Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection and Microbial DNA Extraction
2.2. qPCR Protocols
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
CNS | Coagulase-Negative Staphylococci |
LAB | Lactic Acid Bacteria |
MLSB | Macrolide–Lincosamide–Streptogramin B |
MRSA | Methicillin-Resistant Staphylococcus aureus |
PBP2a | Penicillin-Binding Protein 2a |
PCA | Principal Component Analysis |
PCR | Polymerase Chain Reaction |
qPCR | Quantitative Polymerase Chain Reaction |
VRE | Vancomycin-Resistant Enterococci |
References
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Silvestri, G.; Vignaroli, C.; Clementi, F. Isolation and Molecular Characterization of Antibiotic-Resistant Lactic Acid Bacteria from Poultry and Swine Meat Products. J. Food Prot. 2007, 70, 557–565. [Google Scholar] [CrossRef]
- Garofalo, C.; Vignaroli, C.; Zandri, G.; Aquilanti, L.; Bordoni, D.; Osimani, A.; Clementi, F.; Biavasco, F. Direct Detection of Antibiotic Resistance Genes in Specimens of Chicken and Pork Meat. Int. J. Food Microbiol. 2007, 113, 75–83. [Google Scholar] [CrossRef]
- Likotrafiti, E.; Oniciuc, E.; Prieto, M.; Santos, J.; López, S.; Alvarez-Ordóñez, A. Risk Assessment of Antimicrobial Resistance along the Food Chain through Culture-independent Methodologies. EFSA J. 2018, 16, e160811. [Google Scholar] [CrossRef] [PubMed]
- Milanović, V.; Osimani, A.; Cardinali, F.; Litta-Mulondo, A.; Vignaroli, C.; Citterio, B.; Mangiaterra, G.; Aquilanti, L.; Garofalo, C.; Biavasco, F.; et al. Erythromycin-Resistant Lactic Acid Bacteria in the Healthy Gut of Vegans, Ovo-Lacto Vegetarians and Omnivores. PLoS ONE 2019, 14, e0220549. [Google Scholar] [CrossRef] [PubMed]
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M.A.P. Antibiotic Resistance in Foodborne Bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Santamarina-García, G.; Amores, G.; Llamazares, D.; Hernández, I.; Javier, R.; Barron, L.; Virto, M. Phenotypic and Genotypic Characterization of Antimicrobial Resistances Reveals the Effect of the Production Chain in Reducing Resistant Lactic Acid Bacteria in an Artisanal Raw Ewe Milk PDO Cheese. Food Res. Int. 2024, 187, 114308. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Caniça, M.; Manageiro, V.; Jones-Dias, D.; Clemente, L.; Gomes-Neves, E.; Poeta, P.; Dias, E.; Ferreira, E. Current Perspectives on the Dynamics of Antibiotic Resistance in Different Reservoirs. Res. Microbiol. 2015, 166, 594–600. [Google Scholar] [CrossRef]
- Bergšpica, I.; Kaprou, G.; Alexa, E.A.; Prieto-Maradona, M.; Alvarez-Ordóñez, A. Identification of Risk Factors and Hotspots of Antibiotic Resistance along the Food Chain Using Next-generation Sequencing. EFSA J. 2020, 18, e181107. [Google Scholar] [CrossRef]
- Carelli, M.; Griggio, F.; Mingoia, M.; Garofalo, C.; Milanović, V.; Pozzato, N.; Leoni, F.; Veschetti, L.; Malerba, G.; Sandri, A.; et al. Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR. Antibiotics 2022, 11, 1696. [Google Scholar] [CrossRef]
