Interplay Between Genetic Diversity and Tree Vitality in Fraxinus excelsior Populations Affected by Ash Dieback
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Health Status Classification of Ash Trees
- Degree 0—vital tree;
- Degree 1—weakened tree;
- Degree 2—damaged tree;
- Degree 3—dying or dead tree.
2.3. Assessment of Genetic Variation Based on Allelic Diversity
2.4. Genetic Differentiation Among Ash Populations
2.5. Clustering of Individual Trees by Vitality Degree
3. Results
3.1. Health Status Classification of Ash Trees Based on Field Assessments
3.2. Genetic Diversity Parameters in Five Populations Assessed with Nuclear and Chloroplast SSR Markers
3.3. Comparison of Genetic Diversity Parameters Among the Degrees of Tree Vitality
4. Discussion
4.1. Adaptive Response Limitations and Pathogen Impact in Białowieża Ash Stands
4.2. Genetic Diversity Levels in Studied Ash Populations Compared to Other Studies
4.3. Genetic Variability and Differentiation for nSSR and cpDNA Across Vitality Degrees
4.4. Health of Ash Trees in a Genetic Context
5. Conclusions
- Despite the ongoing ash dieback, results indicate sustained moderate to high genetic diversity (HE = 0.826), reflecting the adaptive potential of F. excelsior populations in Poland.
- Low inter-population differentiation (FST = 0.044 for nSSR; ST = 0.228 for cpDNA) suggests intensive gene flow, which may buffer against localized selection pressures induced by the pathogen.
- The absence of significant genetic differences between trees of varying vitality levels (nSSR FST = 0.009; cpDNA ST = 0.003) implies that resistance to dieback may be influenced by epigenetic or environmental factors rather than solely by genetic structure.
- The observed admixture of genotypes among dying individuals (STRUCTURE K = 3) may point to the presence of susceptible genetic lines, opening avenues for resistance-based selection.
- These findings support the implementation of selective breeding programs in forest nurseries, emphasizing the identification and propagation of genotypes resistant to H. fraxineus.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Population | Locus | Allele (pb) | Frequency |
---|---|---|---|
Browsk 1 | Femsatl-F4 | 222 | 0.018 |
Femsatl-F8 | 131 | 0.018 | |
Femsatl-F11 | 214 | 0.017 | |
Femsatl-F11 | 228 | 0.008 | |
Femsatl-F16 | 190 | 0.022 | |
Femsatl-F16 | 194 | 0.033 | |
M2-30 | 176 | 0.009 | |
Hajnówka 1 | Femsatl-F4 | 158 | 0.008 |
Femsatl-F4 | 180 | 0.031 | |
Femsatl-F4 | 208 | 0.008 | |
Femsatl-F4 | 214 | 0.008 | |
Femsatl-F4 | 216 | 0.008 | |
Femsatl-F4 | 224 | 0.023 | |
Femsatl-F8 | 133 | 0.008 | |
Femsatl-F8 | 137 | 0.023 | |
Femsatl-F11 | 180 | 0.017 | |
Femsatl-F11 | 218 | 0.008 | |
Femsatl-F11 | 220 | 0.008 | |
Femsatl-F11 | 222 | 0.017 | |
Femsatl-F16 | 182 | 0.018 | |
Femsatl-F19 | 204 | 0.008 | |
Femsatl-F19 | 218 | 0.008 | |
M2-30 | 256 | 0.008 | |
M2-30 | 272 | 0.008 | |
M2-30 | 282 | 0.008 | |
Chojnów 2 | Femsatl-F4 | 234 | 0.008 |
Femsatl-F8 | 147 | 0.009 | |
Femsatl-F8 | 168 | 0.009 | |
Femsatl-F8 | 197 | 0.121 | |
Femsatl-F11 | 224 | 0.017 | |
Femsatl-F16 | 176 | 0.008 | |
Femsatl-F19 | 158 | 0.008 | |
Femsatl-F19 | 187 | 0.025 | |
Femsatl-F19 | 196 | 0.033 | |
Femsatl-F19 | 202 | 0.008 | |
M2-30 | 192 | 0.017 | |
M2-30 | 194 | 0.017 | |
M2-30 | 260 | 0.008 | |
Kozienice | Femsatl-F4 | 128 | 0.019 |
Femsatl-F4 | 161 | 0.019 | |
Femsatl-F4 | 173 | 0.019 | |
Femsatl-F4 | 177 | 0.009 | |
Femsatl-F4 | 181 | 0.046 | |
Femsatl-F4 | 191 | 0.204 | |
Femsatl-F4 | 193 | 0.037 | |
Femsatl-F4 | 213 | 0.009 | |
Femsatl-F4 | 229 | 0.028 | |
Femsatl-F4 | 235 | 0.009 | |
Femsatl-F4 | 241 | 0.009 | |
Femsatl-F16 | 192 | 0.014 | |
Femsatl-F16 | 212 | 0.014 | |
Femsatl-F16 | 242 | 0.014 | |
Femsatl-F19 | 210 | 0.014 | |
M2-30 | 146 | 0.007 | |
Czerwony Dwór | Femsatl-F4 | 175 | 0.031 |
Femsatl-F4 | 185 | 0.094 | |
Femsatl-F4 | 187 | 0.031 | |
Femsatl-F4 | 189 | 0.063 | |
Femsatl-F4 | 205 | 0.031 | |
Femsatl-F4 | 221 | 0.031 | |
Femsatl-F4 | 223 | 0.031 | |
Femsatl-F4 | 225 | 0.031 | |
Femsatl-F11 | 230 | 0.033 |
