Next Issue
Volume 7, September
Previous Issue
Volume 7, July
 
 

Genes, Volume 7, Issue 8 (August 2016) – 15 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
519 KiB  
Article
Genetic Variants of Retinoic Acid Receptor-Related Orphan Receptor Alpha Determine Susceptibility to Type 2 Diabetes Mellitus in Han Chinese
by Yuwei Zhang, Yulan Liu, Yin Liu, Yanjie Zhang and Zhiguang Su
Genes 2016, 7(8), 54; https://doi.org/10.3390/genes7080054 - 20 Aug 2016
Cited by 8 | Viewed by 4954
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORA) plays a key role in the regulation of lipid and glucose metabolism and insulin expression that are implicated in the development of type 2 diabetes mellitus (T2DM). However, the effects of genetic variants in the RORA [...] Read more.
Retinoic acid receptor-related orphan receptor alpha (RORA) plays a key role in the regulation of lipid and glucose metabolism and insulin expression that are implicated in the development of type 2 diabetes mellitus (T2DM). However, the effects of genetic variants in the RORA gene on the susceptibility to T2DM remain unknown. Nine tagging single-nucleotide polymorphisms (SNPs) were screened by using the SNaPshot method in 427 patients with T2DM and 408 normal controls. Association between genotypes and haplotypes derived from these SNPs with T2DM was analyzed using different genetic models. Allele and genotype frequencies at rs10851685 were significantly different between T2DM patients and control subjects (allele: p = 0.009, Odds ratios (OR) = 1.36 [95% Confidence intervals (CI) = 1.08–1.72]; genotype: p = 0.029). The minor allele T, at rs10851685, was potentially associated with an increased risk of T2DM in the dominant model, displaying OR of 1.38 (95% CI: 1.04–1.82, p = 0.025) in subjects with genotypes TA+TT vs. AA. In haplotype analysis, we observed that haplotypes GGTGTAACT, GGTGTAACC, and GATATAACT were significantly associated with increased risk of T2DM, while haplotypes GATGAAGTT, AGTGAAGTT, and AATGAAATT were protective against T2DM. These data suggest that the genetic variation in RORA might determine a Chinese Han individual’s susceptibility to T2DM. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

3193 KiB  
Article
The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability
by Gi Won Seo, Yong Hun Jo, Jeong Hwan Seong, Ki Beom Park, Bharat Bhusan Patnaik, Hamisi Tindwa, Sun-Am Kim, Yong Seok Lee, Yu Jung Kim and Yeon Soo Han
Genes 2016, 7(8), 53; https://doi.org/10.3390/genes7080053 - 20 Aug 2016
Cited by 5 | Viewed by 5680
Abstract
The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is [...] Read more.
The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. Full article
(This article belongs to the Special Issue RNA Interference 2016)
Show Figures

Figure 1

1364 KiB  
Review
Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis
by Sarah J. Northall, Ivana Ivančić-Baće, Panos Soultanas and Edward L. Bolt
Genes 2016, 7(8), 52; https://doi.org/10.3390/genes7080052 - 19 Aug 2016
Cited by 7 | Viewed by 7908
Abstract
Recombinase enzymes catalyse invasion of single-stranded DNA (ssDNA) into homologous duplex DNA forming “Displacement loops” (D-loops), a process called synapsis. This triggers homologous recombination (HR), which can follow several possible paths to underpin DNA repair and restart of blocked and collapsed DNA replication [...] Read more.
Recombinase enzymes catalyse invasion of single-stranded DNA (ssDNA) into homologous duplex DNA forming “Displacement loops” (D-loops), a process called synapsis. This triggers homologous recombination (HR), which can follow several possible paths to underpin DNA repair and restart of blocked and collapsed DNA replication forks. Therefore, synapsis can be a checkpoint for controlling whether or not, how far, and by which pathway, HR proceeds to overcome an obstacle or break in a replication fork. Synapsis can be antagonized by limiting access of a recombinase to ssDNA and by dissociation of D-loops or heteroduplex formed by synapsis. Antagonists include DNA helicases and translocases that are identifiable in eukaryotes, bacteria and archaea, and which target synaptic and pre-synaptic DNA structures thereby controlling HR at early stages. Here we survey these events with emphasis on enabling DNA replication to be resumed from sites of blockage or collapse. We also note how knowledge of anti-recombination activities could be useful to improve efficiency of CRISPR-based genome editing. Full article
(This article belongs to the Special Issue Replication and Transcription Associated DNA Repair)
Show Figures