- Garofalo, C.; Cesaro, C.; Milanović, V.; Belleggia, L.; Matricardi, T.; Osimani, A.; Aquilanti, L.; Cardinali, F.; Rampanti, G.; Simoni, S.; et al. Search for Carbapenem-Resistant Bacteria and Carbapenem Resistance Genes along Swine Food Chains in Central Italy. PLoS ONE 2024, 19, e0296098. [Google Scholar] [CrossRef] [PubMed]
- Milanović, V.; Aquilanti, L.; Tavoletti, S.; Garofalo, C.; Osimani, A.; De Filippis, F.; Ercolini, D.; Ferrocino, I.; Di Cagno, R.; Turroni, S.; et al. Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Genes 2020, 11, 1088. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Aquilanti, L.; Tavoletti, S.; Garofalo, C.; Polverigiani, S.; Litta-Mulondo, A.; Cocolin, L.; Ferrocino, I.; Di Cagno, R.; et al. Occurrence of Antibiotic Resistance Genes in the Fecal DNA of Healthy Omnivores, Ovo-Lacto Vegetarians and Vegans. Mol. Nutr. Food Res. 2017, 61, 1601098. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; De Schaetzen, M.-A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Fu, Y.; Mei, Z.; Schäffer, A.; Dou, Q.; Amelung, W.; Elsner, M.; Adu-Gyamfi, J.; Heng, L.; Virta, M.; et al. Antibiotic Resistance Genes in Food Production Systems Support One Health Opinions. Curr. Opin. Environ. Sci. Health 2023, 34, 100492. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Guerrero-Barrera, A.L.; Avelar-González, F.J. An Overview of Carbapenem-Resistant Organisms from Food-Producing Animals, Seafood, Aquaculture, Companion Animals, and Wildlife. Front. Vet. Sci. 2023, 10, 1158588. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Perozzi, G.; Devirgiliis, C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023, 11, 1696. [Google Scholar] [CrossRef]
- Wolfe, B.E. Are Fermented Foods an Overlooked Reservoir of Antimicrobial Resistance? Curr. Opin. Food Sci. 2023, 51, 101018. [Google Scholar] [CrossRef]
- Chaves, C.R.S.; Salamandane, A.; Vieira, E.J.F.; Salamandane, C. Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Int. J. Microbiol. 2024, 2024, 2409270. [Google Scholar] [CrossRef]
- Cardinali, F.; Rampanti, G.; Paderni, G.; Milanović, V.; Ferrocino, I.; Reale, A.; Boscaino, F.; Raicevic, N.; Ilincic, M.; Osimani, A.; et al. A Comprehensive Study on the Autochthonous Microbiota, Volatilome, Physico-Chemical, and Morpho-Textural Features of Montenegrin Njeguški Cheese. Food Res. Int. 2024, 197, 115169. [Google Scholar] [CrossRef] [PubMed]
- Jokanovic, O.; Markovic, B.; Mirecki, S.; Veljic, M.; Miloradovic, Z.; Radulovic, A.; Miocinovic, J. Composition and α-Tocopherol Content of Njeguski-Type Cheese Made from Cow, Ewe and Goat Milk. Int. Dairy J. 2022, 134, 105469. [Google Scholar] [CrossRef]
- Mirecki, S.; Popović, N.; Antunac, N.; Mikulec, N.; Plavljanić, D. Production Technology and Some Quality Parameters of Njeguši Cheese. Mljekarstvo 2015, 65, 280–286. [Google Scholar] [CrossRef]