Source of Variability (nSSR) | d.f. 1 | Sum of Squares | Mean Square | Estimated Share (%) | Variation | p Value 2 |
---|---|---|---|---|---|---|
Among populations | 4 | 83.425 | 20.856 | 0.170 | 6% | |
Within populations | 547 | 1448.349 | 2.648 | 2.648 | 94% | |
Total | 551 | 1531.774 | 2.818 | 100% | 0.001 |
Population | Locus | Allele (pb) | Frequency |
---|---|---|---|
Browsk 1 | ccmp6 | 93 | 0.016 |
Hajnówka 1 | ccmp3 | 95 | 0.016 |
ccmp6 | 101 | 0.015 | |
ccmp7 | 123 | 0.016 | |
ccmp10 | 99 | 0.015 | |
Chojnów 2 | ccmp7 | 119 | 0.017 |
Kozienice | ccmp3 | 94 | 0.434 |
ccmp3 | 98 | 0.013 | |
ccmp3 | 100 | 0.013 | |
ccmp7 | 116 | 0.434 | |
ccmp7 | 121 | 0.013 | |
ccmp10 | 97 | 0.013 | |
ccmp10 | 100 | 0.013 | |
ccmp10 | 105 | 0.013 |
Source of Variability (nSSR) | d.f. 1 | Sum of Squares | Mean Square | Estimated Share (%) | Variation | p Value 2 |
---|---|---|---|---|---|---|
Among populations | 4 | 3087.848 | 771.962 | 7.220 | 2% | |
Within populations | 276 | 104,623.142 | 379.069 | 379.069 | 98% | |
Total | 280 | 107,710.989 | 386.290 | 100% | n.a. |
Vitality Degree 1 | Locus | Allele (pb) | Frequency |
---|---|---|---|
1 | Femsatl-F4 | 218 | 0.018 |
Femsatl-F4 | 222 | 0.018 | |
Femsatl-F4 | 234 | 0.009 | |
Femsatl-F8 | 131 | 0.018 | |
Femsatl-F8 | 185 | 0.027 | |
Femsatl-F11 | 198 | 0.009 | |
Femsatl-F16 | 190 | 0.021 | |
Femsatl-F19 | 164 | 0.009 | |
M2-30 | 260 | 0.009 | |
M2-30 | 272 | 0.009 | |
Femsatl-F4 | 208 | 0.008 | |
2 | Femsatl-F8 | 137 | 0.025 |
Femsatl-F8 | 147 | 0.008 | |
Femsatl-F8 | 168 | 0.008 | |
Femsatl-F11 | 178 | 0.008 | |
Femsatl-F11 | 218 | 0.008 | |
Femsatl-F11 | 220 | 0.008 | |
Femsatl-F11 | 224 | 0.017 | |
Femsatl-F11 | 228 | 0.008 | |
Femsatl-F16 | 176 | 0.009 | |
Femsatl-F19 | 158 | 0.009 | |
Femsatl-F19 | 182 | 0.009 | |
Femsatl-F19 | 196 | 0.034 | |
Femsatl-F19 | 208 | 0.009 | |
M2-30 | 192 | 0.017 | |
M2-30 | 194 | 0.017 | |
M2-30 | 210 | 0.034 | |
3 | Femsatl-F4 | 158 | 0.008 |
Femsatl-F4 | 214 | 0.008 | |
Femsatl-F4 | 216 | 0.008 | |
Femsatl-F8 | 133 | 0.008 | |
Femsatl-F11 | 180 | 0.016 | |
Femsatl-F11 | 196 | 0.008 | |
Femsatl-F11 | 210 | 0.016 | |
Femsatl-F16 | 182 | 0.017 | |
Femsatl-F19 | 166 | 0.015 | |
Femsatl-F19 | 202 | 0.008 | |
Femsatl-F19 | 204 | 0.008 | |
Femsatl-F19 | 218 | 0.008 | |
M2-30 | 176 | 0.008 | |
M2-30 | 256 | 0.008 | |
M2-30 | 282 | 0.008 |
Source of Variability (nSSR) | d.f. 1 | Sum of Squares | Mean Square | Estimated Share (%) | Variation | p Value 2 |
---|---|---|---|---|---|---|
Among populations | 2 | 9.099 | 4.549 | 0.014 | 1% | |
Within populations | 369 | 1019.756 | 2.764 | 2.764 | 99% | |
Total | 371 | 1028.855 | 2.778 | 100% | 0.001 |
Vitality Degree 1 | Locus | Allele (pb) | Frequency |
---|---|---|---|
1 | ccmp6 | 100 | 0.017 |
ccmp10 | 98 | 0.017 | |
2 | ccmp3 | 95 | 0.017 |
3 | ccmp6 | 93 | 0.015 |
ccmp6 | 101 | 0.015 | |
ccmp7 | 119 | 0.015 | |
ccmp7 | 123 | 0.015 | |
ccmp10 | 99 | 0.015 |
References
- Kowalski, T. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 2006, 36, 264–270. [Google Scholar] [CrossRef]
- Baral, H.O.; Queloz, V.; Hosoya, T. Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 2014, 5, 79–80. [Google Scholar] [CrossRef] [PubMed]
- George, J.P.; Rusanen, M.; Beuker, E.; Yrjänä, L.; Timmermann, V.; Potočić, N.; Välimäki, S.; Konrad, H. Lessons to learn for better safeguarding of genetic resources during tree pandemics: The case of ash dieback in Europe. Biol. Conserv. 2024, 299, 110802. [Google Scholar] [CrossRef]
- Enderle, R.; Stenlid, J.; Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CABI Rev. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Roloff, A. Kronenentwicklung und Vitalitätsbeurteilung ausgewählter Baumarten der gemästigten Breiten [Crown development and vitality of some temperate broad-leaved tre specie]. Schr. Forstl. Fak. Univ. Göttingen Nieders. Forstl. Versuchs 1989, 93, 258. [Google Scholar]
- Gross, A.; Sieber, T. CAPS Datasheet, Hymenoscyphus fraxineus (T. Kowalski) Baral et al. 2020. Available online: https://caps.ceris.purdue.edu/wp-content/uploads/2025/07/Hymenoscyphus_fraxineus_CAPS_Datasheet_12.16.2022.pdf (accessed on 31 July 2025).
- Zvyagintsev, V.; Sazonov, A. Assessment of Ash Decline in the Belarusian Part of Białowieża Forest; National Forest Monitoring Network Report; Internal Project Documentation; Belarusian Academy of Sciences: Minsk, Belarus, 2006. [Google Scholar]
- Lech, P.; Hildebrand, R.; Małachowska, J. Forest monitoring in Poland: Legal foundations and scope of the programme. Folia For. Pol. Ser. For. 2025, 67, 35–45. [Google Scholar] [CrossRef]
- Forest Focus Programme 2003–2006. 2003. Available online: https://www.ibles.pl/en/project/forest-focus/ (accessed on 1 September 2025).
- Sazonov, A.; Zvyagintsev, V. Projected Decline of Ash Populations in Białowieża Forest; Forest Ecology Project Report; Unpublished manuscript; Belarusian Forestry Institute: Minsk, Belarus, 2006. [Google Scholar]
- Panteleev, P. Impact of Ungulate Browsing on Ash Regeneration in Belarusian Forests; Forest Biodiversity Monitoring Report; Institute of Forest Ecology: Minsk, Belarus, 2020. [Google Scholar]
- Petit, R.J.; Koop, F.A.B.; Robledo-Arnuncio, J.J.B.; Kremer, A.M. Climate and genetic diversity in tree species. Nature 2005, 436, 520–524. [Google Scholar] [CrossRef]
- Sahraei, S.E.; Cleary, M.; Stenlid, J.; Brandström Durling, M.; Elfstrand, M. Transcriptional responses in developing lesions of European common ash (Fraxinus excelsior) reveal genes responding to infection by Hymenoscyphus fraxineus. BMC Plant Biol. 2020, 20, 455. [Google Scholar] [CrossRef]
- Lyubenova, A.; Baranowska, M.; Menkis, A.; Davydenko, K.; Nowakowska, J.; Borowik, P.; Oszako, T. Prospects for oak cultivation in Europe under changing environmental conditions and increasing pressure from harmful organisms. Forests 2024, 15, 2164. [Google Scholar] [CrossRef]
- Schertler, E.; Queloz, V.; Monteleone, F.; Eisenring, M.; Heinzelmann, R. Resistance and tolerance mechanisms of common ash (Fraxinus excelsior) against the ash dieback pathogen Hymenoscyphus fraxineus: Latest advances and knowledge gaps. For. Int. J. For. Res. 2025, cpaf038. [Google Scholar] [CrossRef]
- Fussi, B.; Konnert, M. Genetic analysis of European common ash (Fraxinus excelsior L.) populations affected by ash dieback. Silvae Genet 2014, 63, 198–212. [Google Scholar] [CrossRef]
- McKinney, L.; Nielsen, L.; Collinge, D.; Thomsen, I.; Hansen, J.; Kjær, E. The ash dieback crisis: Genetic variation in resistance can prove a long-term solution. Plant Pathol. 2014, 63, 485–499. [Google Scholar] [CrossRef]
- Pacia, A.; Nowakowska, J.A.; Tkaczyk, M.; Sikora, K.; Tereba, A.; Borys, M.; Milenković, I.; Pszczółkowska, A.; Okorski, A.; Oszako, T. Common ash stand affected by ash dieback in the Wolica Nature Reserve in Poland. Balt. For. 2017, 23, 183–197. [Google Scholar]
- Sollars, E.S.; Harper, A.L.; Kelly, L.J.; Sambles, C.M.; Ramirez-Gonzalez, R.H.; Swarbreck, D.; Kaithakottil, G.; Cooper, E.D.; Uauy, C.; Havlickova, L.; et al. Genome sequence and genetic diversity of European ash trees. Nature 2017, 541, 212–216. [Google Scholar] [CrossRef]
- Chaudhary, R.; Rönneburg, T.; Stein Åslund, M.; Lundén, K.; Durling, M.B.; Ihrmark, K.; Menkis, A.; Stener, L.G.; Elfstrand, M.; Cleary, M.; et al. Marker-trait associations for tolerance to ash dieback in common ash (Fraxinus excelsior L.). Forests 2020, 11, 1083. [Google Scholar] [CrossRef]
- Meger, J.; Kozioł, C.; Pałucka, M.; Burczyk, J.; Chybicki, I.J. Genetic resources of common ash (Fraxinus excelsior L.) in Poland. BMC Plant Biol. 2024, 24, 186. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Panah, N.; Shabanian, N.; Khadivi, A.; Rahmani, M.S.; Emami, A. Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genet. Genomes 2017, 13, 70. [Google Scholar] [CrossRef]
- Šijačić-NIkolić, M.; Kerkez Janković, I.; Jovanović, M.; Milovanović, J.; Aleksić, J. Genetic Diversity and Genetic Structure of Three Sympatric Oak Species in Serbian Landscape of Outstanding Features “Kosmaj” Assessed by Nuclear Microsatellites. South-East Eur. For. SEEFOR 2023, 14, 117–127. [Google Scholar] [CrossRef]
- Oddou-Muratorio, S.; Petit-Cailleux, C.; Journé, V.; Lingrand, M.; Magdalou, J.A.; Hurson, C.; Garrigue, J.; Davi, H.; Magnanou, E. Crown defoliation decreases reproduction and wood growth in a marginal European beech population. Ann. Bot. 2021, 128, 193–204. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Oszako, T. Stan zdrowotny i zróżnicowanie genetyczne buka zwyczajnego w Nadleśnictwie Siewierz na podstawie analiz chloroplastowego DNA. Sylwan 2008, 152, 11–20. [Google Scholar]
- Dmyterko, E.; Kluziński, L.; Bruchwald, A. Stan zdrowotny drzewostanów sosnowych (Pinus sylvestris L.) Nadleśnictwa Olkusz. Sylwan 2005, 149, 3–13. [Google Scholar]
- Roloff, A. Urban Tree Management: For the Sustainable Development of Green Cities; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Erfmeier, A.; Haldan, K.L.; Beckmann, L.-M.; Behrens, M.; Rotert, J.; Schrautzer, J. Ash dieback and its impact in near-natural forest remnants—A plant community-based inventory. Front. Plant Sci. 2019, 10, 658. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, B.; Belaj, A.; Nier, S.; Cottrell, J.; Vaughan, S.P.; Hubert, J.; Russell, K. Molecular biodiversity and population structure in common ash (Fraxinus excelsior L.) in Britain: Implications for conservation. Mol. Ecol. 2010, 19, 2196–2211. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3.2). 2002. Available online: http://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 1 August 2025).
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Estoup, A. Microsatellite Null Alleles and Estimation of Population Differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. (Methodol.) 1977, 39, 1–38. [Google Scholar] [CrossRef]
- Michalakis, Y.; Excoffier, L. A Generic Estimation of Population Subdivision Using Distances Between Alleles with Special Reference for Microsatellite Loci. Genetics 1996, 142, 1061–1064. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Corander, J.; Tang, J. Bayesian analysis of population structure based on linked molecular information. Math. Biosci. 2007, 205, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. vegan: Community Ecology Package; R Package Version 2.8-0. 2025. Available online: https://vegandevs.github.io/vegan/ (accessed on 1 August 2025).
- Bhat K, S.; C, K. Silhouette: Proximity Measure Based Diagnostics for Standard, Soft, and Multi-Way Clustering; R Package Version 0.9.4. 2025. Available online: https://cran.r-project.org/web/packages/Silhouette/index.html (accessed on 1 August 2025).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: AnRPackage for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Heuertz, M.; Fineschi, S.; Anzidei, M.; Pastorelli, R.; Salvini, D.; Paule, L.; Frascaria-Lacoste, N.; Hardy, O.J.; Vekemans, X.; Vendramin, G. Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol. Ecol. 2004, 13, 3437–3452. [Google Scholar] [CrossRef]
- Feliner, G.N. Southern European glacial refugia: A tale of tales. Taxon 2011, 60, 365–372. [Google Scholar] [CrossRef]
- Heuertz, M.; Carnevale, S.; Fineschi, S.; Sebastiani, F.; Hausman, J.; Paule, L.; Vendramin, G. Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): Roles of hybridization and life history traits. Mol. Ecol. 2006, 15, 2131–2140. [Google Scholar] [CrossRef]
- Tollefsrud, M.M.; Myking, T.; Sønstebø, J.H.; Lygis, V.; Hietala, A.M.; Heuertz, M. Genetic structure in the northern range margins of common ash, Fraxinus excelsior L. PLoS ONE 2016, 11, e0167104. [Google Scholar] [CrossRef]
- Gömöry, D.; Paule, L.; Krajmerová, D.; ROMSáková, I.; Piecka, J. Gene exchange across a postglacial contact zone in Fraxinus excelsior L. Silvae Genet. 2012, 61, 18–27. [Google Scholar] [CrossRef]
- Musolin, D.L.; Selikhovkin, A.V.; Popovichev, B.G.; Mandelshtam, M.Y.; Vasaitis, R. The Frontline of Invasion: The Current Northern Limit of the Invasive Range of Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in European Russia. Baltic Forestry 2017, 23, 309–315. [Google Scholar]
- Yaruk, A.V.; Zviagintsev, V.B. Occurrence of ash dieback in stands and plantings. Proc. BSTU 2015, 1, 118–120. [Google Scholar]
- Zviagintsev, V.B.; Sazonov, V.V. Assessment of ash stand condition in the Belarusian part of Białowieża Forest. For. Bull. 2006. (In Russian) [Google Scholar]
- Yarmolowich, A.; Zviagintsev, V.; Sazonov, T. Impact of hoofed animals on ash regeneration in Białowieża Forest. For. Pathol. Rep. 2018, 12, 45–52. [Google Scholar]
- Zviagintsev, V.B.; Surina, T.A.; Belomesyeva, D.A. Molecular identification of Hymenoscyphus fraxineus in Belarus. For. Mycol. Bull. 2011, 8, 33–39. [Google Scholar]
- Bengtsson, V.; Stenström, A.; Wheater, C.P.; Sandberg, K. The impact of ash dieback on veteran trees in southwestern Sweden. Balt. For. 2021, 27, 2–9. [Google Scholar] [CrossRef]
- George, J.P.; Sanders, T.G.; Timmermann, V.; Potočić, N.; Lang, M. European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.). Sci. Rep. 2022, 12, 4764. [Google Scholar] [CrossRef]
- McKinney, L.; Nielsen, L.; Hansen, J.; Kjær, E. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): An emerging infectious disease. Heredity 2011, 106, 788–797. [Google Scholar] [CrossRef]
- Menkis, A.; Bakys, R.; Stein Åslund, M.; Davydenko, K.; Elfstrand, M.; Stenlid, J.; Vasaitis, R. Identifying Fraxinus excelsior tolerant to ash dieback: Visual field monitoring versus a molecular marker. For. Pathol. 2020, 50, e12572. [Google Scholar] [CrossRef]
- Marçais, B.; Giraudel, A.; Husson, C. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters. PLoS Pathog. 2023, 19, e1010558. [Google Scholar] [CrossRef] [PubMed]
- McKinney, L.V.; Nielsen, L.R.; Collinge, D.B.; Hansen, J.K.; Kjær, E.D. Virulence of Hymenoscyphus albidus and H. fraxineus on Fraxinus excelsior and Fraxinus mandshurica. PLoS ONE 2015, 10, e0141592. [Google Scholar] [CrossRef]
- Hietala, A.M.; Timisjärvi, J.; Peltola, H.; Kellomäki, S. Evaluation of Methods for Resistance Testing of Fraxinus excelsior Clones against Hymenoscyphus fraxineus. Eur. J. For. Pathol. 2025, 55, e70029. [Google Scholar] [CrossRef]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Inoculum and inoculation techniques: Key steps in studying host-pathogen interactions. Front. Plant Sci. 2022, 13, 1610049. [Google Scholar] [CrossRef]
- Tulik, M.; Adamczyk, J.; Tereba, A.; Yaman, B.; Nowakowska, J. Anatomical and genetic aspects of ash dieback: A look at the wood structure. iForest—Biogeosci. For. 2017, 10, 522–528. [Google Scholar] [CrossRef]
- Heuertz, M.; Hausman, J.F.; Hardy, O.J.; Vendramin, G.G.; Frascaria-Lacoste, N.; Vekemans, X. Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution 2004, 58, 976–988. [Google Scholar] [CrossRef]
- Bacles, C.F.; Burczyk, J.; Lowe, A.J.; Ennos, R.A. Historical cna contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 2005, 59, 979–990. [Google Scholar] [PubMed]
- Gugger, P.F.; Fitz-Gibbon, S.T.; Albarrán-Lara, A.; Wright, J.W.; Sork, V.L. Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales. Mol. Ecol. 2021, 30, 406–423. [Google Scholar] [CrossRef] [PubMed]
- Kujala, S.T.; Savolainen, O. Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): Signs of clinal adaptation? Tree Genet. Genomes 2012, 8, 1451–1467. [Google Scholar] [CrossRef]
- Abhainn, E.A.; Shirley, D.L.; Stanley, R.K.; Scarpato, T.; Koch, J.L.; Romero-Severson, J. Gene flow from Fraxinus cultivars into natural stands of Fraxinus pennsylvanica occurs range-wide, is regionally extensive, and is associated with a loss of allele richness. PLoS ONE 2024, 19, e0294829. [Google Scholar] [CrossRef]
- Kremer, A.; Ronce, O.; Robledo-Arnuncio, J.J.; Guillaume, F.; Bohrer, G.; Nathan, R.; Bridle, J.R.; Gomulkiewicz, R.; Klein, E.K.; Ritland, K.; et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012, 15, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Morand, M.E.; Brachet, S.; Rossignol, P.; Dufour, J.; Frascaria-Lacoste, N. A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Mol. Ecol. 2002, 11, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzini, D.; Monteleone, I.; Belletti, P. Genetic variability and divergence among Italian populations of common ash (Fraxinus excelsior L.). Ann. For. Sci. 2007, 64, 159–168. [Google Scholar] [CrossRef]
- Semizer-Cuming, D.; Kjær, E.D.; Finkeldey, R. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape. PLoS ONE 2017, 12, e0186757. [Google Scholar] [CrossRef] [PubMed]
- Thunder, R. Effects of Thinning Regimes on Genetic Variations of White Oak (Quercus alba L.) in Upland Oak Forests in Eastern Kentucky. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2020. [Google Scholar] [CrossRef]
- Hung, T.H.; Formaggia, E.; Morley, L.; Kirby, K.; Salguero-Gómez, R.; Sheldon, B.C.; MacKay, J.J. Genetic diversity and population structure of pedunculate oaks (Quercus robur) in Wytham Woods. Plants People Planet 2025. [Google Scholar] [CrossRef]
- Oddou-Muratorio, S.; Klein, E.K.; Vendramin, G.G.; Fady, B. Spatial vs. temporal effects on demographic and genetic structures: The roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol. Ecol. 2011, 20, 1997–2010. [Google Scholar] [CrossRef]
- Vranckx, G. Genetic Diversity, Gene Flow and Inbreeding in Pedunculate Oak (Quercus robur L.) in Fragmented Forest Stands. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2014. [Google Scholar]
- Sjölund, M.J.; González-Díaz, P.; Moreno-Villena, J.J.; Jump, A.S. Gene flow at the leading range edge: The long-term consequences of isolation in European Beech (Fagus sylvatica L. Kuhn). J. Biogeogr. 2019, 46, 2787–2799. [Google Scholar] [CrossRef]
- Hatziskakis, S.; Papageorgiou, A.C.; Gailing, O.; Finkeldey, R. High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.). Plant Biol. 2009, 11, 425–433. [Google Scholar] [CrossRef]
- Semerikova, S.; Isakov, I.Y.; Semerikov, V. Chloroplast DNA variation and phylogeography of pedunculate oak Quercus robur L. in the eastern part of the range. Russ. J. Genet. 2021, 57, 47–60. [Google Scholar] [CrossRef]
- Meger, J.; Ulaszewski, B.; Pałucka, M.; Kozioł, C.; Burczyk, J. Genomic prediction of resistance to Hymenoscyphus fraxineus in common ash (Fraxinus excelsior L.) populations. Evol. Appl. 2024, 17, e13694. [Google Scholar] [CrossRef]
- Rungis, D.; Korica, A.; Gailite, A.; Puspure, I.; Veinberga, I. Analysis of the genetic diversity and population structure of Latvian ash (Fraxinus excelsior L.) stands using nuclear and chloroplast SSR markers. In Proceedings of the Latvian Academy of Sciences; De Gruyter Poland: Warsaw, Poland, 2016; Volume 70, p. 101. [Google Scholar] [CrossRef]
- Spanos, K.; Gaitanis, D. An overview of ash species in Greece: Ecology, biology and taxonomy, silviculture, genetics and health status. In Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017; pp. 273–283. [Google Scholar]
- Harper, A.L.; McKinney, L.V.; Nielsen, L.R.; Havlickova, L.; Li, Y.; Trick, M.; Fraser, F.; Wang, L.; Fellgett, A.; Sollars, E.S.; et al. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics. Sci. Rep. 2016, 6, 19335. [Google Scholar] [CrossRef]
- Nemesio-Gorriz, M.; Menezes, R.C.; Paetz, C.; Hammerbacher, A.; Steenackers, M.; Schamp, K.; Höfte, M.; Svatoš, A.; Gershenzon, J.; Douglas, G.C. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior. J. Exp. Bot. 2020, 71, 6074–6083. [Google Scholar] [CrossRef] [PubMed]
- Sambles, C.M.; Salmon, D.L.; Florance, H.; Howard, T.P.; Smirnoff, N.; Nielsen, L.R.; McKinney, L.V.; Kjær, E.D.; Buggs, R.J.; Studholme, D.J.; et al. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease. Sci. Data 2017, 4, 170190. [Google Scholar] [CrossRef]
- Agostinelli, M.; Nguyen, D.; Witzell, J.; Cleary, M. Mycobiome of Fraxinus excelsior with different phenotypic susceptibility to ash dieback. Front. For. Glob. Change 2021, 4, 580514. [Google Scholar] [CrossRef]
- Landolt, J.; Gross, A.; Holdenrieder, O.; Pautasso, M. Ash dieback due to Hymenoscyphus fraxineus: What can be learnt from evolutionary ecology? Plant Pathol. 2016, 65, 1056–1070. [Google Scholar] [CrossRef]
- Pacia, A.; Borowik, P.; Hsiang, T.; Marozau, A.; Matić, S.; Oszako, T. Ash Dieback in Forests and Rural Areas—History and Predictions. Forests 2023, 14, 2151. [Google Scholar] [CrossRef]
- Kamińska, A.; Lisiewicz, M.; Kraszewski, B.; Tkaczyk, M.; Stereńczak, K.; Wysocka-Fijorek, E. Assessing Ash (Fraxinus excelsior L.) Dieback Dynamics in the Białowieża Forest, Poland, Using Bi-Temporal High-Resolution Remote Sensing Data. Forests 2025, 16, 506. [Google Scholar] [CrossRef]
- Boczoń, A.; Wróbel, M.; Kowalska, A. Long-Term Changes in Groundwater Levels in the Białowieża Forest, Poland, Under Climate Change. Water 2025, 17, 2027. [Google Scholar] [CrossRef]
- McMullan, M.; Rafiqi, M.; Kaithakottil, G.; Clavijo, B.J.; Bilham, L.; Orton, E.; Percival-Alwyn, L.; Ward, B.J.; Edwards, A.; Saunders, D.G.O.; et al. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat. Ecol. Evol. 2018, 2, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease? R. Soc. Open Sci. 2019, 6, 190908. [Google Scholar] [CrossRef]
- Semizer-Cuming, D.; Chybicki, I.J.; Finkeldey, R.; Kjær, E.D. Gene flow and reproductive success in ash (Fraxinus excelsior L.) in the face of ash dieback: Restoration and conservation. Ann. For. Sci. 2021, 78, 14. [Google Scholar] [CrossRef]
- European Forest Genetic Resources Programme (EUFORGEN). Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior); Bioversity International: Rome, Italy, 2009. [Google Scholar]
- University of Agriculture in Kraków. Determining the Causes and Conditions of Ash and Sycamore Dieback to Develop the Basis for Breeding and Protection Strategies; Technical Report; Polish State Forests: Kraków, Poland, 2013. [Google Scholar]
- Metheringham, C.L.; Plumb, W.J.; Stocks, J.J.; Kelly, L.J.; Gorriz, M.N.; Moat, J.; Buggs, R.J.A.; Nichols, R.A. Genomic evidence of natural selection for ash dieback resistance. bioRxiv 2022. [Google Scholar] [CrossRef]
- Stocks, J.J.; Metheringham, C.L.; Plumb, W.J.; Lee, S.J.; Kelly, L.J.; Nichols, R.A.; Buggs, R.J.A. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 2019, 3, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Franco Ortega, S.; Bedford, J.A.; James, S.R.; Newling, K.; Ashton, P.D.; Boshier, D.H.; Clark, J.; Hartley, S.E.; Harper, A.L. Fraxinus excelsior updated long-read genome reveals the importance of MADS-box genes in tolerance mechanisms against ash dieback. G3 (Bethesda) 2025, 15, jkaf053. [Google Scholar] [CrossRef] [PubMed]
- Woodland Trust. Recognising and Categorising Ancient and Other Veteran Trees. 2024. Available online: https://www.woodlandtrust.org.uk/media/53779/recognising-and-categorising-ancient-and-other-veteran-trees.pdf (accessed on 1 August 2025).
Population Feature | Forest District | Forestry | No. of Trees | Geo. Location | Mean Age 2 [Years] | Area [ha] |
---|---|---|---|---|---|---|
BPF 1 | Browsk | Lewkowo | 61 | 52°54′27″ N, 23°64′55″ E | 74 | 2.44 |
BPF 1 | Hajnówka | Nieznany Bór | 65 | 52°44′1″ N, 23°40′36″ E | 66 | 12.74 |
Nature Reserve | Chojnów | Wolica | 60 | 52°11′15″ N, 20°41′18″ E | 22 | 1.77 |
Reference | Kozienice | Przejazd | 77 | 51°32′36″ N, 21°24′51″ E | 93 | 10.30 |
Reference | Czerwony Dwór | Olszanka | 18 | 55°7′21″ N, 22°12′11″ E | 72 | 4.67 |
Health Status (Degrees) 1 | Population | Number of Trees | ||
---|---|---|---|---|
Browsk | Hajnówka | Chojnów | ||
1—Weakened | 27 | 8 | 23 | 58 (31%) |
2—Damaged | 19 | 21 | 21 | 61 (33%) |
3—Dying | 15 | 36 | 16 | 67 (36%) |
Total | 61 | 65 | 60 | 186 |
Population | N | Na | Ne | AR(16) | Apriv | I | HO | HE | Gd | FIS |
---|---|---|---|---|---|---|---|---|---|---|
Browsk 1 | 55 | 19.333 | 9.060 | 18.197 | 1.167 | 2.370 | 0.713 | 0.838 | 0.847 | 0.151 *** |
Hajnówka 1 | 62 | 23.167 | 10.309 | 20.571 | 3.000 | 2.453 | 0.689 | 0.847 | 0.855 | 0.191 *** |
Chojnów | 60 | 19.000 | 6.941 | 17.156 | 2.167 | 2.155 | 0.689 | 0.790 | 0.798 | 0.137 *** |
Kozienice | 58 | 17.833 | 7.406 | 12.681 | 2.667 | 2.260 | 0.609 | 0.835 | 0.845 | 0.231 *** |
Czerwony Dwór | 16 | 11.833 | 7.106 | 13.306 | 1.500 | 2.085 | 0.701 | 0.819 | 0.851 | 0.179 ** |
Mean | 50 | 18.233 | 8.164 | 16.382 | 2.100 | 2.265 | 0.680 | 0.826 | 0.840 | 0.178 *** |
Population | N | Na | Ne | Apriv | I | HD | |
---|---|---|---|---|---|---|---|
Browsk 1 | 60 | 3.750 | 1.803 | 0.250 | 0.680 | 0.372 | 1.593 |
Hajnówka1 | 64 | 4.250 | 1.958 | 1.000 | 0.756 | 0.421 | 1.786 |
Chojnów | 60 | 3.750 | 1.255 | 0.250 | 0.897 | 0.533 | 2.301 |
Kozienice | 76 | 5.500 | 2.750 | 2.000 | 1.146 | 0.633 | 2.594 |
Czerwony Dwór | 18 | 2.000 | 1.225 | 0.000 | 0.293 | 0.164 | 0.693 |
Mean | 55.6 | 3.850 | 1.998 | 0.700 | 0.754 | 0.425 ** | 1.793 |
Haplotype | ccmp3 | ccmp6 | ccmp7 | ccmp10 2 | Frequency (%) | Populations | Phylogeographic Origin 1 |
---|---|---|---|---|---|---|---|
H1 | 97 | 97 | 118 | 94 | 15.0 | Browsk; Hajnówka; Chojnów; Kozienice | Balkans |
H2 | 97 | 96 | 118 | 94 | 20.0 | Browsk; Hajnówka; Chojnów; Kozienice | Balkans/Appenine |
H3 | 97 | 97 | 117 | 93 | 7.6 | Browsk; Hajnówka; Chojnów | Balkans/Appenine |
H4 | 97 | 96 | 118 | 93 | 11.7 | Browsk; Hajnówka; Chojnów | Balkans/Appenine |
H5 | 97 | 97 | 118 | 95 | 11.0 | Browsk; Hajnówka; Kozienice; Czerwony Dwór | Balkans/Appenine |
H6 | 97 | 96 | 118 | 95 | 4.7 | Browsk; Hajnówka | Balkans |
H7 | 97 | 97 | 118 | 92 | 0.3 | Browsk; Hajnówka | Balkans |
H8 | 97 | 96 | 117 | 92 | 5.8 | Browsk; Hajnówka | Balkans |
H9 | 97 | 98 | 118 | 94 | 7.0 | Browsk; Hajnówka | Balkans |
H10 | 97 | 99 | 117 | 93 | 3.0 | Browsk; Hajnówka | Balkans |
H11 | 97 | 97 | 118 | 92 | 1.1 | Browsk; Hajnówka | Balkans/Appenine |
H12 | 96 | 97 | 118 | 95 | 2.0 | Browsk; Hajnówka | Balkans |
H13 3 | 97 | 95 | 118 | 94 | 0.3 | Browsk; Hajnówka | Balkans |
H14 | 97 | 95 | 118 | 93 | 0.3 | Browsk; Hajnówka | Balkans |
H15 | 96 | 97 | 118 | 94 | 1.8 | Hajnówka | Balkans |
H16 | 96 | 97 | 118 | 93 | 1.1 | Hajnówka | Balkans |
H17 | 95 | 97 | 118 | 94 | 0.3 | Hajnówka | Balkans |
H18 | 102 | 97 | 118 | 94 | 0.7 | Kozienice | Apennine |
H19 | 102 | 97 | 118 | 95 | 0.3 | Kozienice | Apennine |
H20 | 102 | 101 | 118 | 95 | 0.3 | Kozienice | Apennine |
H21 | 96 | 99 | 118 | 94 | 0.3 | Kozienice | Apennine |
H22 | 97 | 96 | 123 | 99 | 0.3 | Kozienice | Apennine |
H23 | 96 | 97 | 118 | 95 | 0.3 | Kozienice | Apennine |
H24 | 102 | 99 | 118 | 93 | 0.3 | Kozienice; Czerwony Dwór | Apennine |
H25 | 96 | 98 | 118 | 93 | 0.3 | Kozienice; Czerwony Dwór | Apennine |
H26 | 97 | 100 | 118 | 94 | 4.0 | Kozienice; Czerwony Dwór | Apennine |
H27 | 97 | 100 | 118 | 93 | 0.3 | Kozienice; Czerwony Dwór | Apennine |
H28 | 97 | 100 | 117 | 94 | 0.3 | Kozienice; Czerwony Dwór | Apennine |
Marker | Vitality Degree 2 | Na | Ne | Apriv | I | HE | Gd | FST | FIS |
---|---|---|---|---|---|---|---|---|---|
nSSR | 1 | 20.667 | 9.450 | 1.667 | 2.362 | 0.825 | 0.834 | - | 0.147 *** |
2 | 21.667 | 9.395 | 2.833 | 2.395 | 0.841 | 0.850 | - | 0.203 *** | |
3 | 22.167 | 10.474 | 2.500 | 2.436 | 0.839 | 0.847 | - | 0.164 *** | |
Mean | 21.500 | 9.773 | 2.333 | 2.398 | 0.835 | 0.844 | 0.009 * | 0.103 *** | |
cpDNA | 1 | 4.750 | 2.779 | 0.500 | 1.114 | 0.610 | 2.517 | - | - |
2 | 4.000 | 2.433 | 0.250 | 1.008 | 0.550 | 2.264 | - | - | |
3 | 5.250 | 2.399 | 1.250 | 1.053 | 0.547 | 2.264 | - | - | |
Mean | 4.677 | 2.537 | 0.667 | 1.058 | 0.569 ns | 2.348 | 0.003 ns | 0.014 |
Marker | Parameter 1 | Pearson r | p-Value 2 |
---|---|---|---|
nSSR | Na | 0.9820 | 0.1210 |
Ne | 0.8425 | 0.3622 | |
Apriv | 0.6935 | 0.5122 | |
I | 0.9981 | 0.0397 * | |
HE | 0.8030 | 0.4065 | |
Gd | 0.7643 | 0.4462 | |
FIS | 0.2961 | 0.8087 | |
cpDNA | Na | 0.3974 | 0.7399 |
Ne | −0.9036 | 0.2818 | |
Apriv | 0.7206 | 0.4878 | |
I | −0.5733 | 0.6113 | |
HD | −0.8864 | 0.3065 | |
−0.8660 | 0.3333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowakowska, J.; Słowik, J.; Pacia, A.; Tereba, A.; Marozau, A.; Borowik, P.; Oszako, T. Interplay Between Genetic Diversity and Tree Vitality in Fraxinus excelsior Populations Affected by Ash Dieback. Genes 2025, 16, 1087. https://doi.org/10.3390/genes16091087
Nowakowska J, Słowik J, Pacia A, Tereba A, Marozau A, Borowik P, Oszako T. Interplay Between Genetic Diversity and Tree Vitality in Fraxinus excelsior Populations Affected by Ash Dieback. Genes. 2025; 16(9):1087. https://doi.org/10.3390/genes16091087
Chicago/Turabian StyleNowakowska, Justyna, Jakub Słowik, Artur Pacia, Anna Tereba, Aleh Marozau, Piotr Borowik, and Tomasz Oszako. 2025. "Interplay Between Genetic Diversity and Tree Vitality in Fraxinus excelsior Populations Affected by Ash Dieback" Genes 16, no. 9: 1087. https://doi.org/10.3390/genes16091087
APA StyleNowakowska, J., Słowik, J., Pacia, A., Tereba, A., Marozau, A., Borowik, P., & Oszako, T. (2025). Interplay Between Genetic Diversity and Tree Vitality in Fraxinus excelsior Populations Affected by Ash Dieback. Genes, 16(9), 1087. https://doi.org/10.3390/genes16091087