the Section Climatology and Meteorology)
PDF [5502 KB, uploaded 19 April 2019]


Based on ERA-Interim data from June to July during 1981–2016 and daily meteorological dataset of China Surface Meteorological Stations (V3.0), 10 typical Yangtze-Huaihe cold shear lines (YCSL) over eastern China (28°~34° N, 110°~122° E) in summer are selected, and the structural characteristics of the YCSL during the evolution process are investigated by the composite analysis. The results indicate that the YCSL is horizontally in a northeast–southwest direction and vertically inclines northward from the lower layer to the upper layer. The vertical extension of the YCSL can reach 750 hPa, and its life time is about 54 h. The evolution process of the YCSL is affected by the comprehensive configuration of the high-level, medium-level, and low-level weather systems. The southward advancement, strengthening, and eastward movement of the north branch low-pressure trough over the Yangtze-Huaihe region at 850 hPa is a key factor for the evolution of the YCSL. Because the structural characteristics of the YCSL have obvious changes in the evolution process, the evolution process can be divided into the development stage, strong stage, and weakening stage. In terms of dynamic structures, the YCSL corresponds well with the axis of the positive vorticity belt, whose center is located at 850 hPa, and reaches the maximum in the strong stage. The YCSL is located in the non-divergence zone, and there are strong convergence centers located on its south side. The YCSL also locates in the ascending motion zone between two secondary circulations on the north and south sides, with the maximum ascending velocity in the strong stage, and its large-value area presents an upright structure. In the development stage, there is an ascending motion along the YCSL, but in the strong and weakening stages there are an ascending motion below 800 hPa and a descending motion above 800 hPa along the YCSL. In terms of thermal structures, the YCSL is located in the low temperature zone of the lower layer, and there is a high temperature zone around 500 hPa. Due to the dominant role of dry and cold airflow from the north, the YCSL locates in the dry and cold air during the development and strong stages, and then the warm and moist airflow from the south invades, resulting in the weakening of the YCSL. There is a convective unstable layer on the south side of the YCSL and a neutral layer on the north side. The water vapor gathers near the YCSL, and there are two water vapor convergence centers on the east and west sides of the YCSL, respectively. The water vapor convergence zone is mainly below 600 hPa in the low troposphere and the convergence center is located at around 900 hPa. The atmospheric baroclinicity is one of the reasons for the northward inclination of the YCSL. View Full-Text
Keywords: Yangtze-Huaihe cold shear line; composite analysis; structural characteristics Yangtze-Huaihe cold shear line; composite analysis; structural characteristics

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Yan, L.; Yao, X. Structural Characteristics of the Yangtze-Huaihe Cold Shear Line over Eastern China in Summer. Atmosphere 2019, 10, 207.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top