Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators
Abstract
:1. Introduction
2. Genetic Mechanisms in Neuromuscular Disorders
Disease Heterogeneity and Genetic Modifiers
3. Epigenetic Regulation in Neuromuscular Disorders
3.1. DNA Methylation in NMDs
3.2. Histone Modifications and Chromatin Remodeling in NMDs
3.3. Non-Coding RNAs in NMDs
4. Disease-Specific Genetic and Epigenetic Mechanisms
4.1. Amyotrophic Lateral Sclerosis
- The UNC13A rs12608932 variant, where the C allele shortens survival by 5–12 months, delays onset, and increases ALS-FTD comorbidity, likely by promoting nonsense-mediated decay of UNC13A transcripts and exacerbating TDP-43 aggregation.
- Intermediate-length ATXN2 polyglutamine repeats (27–33), which elevate ALS risk; inhibition of ATXN2 reduces TDP-43 pathology and improves motor function in models [29].
- The FRMD8/NEAT1 locus variant (rs10128627), associated with earlier onset in Chinese cohorts, possibly through increased expression of the long non-coding RNA NEAT1 [27].
Category | Key Factor | Effect on ALS | Mechanism | References |
---|---|---|---|---|
Genetic Modifiers | UNC13A (rs12608932-C) | Decreases survival by 5–12 months; increases risk of bulbar onset and frontotemporal dementia (FTD) | Promotes aggregation of hyperphosphorylated TDP-43; enhances decay of UNC13A transcript via NMD | [29] |
ATXN2 (intermediate polyQ) | Increases ALS risk (non-causal relationship) | Modulates TDP-43 aggregation; potential therapeutic target | [29] | |
FRMD8 (rs10128627) | Associated with earlier onset in Chinese cohorts | Increases NEAT1 lncRNA expression | [40] | |
Epigenetic Factors | Global DNA methylation | Correlates with disease severity (increased in SOD1 carriers) | Affects calcium homeostasis and neuroinflammation | [30,41] |
C9orf72 promoter methylation | Silences gene expression in C9orf72 repeat carriers | Alters RNA metabolism and facilitates protein sequestration | [32,42] | |
Mitochondrial DNA (D-loop) | Contributes to mitochondrial dysfunction | Associated with altered methylation patterns | [32] | |
HDAC dysregulation | Impairs axonal transport | Decreases histone acetylation; effects of mixed HDAC inhibitors | [33,34] | |
MicroRNA dysregulation | Alters neuroinflammation and survival | Increased levels of miR-155 and decreased levels of let-7e and miR-133b, among others | [38] | |
45 Differentially Methylated Positions across 42 genes | Links to cholesterol metabolism, immunity, and survival | Potential biomarkers for disease progression and therapy | [39] |
4.2. Spinal Muscular Atrophy
4.3. Muscular Dystrophies
4.3.1. Myotonic Dystrophy
4.3.2. Duchenne and Becker Muscular Dystrophy
4.3.3. Limb-Girdle Muscular Dystrophies
4.3.4. Facioscapulohumeral Dystrophy
Category | Key Factors | Mechanism/Function | Implications | References |
---|---|---|---|---|
Genetic Modifiers | DMPK (DM1), CNBP (DM2) | CTG/CCTG repeat expansions lead to RNA toxicity and splicing dysregulation | Myotonia and multisystem involvement | [49] |
Dystrophin (DMD/BMD) | Disruption of sarcolemmal stability results in cytoskeletal detachment | Progressive muscle weakness and cardiomyopathy | [4] | |
DYSF, SGCA-SGCD, DMD | Defects in the sarcolemmal/sarcoglycan complex cause membrane instability | Proximal muscle weakness with variable cardiac involvement | [48] | |
Epigenetic Regulators | MEF2B, CBX3, SMC3 | Chromatin compaction leads to impaired muscle stem cell regeneration | Reduced muscle repair in DMD; reversible through MEF2B re-expression | [59] |
miR-1, miR-206, miR-29 | Regulation of myogenesis is mediated by targeting HDAC4 and YY1 | Dysregulation exacerbates muscle wasting | [59] | |
lncMyoD, lincMD1 | Chromatin remodeling and miRNA sequestration modulate muscle differentiation | Influence muscle differentiation processes | [59] | |
HDACs (e.g., HDAC2/9) | Histone and non-histone deacetylation lead to transcriptional repression | Overexpression in dystrophic muscle; HDAC inhibitors enhance function | [59] | |
H3K4me2-TET2-miR-145 axis | Maintains satellite muscle cell identity; demethylation causes loss of contractility | Vascular dysfunction in musculoskeletal disorders | [58] |
5. Environmental and Lifestyle Modulators of NMDs
5.1. Exercise and Epigenetic Regulation in Muscles
5.2. Nutriepigenetic Modulators in Neuromuscular Disorders
- Chromatin organization and DNA accessibility,
- Transcriptional and translational processes,
- Post-translational modifications of histones.
