
  

Atmosphere 2019, 10, 196; doi:10.3390/atmos10040196 www.mdpi.com/journal/atmosphere 

Article 

Optimal Estimation Retrieval of Aerosol Fine-Mode 
Fraction from Ground-Based Sky Light 
Measurements 
Fengxun Zheng 1,2, Weizhen Hou 1,3, Xiaobing Sun 4, Zhengqiang Li 1,3,*, Jin Hong 4, Yan Ma 1,  
Li Li 1, Kaitao Li 1, Yizhe Fan 4 and Yanli Qiao 4 

1 State Environment Protection Key Laboratory of Satellite Remote Sensing, Institute of Remote Sensing and 
Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; zhengfx@radi.ac.cn (F.Z.); 
houwz@radi.ac.cn (W.H.); mayan01@radi.ac.cn (Y.M.); liligis@163.com (L.L.); likt@radi.ac.cn (K.L.)  

2 University of Chinese Academy of Sciences, Beijing 100049, China 
3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese 

Academy of Sciences, Beijing, 100101, China 
4 Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, 

Chinese Academy of Sciences, Hefei 230031, China; xbsun@aiofm.ac.cn (X.S.); hongjin@aiofm.ac.cn (J.H.); 
yzfan@mail.ustc.edu.cn (Y.F.); ylqiao@aiofm.ac.cn (Y.Q.) 

* Correspondence: Correspondence: lizq@radi.ac.cn; Tel.: +86-010-64806225 

Received: 18 March 2019; Accepted: 9 April 2019; Published: 11 April 2019 

Abstract: In this paper, the feasibility of retrieving the aerosol fine-mode fraction (FMF) from 
ground-based sky light measurements is investigated. An inversion algorithm, based on the optimal 
estimation (OE) theory, is presented to retrieve FMF from single-viewing multi-spectral radiance 
measurements and to evaluate the impact of utilization of near-infrared (NIR) measurements at a 
wavelength of 1610 nm in aerosol remote sensing. Self-consistency tests based on synthetic data 
produced a mean relative retrieval error of 4.5%, which represented the good performance of the 
OE inversion algorithm. The proposed algorithm was also performed on real data taken from field 
experiments in Beijing during a haze pollution event. The correlation coefficients (R) for the 
retrieved aerosol volume fine-mode fraction (FMFv) and optical fine-mode fraction (FMFo) against 
AErosol RObotic NETwork (AERONET) products were 0.94 and 0.95 respectively, and the mean 
residual error was 4.95%. Consequently, the inversion of FMFv and FMFo could be well constrained 
by single-viewing multi-spectral radiance measurement. In addition, by introducing measurements 
of 1610 nm wavelength into the retrieval, the validation results showed a significant improvement 
in the R value for FMFo (from 0.89–0.94). These results confirm the high value of NIR measurements 
for the retrieval of coarse mode aerosols.  

Keywords: aerosol optical depth; fine-mode fraction; optimal estimation inversion 
 

1. Introduction 

Exposure to ambient air pollution has serious impacts on human health, such as respiratory 
diseases and cardiovascular diseases [1–4]. Some of the diseases are mainly caused by atmospheric 
fine particulate matters (PM2.5, more precisely, particulate matters with aerodynamic diameters less 
than 2.5 μm) [5,6]. Thus, the estimation of the PM2.5 mass concentration near the surface has been 
extensively studied using ground-based and satellite platforms, such as the pure physical PM2.5 
remote sensing (PMRS) method [7–9]. As a parameter to describe the proportion of fine particles in 
aerosols, fine-mode fraction (FMF) is a key factor in the physical model, which can increase people's 
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understanding of anthropogenic aerosols and help to analyze the impacts of human activities on 
environmental changes and human health [10,11].  

Regarding satellite remote sensing, previous studies attempted to retrieve FMF over the dark 
target region from observations of the Moderate Resolution Imaging Spectroradiometer (MODIS) 
[12–14]. However, the accuracy of retrieved FMF was not sufficient for estimating PM2.5 mass 
concentration near the ground. [15]. There are also some related algorithms that try to retrieve FMF 
from measurements of the multi-viewing polarized satellite sensor, such as the Polarization and 
Directionality of the Earth’s Reflectances (POLDER) onboard the Polarization and Anisotropy of 
Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL), whereas 
most of the algorithms are limited to the research phase and cannot obtain stable and reliable 
products [16–18]. On the other hand, the optical and microphysical properties of aerosol can be 
derived from ground-based remote sensing measurements. The active Raman and elastic lidar 
techniques provide the vertical structure of cloud and aerosol properties. However, studies of aerosol 
optical FMF parameters resolved from multi-spectral lidar still need to be further developed [19]. 
With regard to the passive measurements of direct and diffused radiation, there are currently two 
approaches to obtain the FMF. One is using the semi-empirical method, called spectral 
discrimination, to calculate FMF, which is based on the high-precision spectral aerosol optical depth 
(AOD) from the direct measurements of a Sun Photometer [20]. The method is also the operational 
algorithm to get FMF products of the AErosol RObotic NETwork (AERONET) [21]. The other is 
obtaining physical volume concentrations of fine and coarse particles, first by scattering light 
measurements from the atmosphere [22], and then by calculating FMF from the results of particle 
size distribution (PSD). However, there are still some limitations in the latter approach, such as a lack 
of constraint of coarse aerosol particles without obtaining measurements of longer wavebands.  