- Milanović, V.; Osimani, A.; Roncolini, A.; Garofalo, C.; Aquilanti, L.; Pasquini, M.; Tavoletti, S.; Vignaroli, C.; Canonico, L.; Ciani, M.; et al. Investigation of the Dominant Microbiota in Ready-to-Eat Grasshoppers and Mealworms and Quantification of Carbapenem Resistance Genes by qPCR. Front. Microbiol. 2018, 9, 3036. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Milanović, V.; Cardinali, F.; Aquilanti, L.; Maoloni, A.; Garofalo, C.; Zarantoniello, M.; Olivotto, I.; Riolo, P.; Ruschioni, S.; Isidoro, N.; et al. Quantitative Assessment of Transferable Antibiotic Resistance Genes in Zebrafish (Danio rerio) Fed Hermetia Illucens-Based Feed. Anim. Feed Sci. Technol. 2021, 277, 114978. [Google Scholar] [CrossRef]
- Iancu, I.; Igna, V.; Popa, S.A.; Imre, K.; Pascu, C.; Costinar, L.; Degi, J.; Gligor, A.; Iorgoni, V.; Badea, C.; et al. Etiology and Antimicrobial Resistance of Subclinical Mastitis Pathogens Staphylococcus aureus, Streptococcus spp. and Enterococcus spp. in Sheep Milk. Vet. Res. Commun. 2025, 49, 30. [Google Scholar] [CrossRef]
- Kováčová, M.; Výrostková, J.; Dudriková, E.; Zigo, F.; Semjon, B.; Regecová, I. Assessment of Quality and Safety of Farm Level Produced Cheeses from Sheep and Goat Milk. Appl. Sci. 2021, 11, 3196. [Google Scholar] [CrossRef]
- Gołaś-Prądzyńska, M.; Łuszczyńska, M.; Rola, J.G. Dairy Products: A Potential Source of Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium Strains. Foods 2022, 11, 4116. [Google Scholar] [CrossRef]
- Palmeri, M.; Mancuso, I.; Gaglio, R.; Arcuri, L.; Barreca, S.; Barbaccia, P.; Scatassa, M.L. Identification and Evaluation of Antimicrobial Resistance of Enterococci Isolated from Raw Ewes’ and Cows’ Milk Collected in Western Sicily: A Preliminary Investigation. Ital. J. Food Saf. 2021, 9, 220–225. [Google Scholar] [CrossRef]
- Roșu, R.-D.; Morar, A.; Ban-Cucerzan, A.; Imre, M.; Popa, S.A.; Pătrînjan, R.-T.; Pocinoc, A.; Imre, K. Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania. Antibiotics 2025, 14, 787. [Google Scholar] [CrossRef]
- Regecová, I.; Výrostková, J.; Zigo, F.; Gregová, G.; Kováčová, M. Detection of Antimicrobial Resistance of Bacteria Staphylococcus chromogenes Isolated from Sheep’s Milk and Cheese. Antibiotics 2021, 10, 570. [Google Scholar] [CrossRef]
- Souza, D.B.; Pereira, R.I.; Endres, C.M.; Frazzon, J.; Prichula, J.; Frazzon, A.P.G. Resistant Enterococci Isolated from Raw Sheep’s Milk and Cheeses from South Region of Brazil. Ciência Rural 2023, 53, e20220288. [Google Scholar] [CrossRef]
- Bruzaroski, S.R.; Correia, S.; Araújo, K.E.; Santos, L.R.d.S.; Alegro, L.A.; dos Santos, N.T.B.; Poli-Frederico, R.C.; Carvalho, R.C.T.; Santana, E.H.W. High Spoilage Potential and Multidrug Resistance of P. aeruginosa Strains Isolated from Sheep Milk. Int. Dairy J. 2025, 167, 106280. [Google Scholar] [CrossRef]
- Piras, F.; Spanu, C.; Sanna, R.; Siddi, G.; Mocci, A.M.; Demontis, M.; Meloni, M.P.; Spanu, V.; De Santis, E.P.L.; Scarano, C. Detection, Virulence Genes and Antimicrobial Resistance of Yersinia enterocolitica in Sheep and Goat Raw Milk. Int. Dairy J. 2021, 117, 105011. [Google Scholar] [CrossRef]
- Delannoy, S.; Hoffer, C.; Tran, M.-L.; Madec, J.-Y.; Brisabois, A.; Fach, P.; Haenni, M. High Throughput qPCR Analyses Suggest That Enterobacterales of French Sheep and Cow Cheese Rarely Carry Genes Conferring Resistances to Critically Important Antibiotics for Human Medicine. Int. J. Food Microbiol. 2023, 403, 110303. [Google Scholar] [CrossRef]
- Spanu, V.; Spanu, C.; Virdis, S.; Cossu, F.; Scarano, C.; De Santis, E.P.L. Virulence Factors and Genetic Variability of Staphylococcus aureus Strains Isolated from Raw Sheep’s Milk Cheese. Int. J. Food Microbiol. 2012, 153, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Výrostková, J.; Regecová, I.; Dudriková, E.; Marcinčák, S.; Vargová, M.; Kováčová, M.; Maľová, J. Antimicrobial Resistance of Enterococcus sp. Isolated from Sheep and Goat Cheeses. Foods 2021, 10, 1844. [Google Scholar] [CrossRef]
- Slyvka, I.; Tsisaryk, O.; Musii, L.; Kushnir, I.; Koziorowski, M.; Koziorowska, A. Identification and Investigation of Properties of Strains Enterococcus spp. Isolated from Artisanal Carpathian Cheese. Biocatal. Agric. Biotechnol. 2022, 39, 102259. [Google Scholar] [CrossRef]
- Karahutová, L.; Bujňáková, D. Occurrence and Molecular Surveillance of Pathogenesis Risk-Associated Factors in Staphylococcus aureus Recovered from Raw Sheep’s Milk Cheese. Small Rumin. Res. 2023, 222, 106967. [Google Scholar] [CrossRef]
- Petinaki, E.; Papagiannitsis, C. Resistance of Staphylococci to Macrolides-Lincosamides-Streptogramins B (MLSB): Epidemiology and Mechanisms of Resistance. In Staphylococcus aureus; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; García-Solache, M. Ready-to-Eat Dairy Products as a Source of Multidrug-Resistant Enterococcus Strains: Phenotypic and Genotypic Characteristics. J. Dairy Sci. 2020, 103, 4068–4077. [Google Scholar] [CrossRef]
- Kürekci, C. Short Communication: Prevalence, Antimicrobial Resistance, and Resistant Traits of Coagulase-Negative Staphylococci Isolated from Cheese Samples in Turkey. J. Dairy Sci. 2016, 99, 2675–2679. [Google Scholar] [CrossRef]
- Salamandane, A.; Cahango, G.; Muetanene, B.A.; Malfeito-Ferreira, M.; Brito, L. Multidrug Resistance in Enterococci Isolated from Cheese and Capable of Producing Benzalkonium Chloride-Resistant Biofilms. Biology 2023, 12, 1353. [Google Scholar] [CrossRef]
- Flórez, A.B.; Alegría, Á.; Rossi, F.; Delgado, S.; Felis, G.E.; Torriani, S.; Mayo, B. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses. Biomed. Res. Int. 2014, 2014, 746859. [Google Scholar] [CrossRef]
- Aires, J.; Doucet-Populaire, F.; Butel, M.J. Tetracycline Resistance Mediated by Tet(W), Tet(M), and Tet(O) Genes of Bifidobacterium Isolates from Humans. Appl. Environ. Microbiol. 2007, 73, 2751–2754. [Google Scholar] [CrossRef]
- Kim, S.-R.; Nonaka, L.; Suzuki, S. Occurrence of Tetracycline Resistance Genes Tet(M) and Tet(S) in Bacteria from Marine Aquaculture Sites. FEMS Microbiol. Lett. 2004, 237, 147–156. [Google Scholar] [CrossRef]
- Li, W.; Atkinson, G.C.; Thakor, N.S.; Allas, Ü.; Lu, C.; Chan, K.-Y.; Tenson, T.; Schulten, K.; Wilson, K.S.; Hauryliuk, V.; et al. Mechanism of Tetracycline Resistance by Ribosomal Protection Protein Tet(O). Nat. Commun. 2013, 4, 1477. [Google Scholar] [CrossRef] [PubMed]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef]
- Speer, B.S.; Shoemaker, N.B.; Salyers, A. Bacterial Resistance to Tetracycline: Mechanisms, Transfer, and Clinical Significance. Clin. Microbiol. Rev. 1992, 5, 387–399. [Google Scholar] [CrossRef] [PubMed]
- De Paula, A.C.; Medeiros, J.; De Azevedo, A.; De Assis Chagas, J.; Da Silva, V.; Diniz, C. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer. Genes 2018, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Lade, H.; Kim, J.-S. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics 2023, 12, 1362. [Google Scholar] [CrossRef]
- da Silva Abreu, A.C.; Matos, L.G.; da Silva Cândido, T.J.; Barboza, G.R.; de Souza, V.V.M.A.; Munive Nuñez, K.V.; Cirone Silva, N.C. Antimicrobial Resistance of Staphylococcus spp. Isolated from Organic and Conventional Minas Frescal Cheese Producers in São Paulo, Brazil. J. Dairy Sci. 2021, 104, 4012–4022. [Google Scholar] [CrossRef]
- Carneiro Aguiar, R.A.; Ferreira, F.A.; Dias, R.S.; Nero, L.A.; Miotto, M.; Verruck, S.; De Marco, I.; De Dea Lindner, J. Graduate Student Literature Review: Enterotoxigenic Potential and Antimicrobial Resistance of Staphylococci from Brazilian Artisanal Raw Milk Cheeses. J. Dairy Sci. 2022, 105, 5685–5699. [Google Scholar] [CrossRef]
- Aragão, B.B.; Trajano, S.C.; Silva, J.G.; Silva, B.P.; Oliveira, R.P.; Junior, J.W.P.; Peixoto, R.M.; Mota, R.A. Short Communication: High Frequency of β-Lactam-Resistant Staphylococcus aureus in Artisanal Coalho Cheese Made from Goat Milk Produced in Northeastern Brazil. J. Dairy Sci. 2019, 102, 6923–6927. [Google Scholar] [CrossRef] [PubMed]
- Pineda, A.P.A.; Chacón, R.D.; Costa, T.G.d.; Campos, G.Z.; Munive Nuñez, K.V.; Ramos, R.C.Z.; Camargo, C.H.; Lacorte, G.A.; Silva, N.C.C.; Pinto, U.M. Molecular Characterization and Virulence Potential of Staphylococcus aureus from Raw Milk Artisanal Cheeses. Int. Dairy J. 2025, 160, 106097. [Google Scholar] [CrossRef]
- Selim, S. Mechanisms of Gram-positive Vancomycin Resistance (Review). Biomed. Rep. 2021, 16, 7. [Google Scholar] [CrossRef]
- Gaglio, R.; Couto, N.; Marques, C.; de Fatima Silva Lopes, M.; Moschetti, G.; Pomba, C.; Settanni, L. Evaluation of Antimicrobial Resistance and Virulence of Enterococci from Equipment Surfaces, Raw Materials, and Traditional Cheeses. Int. J. Food Microbiol. 2016, 236, 107–114. [Google Scholar] [CrossRef]
- Yao, J.; Gao, J.; Guo, J.; Wang, H.; Zhang, E.; Lin, Y.; Chen, Z.; Li, S.; Tao, S. Characterization of Bacteria and Antibiotic Resistance in Commercially Produced Cheeses Sold in China. J. Food Prot. 2022, 85, 484–493. [Google Scholar] [CrossRef]