Figure 1

1492 KiB  
Review
Targeting DNA Replication Stress for Cancer Therapy
by Jun Zhang, Qun Dai, Dongkyoo Park and Xingming Deng
Genes 2016, 7(8), 51; https://doi.org/10.3390/genes7080051 - 19 Aug 2016
Cited by 65 | Viewed by 13079
Abstract
The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular [...] Read more.
The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. Full article
(This article belongs to the Special Issue Replication and Transcription Associated DNA Repair)
Show Figures

Figure 1

1581 KiB  
Review
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene
by Muhammad Khairul Ramlee, Jing Wang, Wei Xun Toh and Shang Li
Genes 2016, 7(8), 50; https://doi.org/10.3390/genes7080050 - 18 Aug 2016
Cited by 119 | Viewed by 14279
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the [...] Read more.
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter. Full article
(This article belongs to the Special Issue Telomerase Activity in Human Cells)
Show Figures

Figure 1

2065 KiB  
Review
Transcriptional Reactivation of the FMR1 Gene. A Possible Approach to the Treatment of the Fragile X Syndrome
by Elisabetta Tabolacci, Federica Palumbo, Veronica Nobile and Giovanni Neri
Genes 2016, 7(8), 49; https://doi.org/10.3390/genes7080049 - 17 Aug 2016
Cited by 25 | Viewed by 14505
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG expansion over 200 repeats (full mutation, FM) at the 5′ untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene and subsequent DNA [...] Read more.
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG expansion over 200 repeats (full mutation, FM) at the 5′ untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene and subsequent DNA methylation of the promoter region, accompanied by additional epigenetic histone modifications that result in a block of transcription and absence of the fragile X mental retardation protein (FMRP). The lack of FMRP, involved in multiple aspects of mRNA metabolism in the brain, is thought to be the direct cause of the FXS phenotype. Restoration of FMR1 transcription and FMRP production can be obtained in vitro by treating FXS lymphoblastoid cell lines with the demethylating agent 5-azadeoxycytidine, demonstrating that DNA methylation is key to FMR1 inactivation. This concept is strengthened by the existence of rare male carriers of a FM, who are unable to methylate the FMR1 promoter. These individuals produce limited amounts of FMRP and are of normal intelligence. Their inability to methylate the FMR1 promoter, whose cause is not yet fully elucidated, rescues them from manifesting the FXS. These observations demonstrate that a therapeutic approach to FXS based on the pharmacological reactivation of the FMR1 gene is conceptually tenable and worthy of being further pursued. Full article
(This article belongs to the Special Issue Fragile X Syndrome)
Show Figures

Figure 1

1655 KiB  
Review
Replication-Associated Recombinational Repair: Lessons from Budding Yeast
by Jacob N. Bonner and Xiaolan Zhao
Genes 2016, 7(8), 48; https://doi.org/10.3390/genes7080048 - 17 Aug 2016
Cited by 7 | Viewed by 6992
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, [...] Read more.
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms. Full article
(This article belongs to the Special Issue Replication and Transcription Associated DNA Repair)
Show Figures