For passive instruments that detect reflected or scattered solar radiation, shortcomings are 
generally due to the limited information available in the measurements [23]. Consequently, both 
ground-based and satellite sensors, such as CE318-DP, POLDER, and DPC (Directional Polarimetric 
Camera), are currently focused on multi-band, multi-angle, and polarization observations to increase 
effective information [24–27]. However, as the instruments become more and more complex, it 
becomes increasingly difficult to link the aerosol parameter retrieval capability to measurement 
characteristics intuitively, especially for polarimetric observations. In this paper, we try to explore 
the possibility of spectral AOD and FMF inversion using ground-based, single-viewing, multi-
spectral intensity measurements of the sky light. For this purpose, the measurement of the near-
infrared (NIR) band centered on 1610 nm was introduced to improve the retrieval capability for 
coarse-mode aerosols [28]. At the same time, a multi-parameter inversion framework based on the 
optimal estimation (OE) theory [29] was adopted to make full use of the observation information. 

The paper is organized as follows. Following an overview of the model and algorithm in section 
2, we introduce the ground-based field experiment data acquired by the Synchronization Monitoring 
Atmospheric Corrector (SMAC) sensor in section 3. Subsequently, the retrieval algorithm is tested 
using the synthetic data and the real data in section 4. A brief discussion is given in section 5. Finally, 
the summary and conclusion are presented in section 6. 

2. Model and Methods 

2.1. Aerosol Model 

In line with many studies [30,31], a bimodal lognormal function is adopted to describe the 
volume PSD of spherical aerosol particles in the following form: 

𝑑𝑑𝑑𝑑
𝑑𝑑ln𝑟𝑟

= ∑ 𝑑𝑑0i

√2𝜋𝜋ln𝜎𝜎gi
exp �− �ln𝑟𝑟−ln𝑟𝑟vi�

2ln2𝜎𝜎gi
�2

i=1 , (1) 

where 𝑉𝑉 is the particle volume, 𝑟𝑟 is the radius, 𝑑𝑑𝑉𝑉 𝑑𝑑ln𝑟𝑟⁄  represents the volume contained in each 
logarithmic particle size interval, 𝑟𝑟v and 𝜎𝜎g represent the volume geometric median radius and the 
geometric standard deviation, respectively, and the superscript “i” denotes the aerosol mode; 
hereafter, we use “f” and “c” to represent fine and coarse mode, respectively. Then, we get the total 
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aerosol volume concentration 𝑉𝑉0 (with unit of 𝜇𝜇𝜇𝜇3𝜇𝜇𝜇𝜇−2) from the sum of 𝑉𝑉0f and 𝑉𝑉0c. Furthermore, 
the fine-mode volume fraction is calculated as 

𝐹𝐹𝐹𝐹𝐹𝐹v = 𝑉𝑉0f/𝑉𝑉0. (2) 

Then, the spectral AOD is derived from the columnar volume concentration as [32] 

𝜏𝜏a(𝜆𝜆) = 𝜏𝜏af(𝜆𝜆) + 𝜏𝜏ac(𝜆𝜆) = 3𝑑𝑑0f𝑄𝑄ext
f (𝜆𝜆)

4𝑟𝑟eff
f + 3𝑑𝑑0c𝑄𝑄ext

c (𝜆𝜆)
4𝑟𝑟eff

c , (3) 

where 𝑄𝑄ext represents the aerosol extinction efficiency factor, which is defined as the ratio between 
the extinction cross section and the geometric cross section. Based on the hypothesis of aerosol 
spherical particles, 𝑄𝑄ext  is calculated by the Mie code. 𝜏𝜏af  and 𝜏𝜏ac  represent the fine-mode and 
coarse-mode spectral AOD respectively, and the total AOD (𝜏𝜏a) is the sum of 𝜏𝜏af  and 𝜏𝜏ac. The effective 
radius (𝑟𝑟eff) and the effective variance (𝜈𝜈eff) are converted from the geometric parameters by the 
relationship as 

�
𝑟𝑟eff = 𝑟𝑟vexp �−

1
2

ln2𝜎𝜎g�

𝑣𝑣eff = exp�ln2𝜎𝜎g� − 1
. (4) 