- Mirnejad, R.; Sajjadi, N.; Masoumi Zavaryani, S.; Piranfar, V.; Hajihosseini, M.; Roshanfekr, M. Identification of Aminoglycoside Resistance Genes by Triplex PCR in Enterococcus spp. Isolated from ICUs. Infez. Med. 2016, 24, 222–229. [Google Scholar] [PubMed]
- Özdemir, R.; Tuncer, Y. Detection of Antibiotic Resistance Profiles and Aminoglycoside-Modifying Enzyme (AME) Genes in High-Level Aminoglycoside-Resistant (HLAR) Enterococci Isolated from Raw Milk and Traditional Cheeses in Turkey. Mol. Biol. Rep. 2020, 47, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Alvisi, G.; Curtoni, A.; Fonnesu, R.; Piazza, A.; Signoretto, C.; Piccinini, G.; Sassera, D.; Gaibani, P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics 2025, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Al, S.; Hizlisoy, H.; Onmaz, N.E.; Karadal, F.; Barel, M.; Yildirim, Y.; Gönülalan, Z. Çiğ Sütlerde Karbapenem Dirençli Enterobacteriaceae ve BlaKPC, BlaNDM ve BlaOXA-48 Gen Varlığının Moleküler Olarak İncelenmesi. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 391–396. [Google Scholar] [CrossRef]
- Wörmann, M.E.; Pech, J.; Reich, F.; Tenhagen, B.-A.; Wichmann-Schauer, H.; Lienen, T. Growth of Methicillin-Resistant Staphylococcus aureus during Raw Milk Soft Cheese-Production and the Inhibitory Effect of Starter Cultures. Food Microbiol. 2024, 119, 104451. [Google Scholar] [CrossRef] [PubMed]
Producer | Batch | Antimicrobial Resistant Genes (Log Gene Copies/g ± Standard Deviation) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLSB 1 | Tetracyclines | β-Lactams | Vancomycin | Aminoglycosides | Carbapenems | ||||||||||||||
erm(A) | erm(B) | erm(C) | tet(K) | tet(M) | tet(O) | tet(S) | tet(W) | blaZ | mecA | vanA | vanB | aac(6′)-Ie-aph(2″)-Ia | blaOXA-48 | blaVIM | blaNDM-1 | blaGES | blaKPC | ||
A | b1 | n.d. a | 7.54 ± 0.27 a | n.d. a | 4.88 ± 0.19 c | 8.26 ± 0.12 a | 3.79 ± 0.02 a | 9.26 ± 0.06 a | 4.83 ± 0.00 a | 5.24 ± 0.04 a | 3.23 ± 0.30 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a |
b2 | n.d. a | 7.02 ± 0.30 a | n.d. a | 5.49 ± 0.06 b | 7.72 ± 0.32 a | 3.83 ± 0.04 a | 8.60 ± 0.28 a | 4.86 ± 0.21 a | 5.07 ± 0.20 a | 3.49 ± 0.07 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | |
b3 | n.d. a | 6.67 ± 0.31 a | n.d. a | 6.09 ± 0.01 a | 7.61 ± 0.26 a | n.d. b | 9.14 ± 0.14 a | 4.58 ± 0.08 a | 4.96 ± 0.06 a | 3.48 ± 0.37 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | |
Overall | n.d. A | 7.08 ± 0.45 A | n.d. B | 5.49 ± 0.55 C | 7.86 ± 0.36 B | 2.54 ± 1.97 A | 9.00 ± 0.35 B | 4.76 ± 0.17 B | 5.09 ± 0.16 B | 3.40 ± 0.25 B | n.d. A | n.d. A | n.d. A | n.d. A | n.d. A | n.d. B | n.d. A | n.d. A | |
B | b1 | n.d. a | 6.60 ± 0.16 a | 4.84 ± 0.24 a | 7.15 ± 0.04 a | 8.91 ± 0.30 a | 3.74 ± 0.16 a | 10.28 ± 0.31 a | 4.72 ± 0.11 a | 5.42 ± 0.19 a | 3.52 ± 0.24 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 6.23 ± 0.25 a | n.d. a | n.d. a |