Figure 1

4659 KiB  
Article
Molecular Cytogenetics in Trough Shells (Mactridae, Bivalvia): Divergent GC-Rich Heterochromatin Content
by Daniel García-Souto, Concepción Pérez-García, Jack Kendall and Juan J. Pasantes
Genes 2016, 7(8), 47; https://doi.org/10.3390/genes7080047 - 16 Aug 2016
Cited by 13 | Viewed by 6929
Abstract
The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. [...] Read more.
The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. In this work, we analyzed the chromosomes of Spisula solida, Spisula subtruncata and Mactra stultorum by means of fluorochrome staining, C-banding and fluorescent in situ hybridization using 28S ribosomal DNA (rDNA), 5S rDNA, H3 histone gene and telomeric probes. All three trough shells presented 2n = 38 chromosomes but different karyotype compositions. As happens in most bivalves, GC-rich regions were limited to the nucleolus organizing regions in Spisula solida. In contrast, many GC-rich heterochromatic bands were detected in both Spisula subtruncata and Mactra stultorum. Although the three trough shells presented single 5S rDNA and H3 histone gene clusters, their chromosomal locations differed. Regarding major rDNA clusters, while Spisula subtruncata presented a single cluster, both Spisula solida and Mactra stultorum showed two. No evidence of intercalary telomeric signals was detected in these species. The molecular cytogenetic characterization of these taxa will contribute to understanding the role played by chromosome changes in the evolution of trough shells. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

7241 KiB  
Article
Telomere Transcripts Target Telomerase in Human Cancer Cells
by Theresa Kreilmeier, Doris Mejri, Marlene Hauck, Miriam Kleiter and Klaus Holzmann
Genes 2016, 7(8), 46; https://doi.org/10.3390/genes7080046 - 16 Aug 2016
Cited by 20 | Viewed by 6585
Abstract
Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA), were identified as blocking telomerase activity (TA), a telomere maintenance mechanism (TMM), in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT) to [...] Read more.
Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA), were identified as blocking telomerase activity (TA), a telomere maintenance mechanism (TMM), in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT) to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV) were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV) and human RNase P RNA H1 (hH1) promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%–3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3–2.6 fold increase in TERRA levels, and a decrease in TA of 25%–58%. Dominant-negative or small hairpin RNA (shRNA) viral expression against human telomerase reverse transcriptase (hTERT) results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length) were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase. Full article
(This article belongs to the Special Issue Telomerase Activity in Human Cells)
Show Figures

Figure 1

3352 KiB  
Article
Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development
by Lu Wang, Yan Wang, Shimeng Zhou, Liukun Yang, Qixin Shi, Yujiao Li, Kun Zhang, Le Yang, Minggao Zhao and Qi Yang
Genes 2016, 7(8), 45; https://doi.org/10.3390/genes7080045 - 10 Aug 2016
Cited by 20 | Viewed by 6771
Abstract
Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the [...] Read more.
Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Factors of Mental Disorders)
Show Figures

Figure 1

2096 KiB  
Article
Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis
by Sung-Young Shin and Lan K. Nguyen
Genes 2016, 7(8), 44; https://doi.org/10.3390/genes7080044 - 5 Aug 2016
Cited by 13 | Viewed by 6558
Abstract
The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS [...] Read more.
The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating that the Hippo pathway does not act alone but crosstalks with other signalling pathways to coordinate network dynamics and cellular outcomes. These crosstalks were characterised by a multitude of complex regulatory mechanisms involving competitive protein-protein interactions and phosphorylation mediated feedback loops. However, how these different mechanisms interplay in different cellular contexts to drive the context-specific network dynamics of Hippo-ERK signalling remains elusive. Using mathematical modelling and computational analysis, we uncovered that the Hippo-ERK network can generate highly diverse dynamical profiles that can be clustered into distinct dose-response patterns. For each pattern, we offered mechanistic explanation that defines when and how the observed phenomenon can arise. We demonstrated that Akt displays opposing, dose-dependent functions towards ERK, which are mediated by the balance between the Raf-1/MST2 protein interaction module and the LATS1 mediated feedback regulation. Moreover, Ras displays a multi-functional role and drives biphasic responses of both MST2 and ERK activities; which are critically governed by the competitive protein interaction between MST2 and Raf-1. Our study represents the first in-depth and systematic analysis of the Hippo-ERK network dynamics and provides a concrete foundation for future studies. Full article
(This article belongs to the Special Issue Hippo Signaling Pathway)
Show Figures