Correspondingly, the aerosol spectral fine-mode fraction (FMFo) and the Ångström exponent 
(AE) are calculated as 

𝐹𝐹𝐹𝐹𝐹𝐹o(𝜆𝜆) = 𝜏𝜏af(𝜆𝜆)/𝜏𝜏a(𝜆𝜆), (5) 

𝐴𝐴𝐴𝐴 = ln 𝜏𝜏a(𝜆𝜆1)
𝜏𝜏a(𝜆𝜆2)

ln 𝜆𝜆1
𝜆𝜆2

� , (6) 

where 𝜆𝜆1 and 𝜆𝜆2 in Equation (6) represent two specific wavelengths, e.g., 670 and 865 nm.  
Actually, the definition for the proportion of fine aerosols to total aerosols is not exactly in the 

same form. Table 1 lists the definitions of FMF used in different studies. Despite the inconsistency 
between these definitions, all of them can represent well the proportion of fine particles in the 
atmosphere. The FMFv and FMFo used in this paper are derived from the bimodal aerosol model and 
defined from the physical and optical perspectives separately. 

Table 1. Definitions for the proportions of fine aerosols to total aerosols in different studies. 

Abbreviation Distinction of definition References 

FMF 

The fine-mode fraction (FMF) is defined optically and calculated 
by the optical spectral deconvolution algorithm (SDA) rather than 
intermediate computations of the aerosol particle size 
distribution (PSD) parameters and refractive indices. 

[20] 

The FMF is defined optically and retrieved independently by 
irrelevant aerosol model assumptions for total aerosol optical 
depth (AOD) and fine-mode AOD. 

[11] 

FMFv/FMFo 

The physical volume fine-mode fraction (FMFv)/optical fine-
mode fraction (FMFo) is defined based on a physical model in 
which the fine and coarse components follow a unified bimodal 
aerosol model. The subscripts ‘v’ and ‘o’ denote volume FMF and 
optical FMF, respectively. 

[22,28,31] 

SMF 

The SMF (Sub Micrometer Fraction) is defined in terms of a 
microphysical cutoff of the associated PSD at some specific 
radius. Two acquisition methods are available: (1) calculating 
using the cutoff radius based on the bimodal aerosol model; and 
(2) obtaining it by in situ measurement. The widely accepted cut-
off radius is 0.6μm. 

[33–35] 
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FMFv is a wavelength-independent physical quantity, while FMFo varies with wavelength. The 
relationship between FMFv and FMFo is shown in Figure 1. The conversion is performed by Mie code 
with aerosol parameters listed in Table 2. Those aerosol model parameters are derived from the 
statistics of multi-year ground-based observation network inversion products [36]. The values of 
refractive indices in the table correspond to 490, 550, 670, 870, and 1610 nm, respectively. It can be 
seen from Figure 1 that there is a significantly nonlinear relationship between the two parameters, 
especially in visible bands. At 550 nm, FMFo reaches up to 0.9 when the FMFv is equal to 0.5, which 
means the fine particles produce significant extinction effects in the visible light band. However, for 
the curve of the NIR band (1610 nm), it is different from the other four curves in visible bands. The 
FMFo grows relatively slowly when FMFv is less than 0.6. The reason for this phenomenon is that the 
extinction effect of coarse mode aerosols improves significantly while the extinction effect of fine 
mode aerosols decreases in long NIR bands. In general, the relationship between FMFv and FMFo at 
1610 nm reveals the sensitivity of longer NIR wavelengths to coarse particles. 

Table 2. The aerosol model parameters adopted for simulation and inversion in this paper. 

Mode 𝒓𝒓𝐞𝐞𝐞𝐞𝐞𝐞 (𝝁𝝁𝝁𝝁) 𝒗𝒗𝐞𝐞𝐞𝐞𝐞𝐞 𝝁𝝁𝐫𝐫 𝝁𝝁𝐢𝐢 
Fine 0.155 0.284 1.39, 1.40, 1.40, 1.42, 1.41 0.0079, 0.0075, 0.0066, 0.0066, 0.0067 

Coarse 2.213 0.482 1.53, 1.54, 1.55, 1.54, 1.50 0.0049, 0.0041, 0.0023, 0.0019, 0.0009 

 
Figure 1. The relationship between aerosol spectral FMFo and FMFv. 

2.2. Modeling for Ground-Based Observation 

Generally, for the modeling of downward radiation, the uncertainty of surface reflectance can 
be ignored for the reason that the change in downward atmospheric radiation mainly depends on 
the properties of aerosols and molecule scattering [22]. Therefore, the Lambertian surface hypothesis 
is adopted to describe the contribution of the surface in this study. In addition, the ground-based 
measured radiation is mainly affected by the entire atmospheric column and is not strongly 
dependent on the vertical distribution of aerosols. Considering that atmospheric aerosols are usually 
trapped in the planetary boundary layer (PBL), we use the exponentially shaped profile distribution 
model and set the scale height to 2 km in this study [37,38]. 