5.3. Nutrients and Amyotrophic Lateral Sclerosis
5.4. Nutrients and Spinal Muscular Atrophy
5.5. Nutrients and Muscular Dystrophy
Disorder | Nutrient/Bioactive Compound | Key Findings | Mechanism of Action | Epigenetic/Molecular Effects | References |
---|---|---|---|---|---|
Amyotrophic Lateral Sclerosis (ALS) | Curcumin | Improves survival in ALS patients and reduces SOD1/TDP-43 aggregation | Inhibits DNMTs and HDACs; chelates metals | Increases H4 acetylation, elevates SOCS1/SOCS3 levels, and decreases pro-apoptotic methylation | [68,69] |
Dietary Restriction | Induces autophagy and removes toxic protein aggregates | Activates AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways | Enhances clearance of misfolded proteins such as SOD1 and TDP-43 | [71,74] | |
Spinal Muscular Atrophy (SMA) | Kiwifruit Extract | Improves motor neuron survival in a C. elegans SMA model | Exhibits antioxidant and anti-inflammatory effects | Modulates oxidative stress pathways | [76] |
Green Tea and Cocoa Flavonoids | Stabilize motor neuron synapses and attenuate microgliosis | Balance M1 and M2 microglial phenotypes | Enhance synaptic stability and reduce neuroinflammation | [77] | |
Muscular Dystrophy (MD) | Green Tea Epigallocatechin Gallate (EGCG) | Reduces muscle necrosis and delays the onset of dystrophic symptoms | Inhibits DNMT activity via S-adenosylhomocysteine (SAH) production | Increases the expression of myogenic genes (Myf5, MEF2) and decreases fibrosis | [79] |
Cocoa (-)-Epicatechin (EC) | Improves mitochondrial function and reduces fibrosis | Increases follistatin levels and decreases myostatin | Promotes satellite cell differentiation | [80,82] | |
Omega-3 Fatty Acids (EPA/DHA) | Reduce NF-κB-mediated inflammation and improve muscle strength | Inhibit IκB degradation and modulate mitogen-activated protein kinase (MAPK) | Decrease serum creatine kinase (CK) levels and enhance muscle repair | [83] | |
Resveratrol | Stimulates protein synthesis and supports muscle homeostasis | Activates sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) | Enhances mitochondrial biogenesis | [86] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cho, A. Neuromuscular Diseases: Genomics-Driven Advances. Genom. Inform. 2024, 22, 24. [Google Scholar] [CrossRef]
- Rosenberg, A.; Tian, C.; He, H.; Ulm, E.; Collins Ruff, K.; Nagaraj, C.B. An Evaluation of Clinical Presentation and Genetic Testing Approaches for Patients with Neuromuscular Disorders. Am. J. Med. Genet. A 2023, 191, 2679–2692. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, M.; Sanchez, M.G. Genetic Modifiers and Phenotypic Variability in Neuromuscular Disorders. J. Appl. Genet. 2020, 61, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, L.; Bonne, G.; Rivier, F.; Hamroun, D. The 2024 Version of the Gene Table of Neuromuscular Disorders (Nuclear Genome). Neuromuscul. Disord. 2024, 34, 126–170. [Google Scholar] [CrossRef]
- Virolainen, S.J.; VonHandorf, A.; Viel, K.C.M.F.; Weirauch, M.T.; Kottyan, L.C. Gene–Environment Interactions and Their Impact on Human Health. Genes Immun. 2023, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, Y.; Li, Y.; Zhu, X.; Li, Z. Epigenetic Regulation of Gene Expression in Response to Environmental Exposures: From Bench to Model. Sci. Total Environ. 2021, 776, 145998. [Google Scholar] [CrossRef]
- Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Farsetti, A.; Illi, B.; Gaetano, C. How Epigenetics Impacts on Human Diseases. Eur. J. Intern. Med. 2023, 114, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Dunø, M.; Palle, A.L.; Krag, T.; Vissing, J. Deletion of Exon 16 of the Dystrophin Gene Is Not Associated with Disease. Hum. Mutat. 2007, 28, 205. [Google Scholar] [CrossRef]
- Chiba, Y.; Shinde, A.; Kohara, N.; Akiguchi, I.; Nakano, S.; Hayashi, Y.K.; Shibasaki, H. Two Sisters with Dysferlinopathy Manifesting Different Clinical Phenotypes. Clin. Neurol. 2003, 43, 188–191. [Google Scholar]
- Rahit, K.M.T.H.; Tarailo-Graovac, M. Genetic Modifiers and Rare Mendelian Disease. Genes 2020, 11, 239. [Google Scholar] [CrossRef]
- Kousi, M.; Katsanis, N. Genetic Modifiers and Oligogenic Inheritance. Cold Spring Harb. Perspect. Med. 2015, 5, a017145. [Google Scholar] [CrossRef] [PubMed]
- Lamar, K.M.; McNally, E.M. Genetic Modifiers for Neuromuscular Diseases. J. Neuromuscul. Dis. 2014, 1, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Benemei, S.; Piluso, G.; Bello, L. The Complex Landscape of DMD Mutations: Moving towards Personalized Medicine. Front. Genet. 2024, 15, 1360224. [Google Scholar] [CrossRef]
- Aartsma-Rus, A.; Van Deutekom, J.C.T.; Fokkema, I.F.; Van Ommen, G.J.B.; Den Dunnen, J.T. Entries in the Leiden Duchenne Muscular Dystrophy Mutation Database: An Overview of Mutation Types and Paradoxical Cases That Confirm the Reading-Frame Rule. Muscle Nerve 2006, 34, 135–144. [Google Scholar] [CrossRef]
- Fokkema, I.F.A.C.; Kroon, M.; López Hernández, J.A.; Asscheman, D.; Lugtenburg, I.; Hoogenboom, J.; den Dunnen, J.T. The LOVD3 Platform: Efficient Genome-Wide Sharing of Genetic Variants. Eur. J. Hum. Genet. 2021, 29, 1796–1803. [Google Scholar] [CrossRef]
- Natsuga, K.; Furuta, Y.; Takashima, S.; Nohara, T.; Huang, H.Y.; Shinkuma, S.; Nakamura, H.; Katsuda, Y.; Higashi, H.; Hsu, C.K.; et al. Cas9-Guided Haplotyping of Three Truncation Variants in Autosomal Recessive Disease. Hum. Mutat. 2022, 43, 877–881. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The Diverse Roles of DNA Methylation in Mammalian Development and Disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-Translational Modifications of Histones: Mechanisms, Biological Functions, and Therapeutic Targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, H.; Scharf, F.; Gehling, S.; Benet-Pagès, A.; Jakubiczka, S.; Becker, K.; Seipelt, M.; Kleefeld, F.; Knop, K.C.; Prott, E.C.; et al. Methylation of the 4q35 D4Z4 Repeat Defines Disease Status in Facioscapulohumeral Muscular Dystrophy. Brain 2023, 146, 1388–1402. [Google Scholar] [CrossRef]
