The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential
Abstract
1. Introduction
2. Periodontitis
2.1. Etiology, Pathogenesis, and Disease Susceptibility
2.2. Genetic Basis of Periodontitis
3. Interleukin 35
4. IL-35 in Systemic Immune-Mediated and Neoplastic Diseases
- Breast Cancer:
- Pancreatic Cancer:
- Lung Cancer:
- Rheumatoid Arthritis (RA):
- Systemic Lupus Erythematosus (SLE):
- Type 1 Diabetes Mellitus:
- Atherosclerosis:
- Hepatitis B and C:
- Chronic Obstructive Pulmonary Disease (COPD):
5. IL-35 Gene Polymorphisms and Their Relevance in Immune-Mediated Diseases and Periodontitis
6. IL-35 Expression and Genetic Polymorphisms in Periodontitis
7. IL-35 Response to Periodontal Therapy: A Marker of Resolution or Modulator of Healing
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IL-35 | Interleukin-35 |
IL-1β | Interleukin-1β |
TNF-α | Tumor necrosis factor-alpha |
IL-6 | Interleukin-6 |
MMP | Matrix metalloproteinase |
IL-1Ra | Interleukin-1 receptor antagonist |
TIMPs | Tissue inhibitors of metalloproteinases |
SNPs | Single-nucleotide polymorphisms |
IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 (duplicate) |
TNF-α | Tumor necrosis factor-alpha (duplicate) |
TLR | Toll-like receptor |
IL-12 | Interleukin-12 |
Bregs | Regulatory B cells |
CD4+ Tregs | CD4+ regulatory T cells |
iTr35 | IL-35-induced regulatory T cells |
Th1 | T helper 1 |
NSCLC | Non-small-cell lung cancer |
RA | Rheumatoid arthritis |
SLE | Systemic lupus erythematosus |
HCV | Hepatitis C virus |
COPD | Chronic obstructive pulmonary disease |
CAD | Coronary artery disease |
VKH | Vogt–Koyanagi–Harada syndrome |
IFN-γ | Interferon gamma |
TLR3 | Toll-like receptor 3 |
TLR4 | Toll-like receptor 4 |
T2DM | Type 2 diabetes mellitus |
GCF | Gingival crevicular fluid |
RFLP | Restriction fragment length polymorphism |
IL-23 | Interleukin-23 |
FBS | Fasting blood sugar |
HbA1c | Hemoglobin A1c |
ESR | Erythrocyte sedimentation rate |
CRP | C-reactive protein |
ELISA | Enzyme-linked immunosorbent assay |
CAL | Clinical attachment loss |
GCF | Gingival crevicular fluid (duplicate) |
PD | Probing depth |
RANKL | Receptor activator of NF-κB ligand |
TRAP | Tartrate-resistant acid phosphatase |
ERK | Extracellular signal-regulated kinase |
MAPK | p38 mitogen-activated protein kinase |
PI | Plaque index |
micro-CT | Micro-computed tomography |
NSPT | Non-surgical periodontal therapy |
References
- Kozak, M.; Dabrowska-Zamojcin, E.; Mazurek-Mochol, M.; Pawlik, A. Cytokines and their genetic polymorphisms related to periodontal disease. J. Clin. Med. 2020, 9, 4045. [Google Scholar] [CrossRef]
- Otenio, C.; Fonseca, I.; Martins, M.; Ribeiro, L.; Assis, N.; Ferreira, A.; Ribeiro, R. Expression of IL-1, IL-6, TNF-α, and iNOS in pregnant women with periodontal disease. Genet. Mol. Res. 2012, 11, 4468–4478. [Google Scholar] [CrossRef]
- Wong, H.C.; Ooi, Y.; Pulikkotil, S.J.; Naing, C. The role of three interleukin 10 gene polymorphisms (−1082 A > G, −819 C > T, −592 A > C) in the risk of chronic and aggressive periodontal disease: A meta-analysis and trial sequential analysis. BMC Oral Health 2018, 18, 171. [Google Scholar] [CrossRef]
- Johnson, G.K.; Guthmiller, J.M. The impact of cigarette smoking on periodontal disease and treatment. Periodontology 2007, 44, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Mira, A.; Simon-Soro, A.; Curtis, M.A. Role of microbial communities in the pathogenesis of periodontal diseases and caries. J. Clin. Periodontol. 2017, 44 (Suppl. S18), S23–S38. [Google Scholar] [CrossRef] [PubMed]
- Yuvashri, P.; Devi, R.R.; Nalini, H.E.; Prasad, P.A.K. Estimating the salivary levels of IL-35 in smokers with periodontitis: A cross-sectional study. Saudi Dent. J. 2024, 36, 168–172. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Report on the Global Tobacco Epidemic; WHO: Geneva, Switzerland, 2017.
- Thomson, W.M. Epidemiology of oral health conditions in older people. Gerodontology 2014, 31, 9–16. [Google Scholar] [CrossRef]
- Jin, L.J.; Lamster, I.B.; Greenspan, J.S.; Pitts, N.B.; Scully, C.; Warnakulasuriya, S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabe, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. J. Dent. Res. 2014, 93, 1045–1053. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabe, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of severe tooth loss: A systematic review and meta-analysis. J. Dent. Res. 2014, 93 (Suppl. S7), 20S–28S. [Google Scholar] [CrossRef] [PubMed]
- Marcenes, W.; Kassebaum, N.J.; Bernabe, E.; Flaxman, A.; Naghavi, M.; Lopez, A.; Murray, C.J. Global burden of oral conditions in 1990–2010: A systematic analysis. J. Dent. Res. 2013, 92, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Mawardi, H.H.; Elbadawi, L.S.; Sonis, S.T. Current understanding of the relationship between periodontal and systemic diseases. Saudi Med. J. 2015, 36, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef]
- Pashova-Tasseva, Z. Significance of Gene Polymorphism in Severe Periodontitis. Ph.D. Thesis, Medical University-Sofia, Sofia, Bulgaria, 2022. [Google Scholar]
- Di Benedetto, A.; Gigante, I.; Colucci, S.; Grano, M. Periodontal disease: Linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 2013, 497234. [Google Scholar] [CrossRef]
- Pérez-Rubio, G.; López-Flores, L.; Ramírez-Venegas, A.; Noé-Díaz, V.; García-Gómez, L.; Ambrocio-Ortiz, E.; Sánchez-Romero, C.; Hernández-Zenteno, R.J.; Sansores, R.H.; Falfán-Valencia, R. Genetic polymorphisms in CYP2A6 are associated with a risk of cigarette smoking and predispose to smoking at younger ages. Gene 2017, 628, 205–210. [Google Scholar] [CrossRef]
- Ksiazek, K.; Blaszczak, J.; Buraczynska, M. IL4 gene VNTR polymorphism in chronic periodontal disease in end-stage renal disease patients. Oral Dis. 2019, 25, 258–264. [Google Scholar] [CrossRef]
- Olson, B.M.; Jankowska-Gan, E.; Becker, J.T.; Vignali, D.A.; Burlingham, W.J.; McNeel, D.G. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J. Immunol. 2012, 189, 5590–5601. [Google Scholar] [CrossRef]
- Okada, K.; Fujimura, T.; Kikuchi, T.; Aino, M.; Kamiya, Y.; Izawa, A.; Iwamura, Y.; Goto, H.; Okabe, I.; Miyake, E.; et al. Effect of interleukin (IL)-35 on IL-17 expression and production by human CD4+ T cells. PeerJ 2017, 5, e2999. [Google Scholar] [CrossRef]
- Cai, S.; Liu, X.; Li, H.; Feng, L.; Cao, L.; Huang, J.; Liang, Y.; Zeng, J.; Shi, B. Elevated interleukin (IL)-35 related sCD14 but not IL-23 is associated with the severity of chronic periodontitis. Int. J. Clin. Exp. Med. 2017, 10, 4119–4128. [Google Scholar]
- Schmidlin, P.R.; Dehghannejad, M.; Fakheran, O. Interleukin-35 pathobiology in periodontal disease: A systematic scoping review. BMC Oral Health 2021, 21, 139. [Google Scholar] [CrossRef]
- Mitani, A.; Niedbala, W.; Fujimura, T.; Mogi, M.; Miyamae, S.; Higuchi, N.; Abe, A.; Hishikawa, T.; Mizutani, M.; Ishihara, Y.; et al. Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival tissues with chronic periodontal disease. J. Periodontol. 2015, 86, 301–309. [Google Scholar] [CrossRef]
- Omenesa Bello, R.; Chin, V.K.; Abd Rachman Isnadi, M.F.; Abd Majid, R.; Atmadini Abdullah, M.; Lee, T.Y.; Amiruddin Zakaria, Z.; Hussain, M.K.; Basir, R. The role, involvement and function(s) of interleukin-35 and interleukin-37 in disease pathogenesis. Int. J. Mol. Sci. 2018, 19, 1149. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T. (Ed.) Introduction. In Cytokine Frontiers: Regulation of Immune Responses in Health and Disease; Springer: London, UK, 2013; ISBN 978-4-431-54442-5. [Google Scholar]
- Ye, C.; Yano, H.; Workman, C.J.; Vignali, D.A. Interleukin-35: Structure, function and its impact on immune-related diseases. J. Interferon Cytokine Res. 2021, 41, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Leung, P.S.; Bowlus, C.; Gershwin, M.E. IL-35 and autoimmunity: A comprehensive perspective. Clin. Rev. Allergy Immunol. 2015, 49, 327–332. [Google Scholar] [CrossRef]
- Hao, S.; Chen, X.; Wang, F.; Shao, Q.; Liu, J.; Zhao, H.; Yuan, C.; Ren, H.; Mao, H. Breast cancer cell-derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells. Carcinogenesis 2018, 39, 1488–1496. [Google Scholar] [CrossRef]
- Tewari, N.; Zaitoun, A.M.; Arora, A.; Madhusudan, S.; Ilyas, M.; Lobo, D.N. The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: An immunohistochemical study of tissue microarrays. BMC Cancer 2013, 13, 436. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Das, S.; Handler, J.S.; Hajdu, C.H.; Coffre, M.; Koralov, S.B.; Bar-Sagi, D. IL-35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 2016, 6, 247–255. [Google Scholar] [CrossRef]
- Nishino, R.; Takano, A.; Oshita, H.; Ishikawa, N.; Akiyama, H.; Ito, H.; Nakayama, H.; Miyagi, Y.; Tsuchiya, E.; Kohno, N.; et al. Identification of Epstein–Barr virus-induced gene 3 as a novel serum and tissue biomarker and a therapeutic target for lung cancer. Clin. Cancer Res. 2011, 17, 6272–6286. [Google Scholar] [CrossRef]
- Zhang, T.; Nie, J.; Liu, X.; Han, Z.; Ding, N.; Gai, K.; Liu, Y.; Chen, L.; Guo, C. Correlation analysis among the level of IL-35, microvessel density, lymphatic vessel density, and prognosis in non-small cell lung cancer. Clin. Transl. Sci. 2021, 14, 389–394. [Google Scholar] [CrossRef]
- Nakano, S.; Morimoto, S.; Suzuki, S.; Tsushima, H.; Yamanaka, K.; Sekigawa, I.; Takasaki, Y. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology 2015, 54, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Jian, Z.; Wang, W. Low serum levels of interleukin-35 in patients with rheumatoid arthritis. Tohoku J. Exp. Med. 2015, 237, 77–82. [Google Scholar] [CrossRef]
- Li, Y.; Yao, L.; Liu, S.; Wu, J.; Xia, L.; Shen, H.; Lu, J. Elevated serum IL-35 levels in rheumatoid arthritis are associated with disease activity. J. Investig. Med. 2019, 67, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Jiang, Y.; Sun, D.; Zhong, W.; Zhao, L.; Jiang, Z. The plasma interleukin (IL)-35 level and frequency of circulating IL-35(+) regulatory B cells are decreased in a cohort of Chinese patients with new-onset systemic lupus erythematosus. Sci. Rep. 2019, 9, 13210. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.Y.; Liu, L.N.; Mao, Y.M.; Zhao, C.N.; Wu, Q.; Dan, Y.L.; Pan, H.F. Association between interleukin-35 gene single nucleotide polymorphisms and systemic lupus erythematosus in a Chinese Han population. Biomolecules 2019, 9, 157. [Google Scholar] [CrossRef]
- Singh, K.; Martinell, M.; Luo, Z.; Espes, D.; Stålhammar, J.; Sandler, S.; Carlsson, P.O. Cellular immunological changes in patients with LADA are a mixture of those seen in patients with type 1 and type 2 diabetes. Clin. Exp. Immunol. 2019, 197, 64–73. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Y.; Lu, Z.; Luo, C.; Shi, Y.; Zeng, Q.; Lin, Y.; Huang, Y.; Lu, Z.; Luo, C.; et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS ONE 2011, 7, e52490. [Google Scholar] [CrossRef]
- Liu, F.; Tong, F.; He, Y.; Liu, H. Detectable expression of IL-35 in CD4+ T cells from peripheral blood of chronic hepatitis B patients. Clin. Immunol. 2011, 139, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Zhu, T.; Jiang, M.; Tian, Z.; Tang, G.; Liang, X. Regulatory B cells dysregulated T cell function in an IL-35-dependent way in patients with chronic hepatitis B. Front. Immunol. 2021, 12, 653198. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Li, Y. IL-35 expression in peripheral blood CD4(+) T cells from chronic hepatitis B virus-infected patients directly correlates with virus load. Cytokine 2015, 73, 169–175. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Shao, X.; Wang, W.; Zhang, C.; Jin, Z. An immunosuppressive function of interleukin-35 in chronic hepatitis C virus infection. Int. Immunopharmacol. 2017, 50, 87–94. [Google Scholar] [CrossRef]
- Jiang, S.; Shan, F.; Zhang, Y.; Jiang, L.; Cheng, Z. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2483–2494. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Angeles-Martínez, J.; López-Bautista, F.; Villarreal-Molina, T.; Rodríguez-Pérez, J.M.; Vargas-Alarcón, G. Interleukin-35 polymorphisms are associated with decreased risk of premature coronary artery disease, metabolic parameters, and IL-35 levels: The Genetics of Atherosclerotic Disease (GEA) study. Mediat. Inflamm. 2017, 2017, 1234567. [Google Scholar] [CrossRef]
- Feng, M.; Zhou, S.; Liu, T.; Yu, Y.; Su, Q.; Li, X.; Lin, W. Association between interleukin-35 gene single nucleotide polymorphisms and the uveitis immune status in a Chinese Han population. Front. Immunol. 2021, 12, 758554. [Google Scholar] [CrossRef] [PubMed]
- Kalburgi, N.B.; Muley, A.; Shivaprasad, B.M.; Koregol, A.C. Expression profile of IL-35 mRNA in gingiva of chronic periodontitis and aggressive periodontitis patients: A semiquantitative RT-PCR study. Dis. Markers 2013, 35, 489648. [Google Scholar] [CrossRef] [PubMed]
- Goriely, S.; Molle, C.; Nguyen, M.; Albarani, V.; Haddou, N.O.; Lin, R.; De Wit, D.; Flamand, V.; Willems, F.; Goldman, M. Interferon regulatory factor 3 is involved in Toll-like receptor 4 (TLR4)- and TLR3-induced IL-12p35 gene activation. Blood 2006, 107, 1078–1084. [Google Scholar] [CrossRef]
- Ohkura, N.; Kitagawa, Y.; Sakaguchi, S. Development and maintenance of regulatory T cells. Immunity 2013, 38, 414–423. [Google Scholar] [CrossRef]
- Shindo, S.; Hosokawa, Y.; Hosokawa, I.; Shiba, H. Interleukin (IL)-35 suppresses IL-6 and IL-8 production in IL-17A-stimulated human periodontal ligament cells. Inflammation 2019, 42, 835–840. [Google Scholar] [CrossRef]
- Cafferata, E.A.; Terraza-Aguirre, C.; Barrera, R.; Faúndez, N.; González, N.; Rojas, C.; Melgar-Rodríguez, S.; Hernández, M.; Carvajal, P.; Cortez, C. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. J. Clin. Periodontol. 2020, 47, 676–688. [Google Scholar] [CrossRef]
- Wu, H.; Li, P.; Shao, N.; Ma, J.; Ji, M.; Sun, X.; Wu, H.; Li, P.; Shao, N.; Ma, J.; et al. Aberrant expression of Treg-associated cytokine IL-35 along with IL-10 and TGF-beta in acute myeloid leukemia. Oncol. Lett. 2012, 3, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, G.S.; Wilson, R.H.; Nakano, K.; Burch, L.H.; Nakano, H.; Cook, D.N. IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. J. Allergy Clin. Immunol. 2012, 129, 207–215.e201. [Google Scholar] [CrossRef] [PubMed]
- Collison, L.W.; Chaturvedi, V.; Henderson, A.L.; Giacomin, P.R.; Guy, C.; Bankoti, J.; Finkelstein, D.; Forbes, K.; Workman, C.J.; Brown, S.A.; et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 2010, 11, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Qiu, S.L.; Zhong, X.N.; Huang, Q.P.; He, Z.Y.; Zhang, J.Q.; Liu, G.N.; Li, M.H.; Deng, J.M. Erythromycin enhances CD4+ Foxp3+ regulatory T-cell responses in a rat model of smoke-induced lung inflammation. Mediat. Inflamm. 2012, 2012, 410232. [Google Scholar] [CrossRef]
- Li, X.; Mai, J.; Virtue, A.; Yin, Y.; Gong, R.; Sha, X.; Gutchigian, S.; Frisch, A.; Hodge, I.; Jiang, X.; et al. IL-35 is a novel responsive anti-inflammatory cytokine—A new system of categorizing anti-inflammatory cytokines. PLoS ONE 2012, 7, e33628. [Google Scholar]
- Kaustubh, T.S.; Manohar, B.L.; Charde, P.; Jaiswal, P. Comparative evaluation of interleukin-35 levels in gingival crevicular fluid in patients with chronic gingivitis and chronic periodontitis. Int. J. Oral Care Res. 2017, 5, 83–86. [Google Scholar] [CrossRef]
- Bassagh, A.; Hayatbakhsh Abasi, M.; Larussa, T.; Ghazizadeh, M.; Nemati, M.; Mirkamandar, E.; Jafarzadeh, A. Diminished circulating concentration of interleukin-35 in Helicobacter pylori-infected patients with peptic ulcer: Its association with FOXP3 gene polymorphism, bacterial virulence factor CagA, and gender of patients. Helicobacter 2018, 23, e12501. [Google Scholar] [CrossRef]
- Barnes, V.; Kennedy, A.; Panagakos, F.; Devizio, W.; Trivedi., H.; Jönsson., T.; Guo, L.; Cervi, S.; Scannapieco, F. Global metabolomic analysis of human saliva and plasma from healthy and diabetic subjects, with and without periodontal disease. PLoS ONE 2014, 9, e105181, Erratum in PLoS ONE 2014, 9, e114091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Q.; Xu, W.D.; Pan, M.; Lan, Y.Y.; Liu, X.Y.; Su, L.C.; Huang, A.F. Association of IL-35 expression and gene polymorphisms in rheumatoid arthritis. Int. Immunopharmacol. 2021, 90, 107231. [Google Scholar] [CrossRef]
- Jing, L.; Kim, S.; Sun, L.; Wang, L.; Mildner, E.; Divaris, K.; Jiao, Y.; Offenbacher, S. IL-37- and IL-35/IL-37-producing plasma cells in chronic periodontitis. J. Dent. Res. 2019, 98, 813–821. [Google Scholar] [CrossRef]
- Han, Y.; Yu, C.; Yu, Y.; Bi, L. CD25+ B cells produced IL-35 and alleviated local inflammation during experimental periodontitis. Oral Dis. 2022, 28, 2248–2257. [Google Scholar] [CrossRef]
- Hassan, S.S.; Abdelkawy, M.; Shaker, O.G.; Tarrad, N.A.F. IL-39 and IL-35 gingival crevicular fluid levels in diabetic patients with generalized periodontitis. Clin. Oral Investig. 2024, 28, 124. [Google Scholar] [CrossRef]
- Durga, J.S.V.; Devi, R.R.; Sonika, S.; Vignesh, T. Assessment of IL-35 gene polymorphism in periodontitis patients with and without diabetes: A cross-sectional study. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S5), S4826–S4831. [Google Scholar] [CrossRef]
- Maboudi, A.; Eghbalian-Nouzanizadeh, A.; Seifi, H.; Bahar, A.; Mohadese, M.; Mohammadpour, A.; Abediankenari, S.; Poorbaghi, S.L.; Sepehrimanesh, M. Serum levels of interleukin-23 and -35 in patients with and without type 2 diabetes mellitus and chronic periodontitis. Caspian J. Intern. Med. 2019, 10, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Taskaldiran, E.S.; Tuter, G.; Yucel, A.A.; Yaman, M. Effects of smoking on the salivary and GCF levels of IL-17 and IL-35 in periodontitis. Odontology 2024, 112, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, D.; Lin, X. IL-35 may maintain homeostasis of the immune microenvironment in periodontitis. Exp. Ther. Med. 2017, 14, 5605–5610. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, K.; Lundmark, A.; Delgado, L.F.; Hu, Y.O.O.; Fei, G.; Lee, L.; Fei, C.; Catrina, A.I.; Jansson, L.; Andersson, A.F.; et al. Salivary Microbiota and Host-Inflammatory Responses in Periodontitis Affected Individuals with and Without Rheumatoid Arthritis. Front. Cell Infect. Microbiol. 2022, 12, 841139. [Google Scholar] [CrossRef]
- Ho, J.Y.; Yeo, B.S.; Yang, X.L.; Thirugnanam, T.; Hakeem, M.F.; Sahu, P.S.; Pulikkotil, S.J. Local and Systemic Expression Profile of IL-10, IL-17, IL-27, IL-35, and IL-37 in Periodontal Diseases: A Cross-sectional Study. J. Contemp. Dent. Pract. 2021, 22, 73–79. [Google Scholar]
- Altaca, M.; Cebesoy, E.I.; Kocak-Oztug, N.A.; Bingül, I.; Cifcibasi, E. Interleukin-6, -17, and -35 levels in association with clinical status in stage III and stage IV periodontitis: A cross-sectional study. BMC Oral Health 2024, 24, 1015. [Google Scholar] [CrossRef]
- Kamiya, Y.; Kikuchi, T.; Goto, H.; Okabe, I.; Takayanagi, Y.; Suzuki, Y.; Sawada, N.; Okabe, T.; Suzuki, Y.; Kondo, S.; et al. IL-35 and RANKL Synergistically Induce Osteoclastogenesis in RAW264 Mouse Monocytic Cells. Int. J. Mol. Sci. 2020, 21, 2069. [Google Scholar] [CrossRef]
- Köseoğlu, S.; Sağlam, M.; Pekbağrıyanık, T.; Savran, L.; Sütçü, R. Level of Interleukin-35 in Gingival Crevicular Fluid, Saliva, and Plasma in Periodontal Disease and Health. J. Periodontol. 2015, 86, 964–971. [Google Scholar] [CrossRef]
- Raj, S.C.; Panda, S.M.; Dash, M.; Patnaik, K.; Mohanty, D.; Katti, N.; Mahapatra, A.; Mishra, D.; Praharaj, K. Association of Human Interleukin-35 Level in Gingival Crevicular Fluid and Serum in Periodontal Health, Disease, and after Nonsurgical Therapy: A Comparative Study. Contemp. Clin. Dent. 2018, 9, 293–297. [Google Scholar] [CrossRef]
- Goswamy, A.; Hans, M.; Hans, V.M.; Sheokand, V.; Grover, H.S. Effect of nonsurgical periodontal therapy on gingival crevicular fluid levels of Interleukin-35 in patients with periodontitis. J. Oral Biol. Craniofac. Res. 2022, 12, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Durgapal, S.; Shetty, M. Effect of non-surgical periodontal therapy on the salivary levels of IL-18 and IL-35 in patients with periodontitis. Dent. Med. Probl. 2025, 62, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.; Rathod, S.; Kolte, A. Levels of Interleukin-35 Changes in Gingival Crevicular Fluid After Non-Surgical Periodontal Therapy in Stage III Periodontitis: A Randomized, Controlled Clinical Trial. Available online: https://www.researchgate.net/publication/361044830_Levels_of_Interleukin-35_changes_in_Gingival_Crevicular_Fluid_after_Non-Surgical_Periodontal_Therapy_in_stage_III_periodontitis_a_randomized_controlled_clinical_Trial (accessed on 23 July 2025).
- Thakare, K.S.; Charde, P.A.; Bhongade, M.L.; Jaiswal, P.P.; Bajaj, P.S. Evaluation of gingival crevicular fluid interleukin-35 as a marker for identification of periodontal disease activity. Minerva Dent. Oral Sci. 2022, 71, 346–352. [Google Scholar] [CrossRef]
- Rakic, M.; Pejcic, N.; Perunovic, N.; Vojvodic, D. A roadmap towards precision periodontics. Medicina 2021, 57, 233. [Google Scholar] [CrossRef]
- Gundelly, M.; Pusuluri, S.V.; Koduganti, R.R.; Ambati, M.; Chiluveru, S.; Chandaka, M.; Mrunalini, G.; Pusuluri, S.; Sneha, C.; Chandaka, M. Precision Medicine in Periodontics: A Literature Review. Cureus 2024, 16, e68952. [Google Scholar] [CrossRef]
- Suwinski, P.; Ong, C.; Ling, M.H.T.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing Personalized Medicine through the Application of Whole Exome Sequencing and Big Data Analytics. Front. Genet. 2019, 10, 49. [Google Scholar] [CrossRef]
- Stefanicka-Wojtas, D.; Kurpas, D. Personalised Medicine—Implementation to the Healthcare System in Europe (Focus Group Discussions). J. Pers. Med. 2023, 13, 380. [Google Scholar] [CrossRef]
- Rai, B.; Kharb, S.; Jain, R.; Anand, S.C. Biomarkers of periodontitis in oral fluids. J. Oral Sci. 2008, 50, 53–56. [Google Scholar] [CrossRef]
- Schulz, S.; Stein, J.M.; Altermann, W.; Klapproth, J.; Zimmermann, U.; Reichert, Y.; Gläser, C.; Schaller, H.G.; Reichert, S. Single nucleotide polymorphisms in interleukin-1 gene cluster and subgingival colonization with Aggregatibacter actinomycetemcomitans in patients with aggressive periodontitis. Hum. Immunol. 2011, 72, 940–946. [Google Scholar] [CrossRef]
- Kornman, K.S.; Page, R.C.; Tonetti, M.S. The host response to the microbial challenge in periodontitis: Assembling the players. Periodontol. 2000 1997, 14, 33–53. [Google Scholar] [CrossRef]
- Cui, X.; Liu, W.; Jiang, H.; Zhao, Q.; Hu, Y.; Tang, X.; Liu, X.; Dai, H.; Rui, H.; Liu, B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J. Transl. Autoimmun. 2024, 10, 100263. [Google Scholar] [CrossRef] [PubMed]
- Bakery, H.H.; Hussein, H.A.A.; Ahmed, O.M.; Abuelsaad, A.S.A.; Khalil, R.G. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024, 182, 156732. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Mukherjee, A.K.; Bala, A. Breakthroughs in road mapping IL-35 mediated immunotherapy for type-1 and autoimmune diabetes mellitus. Cytokine 2024, 181, 156692. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddini, R.; Somi, M.H.; Taghikhani, M.; Moaddab, S.Y.; Masnadi Shirazi, K.; Shirmohammadi, M.; Eftekharsadat, A.T.; Sadighi Moghaddam, B.; Salek Farrokhi, A. Association of Foxp3 rs3761548 polymorphism with cytokines concentration in gastric adenocarcinoma patients. Cytokine 2021, 138, 155351. [Google Scholar] [CrossRef]
- Goto, H.; Kikuchi, T.; Takayanagi, Y.; Kamiya, Y.; Suzuki, Y.; Kawamura, S.; Sawada, N.; Hayashi, J.I.; Mitani, A. Ebi3 knockout aggravates experimental periodontitis via Th17 polarization. J. Clin. Periodontol. 2023, 50, 1406–1418. [Google Scholar] [CrossRef]
- Cao, G.; Memida, T.; Huang, S.; Dalir Abdolahinia, E.; Ruiz, S.; Hassantash, S.; Ari, J.; Shindo, S.; Lin, J.; Kawai, T.; et al. Pro-Resolving Macrophage-Induced IL-35+ but Not TGF-β1+ Regulatory B Cell Activation Requires the PD-L1/PD-1 Pathway. Int. J. Mol. Sci. 2025, 26, 5332. [Google Scholar] [CrossRef]
Category | Details |
---|---|
Cytokine Family | Heterodimer composed of EBI3 (Epstein–Barr virus-induced gene 3) and IL-12p35 subunits |
Primary Cellular Sources | Regulatory T cells (CD4+ Tregs, CD8+ Tregs), regulatory B cells (Bregs) |
Main Immunological Role | Anti-inflammatory and immunosuppressive; inhibits Th17 cell activation and IL-17 production |
Key Target Cells | T helper 17 (Th17) cells, effector T cells |
Mechanisms of Action | Suppresses T-cell proliferation and cytokine production—Induces IL-35-producing iTr35 cells—Promotes immune tolerance and resolution |
Genetic Considerations | Polymorphisms in EBI3 and IL-12A (p35) genes may affect cytokine expression and function |
In Periodontitis | Reduced IL-35 expression linked to increased disease severity; potential biomarker for disease activity and treatment response |
In Other Diseases | Implicated in autoimmune diseases (e.g., rheumatoid arthritis, IBD), cancers, sepsis, and chronic infections |
Clinical Potential | Biomarker for inflammation and immune status; therapeutic target in immune-mediated diseases |
Study | Focus | Model/Subjects | Main Findings | IL-35 Role |
---|---|---|---|---|
Jing et al. [62] | IL-35 from plasma cells in CP | Human CP tissues | Identified IL-35/IL-37-producing plasma cells; inhibited osteoclastogenesis | Anti-inflammatory, bone-protective |
Han et al. [63] | CD25+ Bregs in periodontitis | Murine model, B cells | IL-35 and TGF-β from Bregs reduced bone loss and modulated Th-cell balance | Protective, regulatory |
Hassan et al. [64] | IL-35/IL-39 in diabetic and non-diabetic CP | 38 patients | IL-35 decreased in diabetics; increased after therapy | Potential diagnostic/prognostic biomarker |
Durga et al. [65] | IL-35 SNPs and susceptibility (±T2DM) | 96 participants | No significant SNP association found | Negative genetic evidence |
Maboudi et al. [66] | Serum IL-35 in CP and diabetes | 72 participants | No significant serum differences; local relevance suspected | Unlikely systemic biomarker |
Taskaldiran et al. [67] | IL-35 in smokers vs. non-smokers with CP | 57 total (3 groups) | Lower IL-35 in smokers; higher IL-35 in non-smokers with CP | Modulated by smoking |
Jin et al. [68] | IL-35 in PBMCs, GCF, and tissues in CP | Human samples | Elevated IL-35 mRNA/protein in CP; inverse correlation with disease severity | Protective, locally active |
Eriksson et al. [69] | IL-35 in RA + CP comorbidity | 101 subjects | IL-35 elevated in comorbid patients; correlated with microbial profiles | Immune-modulating, systemic marker |
Mitani et al. [24] | IL-35 vs. IL-17 in GCF and tissue | Periodontitis vs. healthy | IL-35 correlated with PD, CAL; IL-27 not detectable | Anti-inflammatory counterbalance to IL-17 |
Ho et al. [70] | IL-35 in GCF vs. plasma across health/disease | Healthy, gingivitis, periodontitis | Plasma IL-35 increased with disease severity | Systemic response marker |
Altaca et al. [71] | IL-35, IL-6, IL-17 in GCF | 90 participants | IL-35 elevated in advanced disease; associated but not correlated with clinical indices | Disease presence biomarker |
Kamiya et al. [72] | IL-35 effects on osteoclastogenesis | RAW264.7 murine cells | IL-35 enhanced bone resorption with RANKL, ERK activation | Dual role: context-dependent |
Köseoğlu et al. [73] | IL-35 in GCF, saliva, and plasma | 60 participants | GCF IL-35 high in disease (total), but higher concentration in health | Anti-inflammatory, concentration-sensitive |
Cafferata et al. [53] | IL-35 treatment in murine periodontitis | Mouse model | Reduced bone loss via Th17/Treg modulation | Therapeutic candidate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashova-Tasseva, Z.; Mlachkova, A.; Kotsilkov, K.; Maynalovska, H. The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential. Genes 2025, 16, 891. https://doi.org/10.3390/genes16080891
Pashova-Tasseva Z, Mlachkova A, Kotsilkov K, Maynalovska H. The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential. Genes. 2025; 16(8):891. https://doi.org/10.3390/genes16080891
Chicago/Turabian StylePashova-Tasseva, Zdravka, Antoaneta Mlachkova, Kamen Kotsilkov, and Hristina Maynalovska. 2025. "The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential" Genes 16, no. 8: 891. https://doi.org/10.3390/genes16080891
APA StylePashova-Tasseva, Z., Mlachkova, A., Kotsilkov, K., & Maynalovska, H. (2025). The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential. Genes, 16(8), 891. https://doi.org/10.3390/genes16080891