With respect to the calculation of radiation transfer, the Unified Linearized Vector Radiative 
Transfer Model (UNL-VRTM) is employed as the forward model, which was specifically designed 
for the simulation of atmospheric remote sensing observations and for the inversion of corresponding 
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properties from these observations [39]. The outputs of UNL-VRTM include not only the four 
elements of the Stokes vector but also their sensitivities (Jacobians) with respect to aerosol and surface 
model parameters. The UNL-VRTM is widely used to develop the inversion algorithm for retrieval 
of aerosol and surface properties from ground-based, airborne, and satellite measurements [31,40–
43].  

2.3. Methodology 

2.3.1. OE inversion Method 

Based on the optimal estimation theory, the forward model can be described as the following 
formula [29]: 

𝒚𝒚 = 𝑭𝑭(𝒙𝒙,𝒃𝒃) + 𝝐𝝐, (7) 

where 𝒚𝒚 is the observation vector with 𝑁𝑁y measurement elements, 𝒙𝒙 represents a state vector that 
contains 𝑁𝑁a  parameters to be retrieved, 𝒃𝒃  means the non-state vector, including all model 
parameters that we do not seek to optimize, 𝑭𝑭 denotes the physical process from state vector to 
observation vector, and 𝝐𝝐 is an error term, including uncertainties contained in measurements and 
forward modeling. 

In the presence of 𝛜𝛜, the inversion result is a statistical estimate other than the exact value. Thus, 
under the assumption of a Gaussian distribution of errors, an inversion problem can be converted to 
solve the minimum value of cost function 𝐽𝐽(𝐱𝐱), which is composed of two terms, expressed as the 
following: 

𝐽𝐽(𝒙𝒙p) = 1
2

[𝒚𝒚 − 𝑭𝑭(𝒙𝒙p)]𝑇𝑇  𝑺𝑺y−1 [𝒚𝒚 − 𝑭𝑭(𝒙𝒙p)] + 1
2
𝛾𝛾a(𝒙𝒙p − 𝒙𝒙a)𝑇𝑇  𝑺𝑺a−1 (𝒙𝒙p − 𝒙𝒙a), (8) 

where the superscript “−1” represents an inversion operation and “𝑇𝑇” represents a transpose 
operation; 𝒙𝒙a describes an estimate of state vector, and 𝒙𝒙p represents the state vector of the p-th 
iteration; 𝑺𝑺a denotes the error covariance matrix for a priori estimate, and 𝑺𝑺y is the error covariance 
matrix representing the uncertainty occurring in the measuring process. We use zero off-diagonal 
elements for 𝑺𝑺y  by assuming that errors are independent between measurements. Besides, the a 
priori estimate errors are also assumed to be noncorrelated, which gives a diagonal matrix of 𝑺𝑺a. Two 
terms in the right side of Equation (8) describe the contributions of observation and a priori estimate 
into the solution separately. The Lagrange multiplier 𝛾𝛾a is a regularization parameter, and is defined 
following the work of Xu et al. [31]: 

𝛾𝛾a = 𝑁𝑁y/𝑁𝑁a. (9) 

Usually, solving the minimum value of the 𝐽𝐽(𝐱𝐱) is a nonlinear problem and always needs 
multiple iterations. Quasi-Newton methods are widely used for finding the local maximum and/or 
minimum of the nonlinear function [44,45], 

𝒙𝒙p+1 = 𝒙𝒙p − αp𝑯𝑯p∇𝐽𝐽(𝒙𝒙p)𝑇𝑇, (10) 

where 𝑯𝑯 is the inverse matrix of the Hessian matrix constructed with successive gradient vectors in 
the quasi-Newton method, and αp is the iterated step length which is chosen to minimize 𝐽𝐽(𝐱𝐱p+1). 
The gradient of 𝐽𝐽(𝐱𝐱) can be defined as, 

∇𝐽𝐽(𝒙𝒙p) = ∂𝐽𝐽(𝒙𝒙p)
𝜕𝜕𝒙𝒙

= 𝑲𝑲p
𝑇𝑇  𝑺𝑺ϵ−1 [𝑭𝑭(𝒙𝒙p) − 𝒚𝒚] + 𝛾𝛾a𝑺𝑺a−1 (𝒙𝒙p − 𝒙𝒙a), (11) 

where 𝑲𝑲 is the Jacobians matrix of 𝑭𝑭(𝐱𝐱) with respect to 𝒙𝒙, and 𝑲𝑲 = ∂𝑭𝑭(𝒙𝒙)
∂𝒙𝒙

. The sensitivity of radiance 
with respect to the aerosol microphysical parameters can be calculated by UNL-VRTM. The second 
term in the right side of Equation (11) describes the convergence direction and step length of the state 
vector from the p-th iteration and (p + 1)-th iteration. We perform an iterative Quasi-Newton 
approach using the L-BFGS-B algorithm to find the minimization of 𝐽𝐽(𝐱𝐱) [46–48]. The L-BFGS-B 
algorithm is a highly effective tool in bounded minimization problems with the requirements of a 
priori knowledge, cost function, and the gradient of the cost function. When the results after multiple 
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iterations satisfy the condition of ‖𝒙𝒙p+1 − 𝒙𝒙p‖ ≤ 𝜀𝜀 , the iterative process is terminated, and an 
optimized estimate of 𝒙𝒙 is obtained, where 𝜀𝜀 is the threshold for convergence. 

2.3.2. Inversion Settings 

For the OE inversion framework, the first task is to determine the observation data and the state 
vector to be retrieved, as well as the observational uncertainties and a priori estimation error, 
respectively. These inversion parameter settings are listed in Table 3. The observation vector 𝐲𝐲 is 
composed of the normalized radiance (referred to as 𝐼𝐼 in Table 3) at 490, 550, 670, 870, and 1610 nm 
wavelengths. The level of recognized observation error is usually around 3–5% for intensity 
measurements, and the observation error does not vary with wavelength, observation mode, and 
observation geometry in this paper. The state vector 𝒙𝒙 is composed of the aerosol V0 and FMFv. The 
a priori estimate of 𝒙𝒙 comes from the available inversion products of AERONET, and a relative error 
of 100% is adopted for the state vector during the inversion. The non-state vector 𝒃𝒃 is composed of 
the aerosol model parameters, including effective radius (𝑟𝑟eff), effective deviation (𝑣𝑣eff), and refractive 
indices (𝜇𝜇r , 𝜇𝜇i) as listed in Table 3. The a priori knowledge of 𝒃𝒃  is essential to provide certain 
auxiliary constraints on the rationality of the final solutions. For the fixed observation location of 
ground-based field tests in our research, the a priori knowledge adopted in the forward simulation 
and inversion is characterized by the aerosol properties in Table 2. To describe the wavelength-
dependence of refractive indices, it is assumed that the parameters following the power–law 
relationship are adopted [22]. 

Table 3. Definition of the measurement vector and state vector. 

Name setting 
Measurement vector 𝒚𝒚 = [𝐼𝐼490,  𝐼𝐼550,  𝐼𝐼670, 𝐼𝐼870, 𝐼𝐼1610]𝑇𝑇 
Observation uncertainties 𝑺𝑺y = 𝜖𝜖𝐼𝐼2𝑰𝑰2(𝜆𝜆), 𝜖𝜖𝐼𝐼 = 5% (relative error) 
State vector  𝒙𝒙 = [𝑉𝑉0, FMFv]𝑇𝑇 

𝑉𝑉0 ≥ 0.001 𝜇𝜇m3/𝜇𝜇m2 
0.01 ≤ FMFv ≤ 0.99 

A priori estimates uncertainties 
𝑺𝑺a = �

𝜖𝜖𝑑𝑑0
2 𝑉𝑉02 0
0 𝜖𝜖FMFv

2 FMFv2
� 

𝜖𝜖𝑑𝑑0 = 100%, 𝜖𝜖FMFv = 100% (relative error) 

3. Experimental Data 

As one of the most polluted regions affected by anthropogenic aerosol emissions, Beijing, the 
capital of China, is an area where there is deep concern about particulate pollution [49,50]. Thus, the 
field experiment was performed in Beijing from November 2–November 15, 2017. In order to 
compare and validate with AERONET observations, the experiment location was next to the 
AERONET Beijing_RADI site. Figure 2 shows the variations of AOD and PM2.5 (with unit of 𝜇𝜇𝜇𝜇/𝜇𝜇3) 
during the experiment. The AOD and PM2.5 data were from AERONET and the Beijing Municipal 
Environmental Protection Monitoring Center (BMEMC), respectively. From Figure 2, we can see that 
Beijing experienced several haze events. The mean AOD on November 6 and 9 was about 1.4, 
representing a high pollution situation, while the mean AOD on November 3 and 10 was about 0.1, 
which represents clean atmospheric conditions. A good consistency between AOD and PM2.5 was 
found when AOD was less than 0.4, while for high pollution conditions, there were relatively larger 
differences between AOD and PM2.5. Furthermore, the weather conditions were very suitable for 
testing the proposed algorithms. 
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Figure 2. The aerosol optical depth (AOD) and PM2.5 (particulate matter with aerodynamic diameter 
less than 2.5 μm) during the field experiment. The AOD data are from the aerosol robotic network 
(AERONET) Beijing_RADI site, and the PM2.5 data are from the Beijing Municipal Environmental 
Protection Monitoring Center. 

With regard to the measuring instrument, we adopted the newly developed Synchronization 
Monitoring Atmospheric Corrector (SMAC) sensor. SMAC is a satellite instrument designed to 
provide aerosol and cloud properties for the atmospheric corrections of a high-resolution camera 
onboard the same satellite. In order to achieve this purpose, the sensor has a total of eight channels 
from blue (490 nm) through to near-infrared (1610 and 2250 nm). The observations included intensity 
bands centered at 490, 550, 670, 870, 1610, and 2250 nm, and four of these bands had polarimetric 
measurement capabilities, except for channel 550 nm (the polarization measurements were not used 
in this paper). There were also two channels centered at 910 and 1380 nm for water vapor remote 
sensing, where major water vapor absorption bands were located. The bandwidth was between 20 
and 60 nm, depending on the spectral bands. Furthermore, the single-viewing sensor had a high time 
resolution of up to 10 samplings per second. In the experiment, continuous zenith observations were 
conducted, and all the measurements were carried out under cloudless conditions. Since the detectors 
in the 2250 nm channel needed to be passively cooled, and were difficult to achieve a stable operating 
temperature, the data on that wavelength were not available for ground-based measurements. Figure 
3 shows the measurements of sky light by SMAC at 490, 550, 670, 870, and 1610 nm on November 6, 
2017. The horizontal axis is the UTC time (from 1–8, corresponding to Beijing time 9 a.m.–4 p.m.), and 
the ordinate axis is the radiance. From Figure 3, the sky light radiance gradually increased with the 
solar zenith angle, reached the maximum at midday, and then gradually decreased.  
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Figure 3. Measurement data of the field experiments located in Beijing (6 November 2017). 

4. Results 

4.1. Retrieval from Synthetic Data 

For the proposed OE-based algorithm, we paid attention to three issues: The dependence on a 
priori assumptions, the measurement error influence, and the reliability of the aerosol model 
parameters [51]. Among these three aspects, if reasonable a priori estimates and a priori knowledge 
are available, observation error is the main source that affects the inversion accuracy. Thus, with the 
support of relatively accurate a priori knowledge from AERONET products, we mainly made a test 
on the inversion algorithm by introducing various observation errors. The purpose was to verify the 
stability of the inversion algorithm and the confidence in the retrieved results. 

Firstly, simulations of sky scattering radiation measurements were performed by UNL-VRTM. 
The viewing geometries, including solar zenith angle (SZA), view zenith angle (VZA), and relative 
azimuth angle (RAA), are listed in Table 4. Different aerosol AOD from 0.1–3.0, with FMFo varying 
from 0.1–0.95, were considered in the simulation. Secondly, to simulate the measurement error, a 5% 
relative noise following a Gaussian distribution was introduced to the simulation results. After that, 
the optimal estimation retrieval was performed on the synthetic data superimposed with noise.  

Table 4. The parameter settings for the simulation of analog data. 

Parameters Setting 
Solar zenith angle (SZA) 60° 
View zenith angle (VZA) 0° (vertical upward observation) 
Relative azimuth angle (RAA) 0° (solar principal plane) 
Aerosol optical depth (AOD) at 550 nm from 0.1–3.0 
Fine-mode fraction (FMFo) at 550 nm from 0.1–0.95 

Figure 4 shows the scatterplots between the inversion results and the true value at 550 nm. The 
left panel represents the scenario without noise, and the right panel represents the scenario with 5% 
random noise. The correlation coefficients in the left panel were both greater than 0.99, which 
indicated a good self-consistency of the OE algorithm. As seen in Figure 4b, the uncertainty of the 
retrieved AOD increased significantly with the aerosol loading. The mean inversion error was about 
4.5% when AOD was less than 2.0, while the mean inversion error was up to 7.76% when AOD was 
greater than 2.0. As seen in Figure 4d, the mean inversion error of FMFo was 4.36%. Evidently, the 
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aerosol retrieval from a single-viewing observation was susceptible to measurement error. Even so, 
the uncertainties of the inversion results were of the same order of magnitude as the observation 
uncertainties. In summary, the developed algorithm showed good performance, regardless of the 
high aerosol loading situation.  

 
Figure 4. The scatter plot between retrieved results and true values at 550 nm, for eighteen different 
aerosol loadings from AOD = 0.1 to 3.0 and ten different mixed states from FMFo = 0.1 to 0.95. (a) and 
(c) in left panel represents retrieval of V0 and FMFo without observation noise added. (b) and (d) in 
right panel represents retrieval of V0 and FMFo with 5% random noise added. 

The simulated radiances, cost function, and gradient vector for each iteration during the retrieval 
progress are shown in Figure 5. Four cases at different aerosol loadings (AOD = 0.2 and AOD = 1.0 at 
550 nm) and fine-mode fraction (FMFo = 0.2 and FMFo = 0.8) were selected, in which FMFo = 0.2 and 
FMFo = 0.8 represented coarse-dominated and fine-dominated aerosol, respectively. As seen in Figure 
5a, the model results gradually approached the true value with the iteration. A more than 99% 
reduction in cost function was achieved, as seen in Figure 5b,c. The Gradient of V0 and FMFv 
approached zero after convergence, as shown in Figure 5d. The details of the inversion process 
indicated that the OE algorithm had good performance in obtaining the optimal results. Furthermore, 
the single-viewing multi-spectral observations provided sufficient information to contain the 
retrieval of FMFv theoretically. 
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Figure 5. Illustration of the iterative process. (a) plots the simulated radiances of the five wavelengths 
at each iteration and the true radiances under the condition of AOD = 1.0 and FMFo = 0.8 at 550 nm. 
(b) plots the cost function as a function of the number of iterations under four different conditions. (c) 
and (d) are the gradient vectors of V0 and FMFv, respectively. 

4.2. Retrieval from Experimental Data 

4.2.1. Validation of V0 and FMFv 

Furthermore, the OE-based algorithm was performed on the experimental data. The validation 
of V0 and FMFv against AERONET inversion products are shown in Figure 6. For an accurate 
comparison, the SMAC observation time was limited to a range of ±15 min based on the AERONET 
sky radiation measurement time. As seen in the left panel of Figure 6, data from 490 and 670 nm 
channels were used for the inversion. As seen in the middle panel, data from four channels (490, 550, 
670, and 870 nm) were used for inversion, while in the right panel, the channel of 1610 nm was 
introduced for the retrieval. In regard to V0, the correlation coefficients (R) were 0.90, 0.95, and 0.98 
for the three scenarios, respectively. Correspondingly, the root-mean-square-error (RMSE) were 
0.296, 0.089, and 0.041, respectively. Likewise, the R values were 0.838, 0.897, and 0.939, while the 
RMSE were 0.101, 0.074, and 0.057 for each of the three FMFv scenarios, respectively. The results 
clearly showed a good performance of our algorithm. It can be seen from Figure 6f that the retrieval 
of FMFv was significantly improved since the observation of the 1610 nm wavelength provided extra 
information on coarse-mode aerosol. Consequently, the inversion accuracy of FMFv was further 
improved. However, the deviations of FMFv were larger than total volume, which means that there 
were still some uncertainties in retrieving FMFv. On one hand, the AERONET inversion algorithm 
adopted multi-angle sky light observations, combined with precise direct AOD measurements, which 
provided sufficient information to constrain the multi-parameter retrieval of aerosol, including the 
PSD parameters. While the proposed algorithm in this paper used single-viewing measurements, and 
the aerosol PSD model parameters were considered as a priori knowledge rather than as state vectors. 
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Consequently, the a priori estimation might have affected the validation results. On the other hand, 
the calibration error of the SMAC instrument might have been another important factor. A previous 
study showed that for the OE inversion framework, the observation error was the main factor 
influencing the uncertainties of the inversion results [52].  

 
Figure 6. The scatter plot of retrieved V0 (upper panel) and FMFv (lower panel) compared to the 
AERONET inversion products. (a) and (d) denote the scenarios of two channels (490, 670 nm). (b) and 
(e) denote the scenarios of four channels (490, 550, 670, and 870 nm). (c) and (f) denote the scenarios 
of all the five intensity channels (including 1610 nm), respectively. The solid line, dotted line, and 
dashed line represent the fit line, 1:1 line, and the expected error line (Δx = ±0.05 ± 0.15x), respectively. 

4.2.2. Validation of AOD and FMFo 

The spectral AOD and FMFo retrieved synchronously by the OE algorithm were compared to 
AERONET AOD (direct solar products) and FMF (spectral deconvolution algorithm (SDA) products), 
separately. For the validation, the SMAC observation time was limited to the range of ±1 minute, 
based on the AERONET measurement time. 

In Figure 7a, the R-value for AOD at 500 nm was 0.99, while the RMSE was 0.1, which 
represented good AOD retrieval results. However, the slope of the fit line was 1.16, which indicated 
that the retrieved AOD is larger than AERONET AOD in highly polluted conditions. For the 
validation of FMFo in Figure 7b, the R-value and RMSE were 0.948 and 0.099, respectively. However, 
it is worth noting that the slope of the fit line had a relatively low value of 0.59. The results showed a 
strong correlation while suffering from a positive bias. In other words, there was an overestimate of 
fine-mode aerosol and an underestimate of coarse-mode aerosol. In this regard, our results were 
consistent with the work of O’Neil et al. [20]. Such results were caused by the difference in definition 
and acquisition methods. Moreover, the validation of AE was also performed, as shown in Figure 7c. 
As seen in Figure 7c, there was a positive bias in retrieved AE value, and the bias decreased gradually 
as the AE value increased. The AE value was inversely related to the average size of the particles in 
the aerosol; the smaller the particles, the larger the exponent. Thus, the validation results were 
consistent with Figure 7b, which indicated either more fine-mode particles related to the coarse-mode 
particles, or smaller radius fine-mode particles. In general, there was a slight system offset between 
the retrieved results from SMAC and the direct solar products. There may have been two reasons for 
the offset. One was due to the applicability of aerosol model parameters at high AOD conditions, and 
the other comes from the SMAC calibration errors. 