b2 | n.d. a | 6.11 ± 0.11 b | 4.62 ± 0.17 a | 7.23 ± 0.20 a | 8.98 ± 0.15 a | 3.74 ± 0.01 a | 9.91 ± 0.14 a | 4.64 ± 0.10 a | 5.35 ± 0.15 a | 3.40 ± 0.55 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 5.51 ± 0.77 a | n.d. a | n.d. a | |
b3 | n.d. a | 6.35 ± 0.03 a,b | 5.32 ± 0.10 a | 7.21 ± 0.02 a | 8.37 ± 0.01 a | n.d. b | 10.65 ± 0.05 a | 4.64 ± 0.00 a | 5.82 ± 0.05 a | 2.97 ± 0.31 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 6.46 ± 0.03 a | n.d. a | n.d. a | |
Overall | n.d. A | 6.35 ± 0.23 B | 4.93 ± 0.35 A | 7.20 ± 0.10 A | 8.75 ± 0.34 A | 2.49 ± 1.93 A | 10.28 ± 0.36 A | 4.67 ± 0.08 B | 5.53 ± 0.25 A | 3.30 ± 0.40 B | n.d. A | n.d. A | n.d. A | n.d. A | n.d. A | 6.07 ± 0.58 A | n.d. A | n.d. A | |
C | b1 | n.d. b | 6.87 ± 0.05 a | n.d. a | 7.03 ± 0.24 a | 8.75 ± 0.35 a | 4.65 ± 0.21 a | 9.73 ± 0.05 a | 6.70 ± 0.07 b | 5.24 ± 0.09 a | 5.65 ± 0.67 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 6.49 ± 0.39 a | n.d. a | n.d. a |
b2 | n.d. b | 5.88 ± 0.28 b | n.d. a | 6.17 ± 0.27 a | 8.16 ± 0.15 a | 4.03 ± 0.39 a | 9.74 ± 0.22 a | 6.70 ± 0.00 b | 5.04 ± 0.21 a | 4.76 ± 0.58 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | 6.07 ± 0.61 a | n.d. a | n.d. a | |
b3 | 4.50 ± 0.14 a | 5.85 ± 0.06 b | n.d. a | 6.24 ± 0.22 a | 8.63 ± 0.09 a | 3.64 ± 0.06 a | 10.09 ± 0.14 a | 7.75 ± 0.10 a | 5.10 ± 0.04 a | 4.65 ± 0.20 a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a | n.d. b | n.d. a | n.d. a | |
Overall | 1.50 ± 2.32 A | 6.20 ± 0.54 B | n.d. B | 6.48 ± 0.46 B | 8.51 ± 0.33 A | 4.11 ± 0.50 A | 9.85 ± 0.22 A | 7.05 ± 0.54 A | 5.13 ± 0.14 B | 5.02 ± 0.63 A | n.d. A | n.d. A | n.d. A | n.d. A | n.d. A | 4.19 ± 3.27 A | n.d. A | n.d. A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanović, V.; Rampanti, G.; Cantarini, A.; Cardinali, F.; Paderni, G.; Martinovic, A.; Brenciani, A.; Aquilanti, L.; Osimani, A.; Garofalo, C. Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR. Genes 2025, 16, 1089. https://doi.org/10.3390/genes16091089
Milanović V, Rampanti G, Cantarini A, Cardinali F, Paderni G, Martinovic A, Brenciani A, Aquilanti L, Osimani A, Garofalo C. Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR. Genes. 2025; 16(9):1089. https://doi.org/10.3390/genes16091089
Chicago/Turabian StyleMilanović, Vesna, Giorgia Rampanti, Andrea Cantarini, Federica Cardinali, Giuseppe Paderni, Aleksandra Martinovic, Andrea Brenciani, Lucia Aquilanti, Andrea Osimani, and Cristiana Garofalo. 2025. "Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR" Genes 16, no. 9: 1089. https://doi.org/10.3390/genes16091089
APA StyleMilanović, V., Rampanti, G., Cantarini, A., Cardinali, F., Paderni, G., Martinovic, A., Brenciani, A., Aquilanti, L., Osimani, A., & Garofalo, C. (2025). Antimicrobial Resistance Gene Patterns in Traditional Montenegrin Njeguški Cheese Revealed by qPCR. Genes, 16(9), 1089. https://doi.org/10.3390/genes16091089