Figure 1

638 KiB  
Review
Telomerase: The Devil Inside
by Mukesh Kumar, Andre Lechel and Çagatay Güneş
Genes 2016, 7(8), 43; https://doi.org/10.3390/genes7080043 - 29 Jul 2016
Cited by 25 | Viewed by 8125
Abstract
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in [...] Read more.
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies. Full article
(This article belongs to the Special Issue Telomerase Activity in Human Cells)
Show Figures

Figure 1

2214 KiB  
Article
The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication
by Aisha H. Syeda, John Atkinson, Robert G. Lloyd and Peter McGlynn
Genes 2016, 7(8), 42; https://doi.org/10.3390/genes7080042 - 29 Jul 2016
Cited by 13 | Viewed by 4870
Abstract
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which [...] Read more.
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory helicases and recombination enzymes in both bacteria and lower eukaryotes but how these replication repair systems interact to ensure efficient genome duplication remains unclear. Here, we demonstrate that the DNA content defects of Escherichia coli cells lacking the strand exchange protein RecA are driven primarily by conflicts between replication and transcription, as is the case in cells lacking the accessory helicase Rep. However, in contrast to Rep, neither RecA nor RecBCD, the helicase/exonuclease that loads RecA onto dsDNA ends, is important for maintaining rapid chromosome duplication. Furthermore, RecA and RecBCD together can sustain viability in the absence of accessory replicative helicases but only when transcriptional barriers to replication are suppressed by an RNA polymerase mutation. Our data indicate that the minimisation of replisome pausing by accessory helicases has a more significant impact on successful completion of chromosome duplication than recombination-directed fork repair. Full article
(This article belongs to the Special Issue Replication and Transcription Associated DNA Repair)
Show Figures

Figure 1

1933 KiB  
Case Report
Segregation of Incomplete Achromatopsia and Alopecia Due to PDE6H and LPAR6 Variants in a Consanguineous Family from Pakistan
by Christeen Ramane J. Pedurupillay, Erlend Christoffer Sommer Landsend, Magnus Dehli Vigeland, Muhammad Ansar, Eirik Frengen, Doriana Misceo and Petter Strømme
Genes 2016, 7(8), 41; https://doi.org/10.3390/genes7080041 - 27 Jul 2016
Cited by 9 | Viewed by 5950
Abstract
We report on two brothers with visual impairment, and non-syndromic alopecia in the elder proband. The parents were first-degree Pakistani cousins. Whole exome sequencing of the elder brother and parents, followed by Sanger sequencing of all four family members, led to the identification [...] Read more.
We report on two brothers with visual impairment, and non-syndromic alopecia in the elder proband. The parents were first-degree Pakistani cousins. Whole exome sequencing of the elder brother and parents, followed by Sanger sequencing of all four family members, led to the identification of the variants responsible for the two phenotypes. One variant was a homozygous nonsense variant in the inhibitory subunit of the cone-specific cGMP phosphodiesterase gene, PDE6H:c.35C>G (p.Ser12*). PDE6H is expressed in the cones of the retina, which are involved in perception of color vision. This is the second report of a homozygous PDE6H:c.35C>G variant causing incomplete achromatopsia (OMIM 610024), thus strongly supporting the hypothesis that loss-of-function variants in PDE6H cause this visual deficiency phenotype. The second variant was a homozygous missense substitution in the lysophosphatidic acid receptor 6, LPAR6:c.188A>T (p.Asp63Val). LPAR6 acts as a G-protein-coupled receptor involved in hair growth. Biallelic loss-of-function variants in LPAR6 cause hypotrichosis type 8 (OMIM 278150), with or without woolly hair, a form of non-syndromic alopecia. Biallelic LPAR6:c.188A>T was previously described in five families from Pakistan. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

5165 KiB  
Review
Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli
by Juachi U. Dimude, Sarah L. Midgley-Smith, Monja Stein and Christian J. Rudolph
Genes 2016, 7(8), 40; https://doi.org/10.3390/genes7080040 - 25 Jul 2016
Cited by 29 | Viewed by 9149
Abstract
Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that [...] Read more.
Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3’ exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism. Full article
(This article belongs to the Special Issue Replication and Transcription Associated DNA Repair)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop