Association Between Single-Nucleotide Polymorphism rs2287886 of CD209 Gene and Clinical Severity of COVID-19 in Unvaccinated Brazilian Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Declaration
2.2. Population Characterization
2.3. Genomic DNA Extraction and Genotyping
2.4. In Silico Tissue-Specific Gene Expression Levels and Protein Interaction Analysis
2.5. Protein Interactions Analysis
2.6. Data Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. The rs2287886 Polymorphism and Susceptibility to COVID-19
3.3. Multivariate Logistic Regression Model
3.4. In Silico Tissue-Specific Gene Expression Levels to rs2287886 Polymorphism
3.5. Protein–Protein Interaction (PPI) Network Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, H.; Lee, H.; Morita, A.; Namkoong, H.; Chubachi, S.; Kabata, H.; Kamata, H.; Ishii, M.; Hasegawa, N.; Harada, N.; et al. Clinical characteristics of patients with coronavirus disease (COVID-19): Preliminary baseline report of Japan COVID-19 task force, a nationwide consortium to investigate host genetics of COVID-19. Int. J. Infect. Dis. 2021, 113, 74–81. [Google Scholar] [CrossRef] [PubMed]
- United Nations. COVID-19 Making Worrying Comeback WHO Warns, Amid Summertime Surge. UN News. Available online: https://news.un.org/en/story/2024/08/1152866 (accessed on 15 August 2024).
- WHO. COVID-19 Epidemiological Update, Edition 172. 2024. Available online: https://iris.who.int/handle/10665/379288 (accessed on 19 October 2024).
- Ministry of Health. Report SE 41 of 2024|Surveillance of Flu Syndromes Influenza, COVID-19 and Other Respiratory Viruses of Importance to Public Health. 13 October 2024. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/covid-19/publicacoes-tecnicas/informes/informe-se-41-de-2024.pdf/view (accessed on 13 October 2024).
- Konings, F.; Perkins, M.D.; Kuhn, J.J.; Pallen, M.J.; Alm, E.G.; Archer, B.N.; Barakat, A.; Bedford, T.; Bhiman, J.N.; Caly, L.; et al. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat. Microbiol. 2021, 6, 821–823. [Google Scholar] [CrossRef]
- Marquitti, F.M.D.; Coutinho, R.M.; Ferreira, L.S.; Borges, M.E.; Portella, T.P.; da Silva, R.L.P.; Canton, O.; Poloni, S.; Franco, C.; Coelho, V.; et al. Brazil in the face of new SARS-CoV-2 variants: Emergencies and challenges in public health. Rev. Bras. Epidemiol. 2021, 24, 210022. [Google Scholar] [CrossRef]
- van der Made, C.I.; Netea, M.G.; van der Veerdonk, F.L.; Hoishen, A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med. 2022, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu, B.L.; Hekim, N. Correlation between interleukin gene polymorphisms and current prevalence and mortality rates due to novel coronavirus disease 2019 (COVID-2019) in 23 countries. J. Med. Virol. 2021, 93, 5853–5863. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, A.A. Influence of IL-6 rs1800795 and IL-8 rs2227306 polymorphisms on COVID-19 outcome. J. Infect. Dev. Ctries. 2023, 17, 327–334. [Google Scholar] [CrossRef]
- Delgado-Wicke, P.; Fernández de Córdoba-Oñate, S.; Roy-Vallejo, E.; Alegría-Carrasco, E.; Rodríguez-Serrano, D.D.; Lamana, A.; Montes, N.; Nicolao-Gómez, A.; Carracedo-Rodríguez, R.; Marcos-Jiménez, A.; et al. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci. Rep. 2024, 14, 20728. [Google Scholar] [CrossRef]
- Soto, M.E.; Fuentevilla-Alvarez, G.; Palacios-Chavarria, A.; Vázquez, R.R.V.; Herrera-Bello, H.; Moreno-Castañeda, L.; Torres-Paz, Y.E.; González-Moyotl, N.J.; Pérez-Torres, I.; Aisa-Alvarez, A.; et al. Impact on the clinical evolution of patients with COVID-19 pneumonia and the participation of the nfe2l2/KEAP1 polymorphisms in regulating SARS-CoV-2 infection. Int. J. Mol. Sci. 2022, 24, 415. [Google Scholar] [CrossRef]
- Roberts, G.H.L.; Partha, R.; Rhead, B.; Knight, S.C.; Park, D.S.; Coignet, M.V.; Zhang, M.; Berkowitz, N.; Turrisini, D.A.; Gaddis, M.; et al. Expanded COVID-19 Phenotype Definitions Reveal Distinct Patterns of Genetic Association and Protective Effects. Nat. Genet. 2022, 54, 374–381. [Google Scholar] [CrossRef]
- Severe COVID-19 GWAS Group. Genomewide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Breno, M.; Noris, M.; Rubis, N.; Liani, M.; Berra, S.; Binda, V.; Cantarelli, C.; Gastoldi, S.; Montonati, C.; Alberti, M.; et al. A GWAS in the Pandemic Epicenter Highlights the Severe COVID-19 Risk Locus Introgressed by Neanderthals. iScience 2023, 26, 107629. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.S.; Chen, B.; Ze, B.; Luo, Y.; Zhang, L.; Gao, Z.; Xu, M.; He, J.; Liu, X.; Ma, J.; et al. Human Genetic Basis of Severe or Critical Illness in COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 963239. [Google Scholar] [CrossRef]
- Uvarova, A.N.; Stasevich, E.M.; Ustiugova, A.S.; Mitkin, N.A.; Zheremyan, E.A.; Sheetikov, S.A.; Zornikova, K.V.; Bogolyubova, A.V.; Rubtsov, M.A.; Kulakovskiy, I.V.; et al. rs71327024 associated with COVID-19 hospitalization reduces CXCR6 promoter activity in human CD4+ T cells via disruption of c-Myb binding. Int. J. Mol. Sci. 2023, 24, 13790. [Google Scholar] [CrossRef]
- Eshetie, S.; Jullian, P.; Benyamin, B.; Lee, S.H. Host genetic determinants of COVID-19 susceptibility and severity: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2466. [Google Scholar] [CrossRef]
- Katz, D.H.; Tahir, U.A.; Ngo, D.; Benson, M.D.; Bick, A.G.; Pampana, A.; Gao, Y.; Keyes, M.J.; Sinha, A.C.S.; Shen, D.; et al. Proteomic profiling in biracial cohorts implicates DC-SIGN as a mediator of genetic risk in COVID-19. MedRxiv 2020, 11, 2020.06.09.20125690. [Google Scholar]
- Germano, G.V.; Braga, A.F.; Camargo, R.M.D.; Souza-Santana, F.; Santos, L.S.; Cardozo, J.J.G.; Hirata, T.D.C.; Paleta, N.; Dias-Baptista, I.M.F.; Mira, M.T.; et al. Association of CD209 (DC-SIGN) rs735240 SNV with Paucibacillary Leprosy in the Brazilian Population and Its Functional Effects. Mem. Inst. Oswaldo Cruz 2022, 117, e220014. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Clinical Management: Living Guidance (WHO/2019-nCoV/clinical/2021.2); World Health Organization: Geneva, Switzerland, 2021; Available online: https://iris.who.int/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf (accessed on 2 February 2024).
- Mesquita, F.P.; Fonseca, L.P.; Dias, L.M.; Pereira, N.F.; Silva, T.B.; Cardoso, F.F.; Lima, R.S.; Souza, C.F.; Oliveira, J.L.; Mendes, R.A.; et al. Human TMPRSS2 and ACE2 Genetic Variability on COVID-19 Outcomes in Patients from Brazil. Hum. Gene 2024, 41, 201310. [Google Scholar] [CrossRef]
- Lee, S.; Cheran, E.; Brudno, M.; Park, J.H.; Bejerano, G.; Blitzblau, H.; Kim, J.H.; Choo, H.; Lee, H.Y.; Seo, J.S.; et al. Quantitative Analysis of Single Nucleotide Polymorphisms within Copy Number Variation. PLoS ONE 2008, 3, e3906. [Google Scholar] [CrossRef] [PubMed]
- Brandão, S.C.S.; Godoi, E.T.A.M.; Ramos, J.D.O.X.; Souza, C.L.P.; Cunha, D.N.F.; Barreto, M.S.; Gomes, F.N.; Oliveira, A.M.; Rocha, L.S.; Carvalho, J.R.; et al. COVID-19 Grave: Entenda o Papel da Imunidade, do Endotélio e da Coagulação na Prática Clínica. J. Vasc. Bras. 2020, 19, e20200131. [Google Scholar] [CrossRef]
- Alagarasu, K.; Bachal, R.V.; Damle, I.M.; Shah, P.S.; Cecilia, D.; Mourya, D.T.; Tandale, B.V. Association of Promoter Region Polymorphisms of CD209 Gene with Clinical Outcomes of Dengue Virus Infection in Western India. Infect. Genet. Evol. 2013, 17, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, S.; Li, Y.; Liu, X.; Zhang, Z.; Xu, Y.; Zhou, X.; Fang, H.; Wang, J.; Gao, Y.; et al. Comprehensive Profiling Analysis of CD209 in Malignancies Reveals the Therapeutic Implication for Tumor Patients Infected with SARS-CoV-2. Front. Genet. 2022, 13, 883234. [Google Scholar] [CrossRef]
- Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Azad, T.; Costa, M.; Mirazimi, A.; et al. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Iyer, G.R.; Samajder, S.; Zubeda, S.; Dey, A.; Krishnan, B.; Rajalingam, K.; Shetty, A.; Kumar, P.; Mukherjee, S.; Sharma, A.; et al. Infectivity and Progression of COVID-19 Based on Selected Host Candidate Gene Variants. Front. Genet. 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Nagozir, S.; Khomartash, M.S.; Parsania, M.; Ghaffari, M.; Sadeghi, M.; Karimi, S.; Salehi, M.; Kamali, M.; Malekzadeh, R.; Nazemalhosseini-Mojarad, E.; et al. Association Between Genetic Variants in the CD209 Gene and Susceptibility to COVID-19 in Iranian Population. Hum. Gene 2023, 38, 201215. [Google Scholar] [CrossRef]
- Mehrjoo, Z.; Fattahi, Z.; Beheshtian, M.; Mohseni, M.; Jamali, S.; Zeinali, S.; Kahrizi, K.; Najmabadi, H.; Ropers, H.H.; Jostins-Dean, L.; et al. Distinct Genetic Variation and Heterogeneity of the Iranian Population. PLoS Genet. 2019, 15, e1008385. [Google Scholar] [CrossRef]
- Kehdy, F.S.; Gouveia, M.H.; Machado, M.; Magalhães, W.C.S.; Horimoto, A.R.V.R.; Horta, B.L.; Moreira, R.G.; Leal, T.P.; Scliar, M.O.; Soares-Souza, G.B.; et al. Origin and Dynamics of Admixture in Brazilians and Its Effect on the Pattern of Deleterious Mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 8696–8701. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Y.; Niu, Z.; Zhang, B.; Wang, C.; Yao, X.; Sun, Y.; Han, J.; Su, X.; Chen, J.; et al. SARS-CoV-2 Spike Protein Dictates Syncytium-Mediated Lymphocyte Elimination. Cell Death Differ. 2021, 28, 2765–2777. [Google Scholar] [CrossRef]
- Brown, C.D.; Mangravite, L.M.; Engelhardt, B.E. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 2013, 9, e1003649. [Google Scholar] [CrossRef]
- Montalvo, A.D.; Gong, Y.; Collins, J.M.; Wang, D. The Association Between Promoter Tandem Repeat Polymorphism (pVNTR) and CYP2C9 Gene Expression in Human Liver Samples. Genes 2025, 16, 213. [Google Scholar] [CrossRef]
- D’Andrea, G.; D’Ambrosio, R.L.; Di Perna, P.; Chetta, M.; Santacroce, R.; Brancaccio, V.; Grandone, E.; Margaglione, M. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005, 105, 645–649. [Google Scholar] [CrossRef]
- The Human Protein Atlas. CLEC4M [Data Base]. Available online: https://www.proteinatlas.org/ENSG00000104938-CLEC4M (accessed on 22 July 2024).
- Hoffmann, D.; Mereiter, S.; Oh, Y.J.; Monteil, V.; Elder, E.; Zhu, R.; Canena, D.; Hain, L.; Laurent, E.; Grünwald-Gruber, C.; et al. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J. 2021, 40, e108375. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.; Nanan, R.K.H. Innate and Adaptive Immune Interactions at the Fetal–Maternal Interface in Healthy Human Pregnancy and Pre-Eclampsia. Front. Immunol. 2014, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Goettel, J.A.; Algood, H.M.S.; Olivares–Villagómez, D.; O’Connor, W.; Mittelstadt, P.R.; Hogan, S.P.; Brown, J.B.; Williams, I.R.; Snapper, S.B.; Murray, P.J.; et al. KSR1 Protects from Interleukin-10 Deficiency-Induced Colitis in Mice by Suppressing T-Lymphocyte Interferon-γ Production. Gastroenterology 2011, 140, 265–274. [Google Scholar] [CrossRef]
- Skerenova, M.; Cibulka, M.; Dankova, Z.; Novak, M.; Javor, J.; Majek, P.; Zelinkova, Z.; Samajova, J.; Liskova, A.; Surovy, J.; et al. Host Genetic Variants Associated with COVID-19 Reconsidered in a Slovak Cohort. Adv. Med. Sci. 2024, 69, 198–207. [Google Scholar] [CrossRef] [PubMed]
Variables | Moderate (N = 87) | Severe (N = 89) | p-Value |
---|---|---|---|
Gender | |||
Male | 46 (52.87%) | 60 (67.41%) | 0.0643 |
Female | 41 (47.12%) | 29 (32.58%) | |
Age | |||
Mean ± SD | 42.90 ± 13.34 | 44.77 ± 9.38 | 0.0562 |
Comorbidities | |||
Hypertension | 15 (17.24%) | 22 (24.71%) | 0.2683 |
Diabetes | 8 (9.19%) | 12 (13.48%) | 0.4776 |
Obesity | 4 (4.59%) | 15 (16.85%) | 0.0135 |
Asthma | 3 (3.44%) | 5 (5.61%) | 0.7203 |
Alleles | Moderate (N = 87) | Severe (N = 89) | p-Value * | p-Value ** | OR (95% IC) |
---|---|---|---|---|---|
A | 97 (55.74%) | 58 (32.58%) | <0.0001 | 2.606 (1.69–3.98) | |
G | 77 (44.25%) | 120 (67.41%) | |||
Genotype | |||||
AA | 32 (36.78%) | 13 (14.60%) | 0.0005 | 0.0025 | * |
AG | 33 (37.93%) | 32 (35.95%) | 2.387 (1.06–5.47) | ||
GG | 22 (25.28%) | 44 (49.43%) | 4.923 (2.15–10.74) | ||
Dominant | |||||
AG/GG | 55 (63.21%) | 76 (85.39%) | 0.0009 | 0.0036 | 3.401 (1.66–6.81) |
AA | 32 (36.78%) | 13 (14.60%) | - | ||
Recessive | |||||
GG | 22 (25.28%) | 44 (49.43%) | 0.0011 | 0.0044 | 2.889 (1.49–5.31) |
AA/AG | 65 (74.71%) | 45 (50.56%) | |||
Overdominant | |||||
AG | 33 (37.93%) | 32 (35.95%) | 0.8761 | 3.50 | 0.9187 (0.509–1.66) |
AA/GG | 54 (62.06%) | 57 (64.04%) |
Variables | p-Value | OR | CI 95% |
---|---|---|---|
Sex | 0.131 | 0.606 | 0.316–1.16 |
Age | 0.329 | 1.015 | 0.98–1.04 |
Hypertension | 0.700 | 0.840 | 0.34–2.04 |
Diabetes | 0.883 | 1.085 | 0.36–3.19 |
Obesity | 0.017 | 4.870 | 1.33–17.81 |
Asthma | 0.957 | 1.043 | 0.22–4.88 |
Dominant model: AG + GG vs. AA | 0.002 | 3.433 | 1.58–7.43 |
Recessive model: GG vs. AA + AG | 0.001 | 3.204 | 1.646–6.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galisa, S.L.G.; Silva, R.R.C.d.; Aguiar, M.C.; Sá, M.V.B.d.O.; Melo, J.V.d.O.; Pereira, G.V.N.; Silva, J.R.d.L.e.; Paiva, B.d.L.X.; Henrique, A.G.d.S.; Carmo, R.F.d.; et al. Association Between Single-Nucleotide Polymorphism rs2287886 of CD209 Gene and Clinical Severity of COVID-19 in Unvaccinated Brazilian Patients. Genes 2025, 16, 1029. https://doi.org/10.3390/genes16091029
Galisa SLG, Silva RRCd, Aguiar MC, Sá MVBdO, Melo JVdO, Pereira GVN, Silva JRdLe, Paiva BdLX, Henrique AGdS, Carmo RFd, et al. Association Between Single-Nucleotide Polymorphism rs2287886 of CD209 Gene and Clinical Severity of COVID-19 in Unvaccinated Brazilian Patients. Genes. 2025; 16(9):1029. https://doi.org/10.3390/genes16091029
Chicago/Turabian StyleGalisa, Steffany Larissa Galdino, Raldney Ricardo Costa da Silva, Mell Cunha Aguiar, Marcus Villander Barros de Oliveira Sá, João Vinícius de Oliveira Melo, Giúlia Vitória Neves Pereira, José Rodolfo de Lima e Silva, Bianca de Lima Xavier Paiva, Andreza Gabriele da Silva Henrique, Rodrigo Feliciano do Carmo, and et al. 2025. "Association Between Single-Nucleotide Polymorphism rs2287886 of CD209 Gene and Clinical Severity of COVID-19 in Unvaccinated Brazilian Patients" Genes 16, no. 9: 1029. https://doi.org/10.3390/genes16091029
APA StyleGalisa, S. L. G., Silva, R. R. C. d., Aguiar, M. C., Sá, M. V. B. d. O., Melo, J. V. d. O., Pereira, G. V. N., Silva, J. R. d. L. e., Paiva, B. d. L. X., Henrique, A. G. d. S., Carmo, R. F. d., de Souza, C. D. F., Armstrong, A. d. C., Oliveira, P. R. S., & Silva Vasconcelos, L. R. (2025). Association Between Single-Nucleotide Polymorphism rs2287886 of CD209 Gene and Clinical Severity of COVID-19 in Unvaccinated Brazilian Patients. Genes, 16(9), 1029. https://doi.org/10.3390/genes16091029