Atmosphere 2019, 10, 196 12 of 16 

 
Figure 7. The scatter plot of retrieved (a) AOD at 500 nm, (b) FMFo at 500 nm, and (c) Ångström 
Exponent compared to the AERONET direct solar products. The solid line, dotted line, and dashed 
line represent the fit line, 1:1 line, and the expected error line (Δx = ±0.05 ± 0.15x), respectively. 

4.2.3. Fitting Residuals 

The OE inversion algorithm finds the best fit between the forward simulations and 
measurements at all of the wavebands. The disagreement between the measurements and the 
simulations with best inversion results can be characterized by the fitting residual, which is defined 
as, 

𝛿𝛿(𝜆𝜆) = (𝐼𝐼fit(𝜆𝜆) − 𝐼𝐼meas(𝜆𝜆))/𝐼𝐼meas(𝜆𝜆). (12) 

The spectral residual errors are the mean value of 𝛿𝛿(𝜆𝜆) for all measurement data. Although there 
were slight differences between different measurement channels, we set the same weighting in the 
retrieval. Therefore, when the cost function reached a minimum value, the fitting residuals were not 
the same at different wavelengths. The spectral residual errors were 9.28%, 1.45%, 8.14%, 4.42%, and 
1.46% for 490, 550, 670, 870, and 1610 nm, respectively. Obviously, the errors for 490 and 670 nm were 
much larger than the other wavelengths, due to the calibration error and the forward model error in 
these wavelengths. The total residual error was the average of the five wavebands, which was as low 
as 4.95%, showing a good fit between the final model results and the real observations. 

5. Discussion 

5.1. The Limit of the Algorithm 

The OE-based algorithm takes advantage of the effective information in longer NIR band 
observations to enhance the constraints of coarse-mode aerosol inversion. Thus, the FMF parameter 
can be retrieved from single-viewing observation. However, after introducing 5% random noise on 
the simulation data, the mean relative retrieval error was about 4.5%, which revealed the relative low 
ability of error resistance for the single-viewing observation. 

The real part of the refractive index and the effective radius are two decisive parameters in the 
optical scattering characteristics of aerosol, and they further affect the retrieval of FMF. In this study, 
we use the historical statistical data from AERONET products in the experimental area as the a priori 
estimates of aerosol model parameters. However, for practical applications, different aerosol types 
need to be considered.  

5.2. Application Potential 

The algorithm proposed originally for ground-based intensity measurements is based on the 
optimal estimation inversion theory. Thus, it can be extended conveniently by adjusting the 
observation vector for other applications as long as the observations contain sufficient information. 
Polarimetry is one of the most prospective remote sensing approaches since it has a high sensitivity 
to aerosol [25]. SMAC also provides polarimetric measurements. Research on aerosol retrieval from 
the polarization data based on the proposed algorithm can be conducted. Furthermore, by 
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introducing appropriate surface estimation methods, the algorithm can be further used for satellite 
platforms. Based on the feasibility of remote sensing FMF from ground-based single-viewing multi-
spectral observation, a further inversion study for satellites can be carried out. The proposed 
algorithm is expected to be applied to aerosol remote sensing of SMAC on board the Chinese HJ-02 
satellite in the future. 

6. Conclusions 

In this paper, we proposed an optimal estimation inversion algorithm for the retrieval of the 
aerosol fine-mode fraction parameter from single-viewing multi-spectral measurements of sky light. 
The retrieved AOD and FMF from synthetic data produced a correlation coefficient greater than 0.99, 
representing good self-consistency of the inversion algorithm. Validation against the AERONET 
products showed that the correlation coefficients for aerosol volume fine-mode fraction (FMFv) and 
optical fine-mode fraction (FMFo) were 0.94 and 0.95, respectively. The mean residual error of all the 
retrieval data was 4.95%. These results strongly validate the feasibility of the inversion framework. 
In addition, by introducing data from the 1610 nm wavelength measurements, the correlation 
coefficients showed a significant improvement for FMFo (from 0.89–0.94). The comparison confirms 
the expected high value of NIR data to the retrieval of the aerosol fine-mode fraction.  
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