- Lamb, Y.N. Givinostat: First Approval. Drugs 2024, 84, 849–856. [Google Scholar] [CrossRef]
- Lai, J.I.; Leman, L.J.; Ku, S.; Vickers, C.J.; Olsen, C.A.; Montero, A.; Ghadiri, M.R.; Gottesfeld, J.M. Cyclic Tetrapeptide HDAC Inhibitors as Potential Therapeutics for Spinal Muscular Atrophy: Screening with IPSC-Derived Neuronal Cells. Bioorg. Med. Chem. Lett. 2017, 27, 3289–3293. [Google Scholar] [CrossRef] [PubMed]
- Lumpkin, C.J.; Harris, A.W.; Connell, A.J.; Kirk, R.W.; Whiting, J.A.; Saieva, L.; Pellizzoni, L.; Burghes, A.H.M.; Butchbach, M.E.R. Evaluation of the Orally Bioavailable 4-Phenylbutyrate-Tethered Trichostatin A Analogue AR42 in Models of Spinal Muscular Atrophy. Sci. Rep. 2023, 13, 10374. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, S.; Marcuzzo, S.; Malacarne, C.; Giagnorio, E.; Masson, R.; Zanin, R.; Arnoldi, M.T.; Andreetta, F.; Simoncini, O.; Venerando, A.; et al. Circulating Myomirs as Potential Biomarkers to Monitor Response to Nusinersen in Pediatric SMA Patients. Biomedicines 2020, 8, 21. [Google Scholar] [CrossRef]
- Siracusa, J.; Koulmann, N.; Banzet, S. Circulating MyomiRs: A New Class of Biomarkers to Monitor Skeletal Muscle in Physiology and Medicine. J. Cachexia Sarcopenia Muscle 2018, 9, 20–27. [Google Scholar] [CrossRef]
- Mytidou, C.; Koutsoulidou, A.; Katsioloudi, A.; Prokopi, M.; Kapnisis, K.; Michailidou, K.; Anayiotos, A.; Phylactou, L.A. Muscle-Derived Exosomes Encapsulate MyomiRs and Are Involved in Local Skeletal Muscle Tissue Communication. FASEB J. 2021, 35, e21279. [Google Scholar] [CrossRef]
- Li, S.; Lei, Z.; Sun, T. The Role of MicroRNAs in Neurodegenerative Diseases: A Review. Cell Biol. Toxicol. 2023, 39, 53–83. [Google Scholar] [CrossRef]
- Butti, Z.; Patten, S.A. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front. Genet. 2019, 10, 712. [Google Scholar] [CrossRef]
- Willemse, S.W.; Harley, P.; Van Eijk, R.P.A.; Demaegd, K.C.; Zelina, P.; Pasterkamp, R.J.; Van Damme, P.; Ingre, C.; Van Rheenen, W.; Veldink, J.H.; et al. UNC13A in Amyotrophic Lateral Sclerosis: From Genetic Association to Therapeutic Target. J. Neurol. Neurosurg. Psychiatry 2023, 94, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F.; Stoccoro, A.; Mosca, L.; Gallo, R.; Tarlarini, C.; Lunetta, C.; Marocchi, A.; Migliore, L.; Penco, S. Increase in DNA Methylation in Patients with Amyotrophic Lateral Sclerosis Carriers of Not Fully Penetrant SOD1 Mutations. Amyotroph. Lateral Scler Front. Degener. 2018, 19, 93–101. [Google Scholar] [CrossRef]
- Tarr, I.S.; McCann, E.P.; Benyamin, B.; Peters, T.J.; Twine, N.A.; Zhang, K.Y.; Zhao, Q.; Zhang, Z.H.; Rowe, D.B.; Nicholson, G.A.; et al. Monozygotic Twins and Triplets Discordant for Amyotrophic Lateral Sclerosis Display Differential Methylation and Gene Expression. Sci. Rep. 2019, 9, 8254. [Google Scholar] [CrossRef]
- Stoccoro, A.; Smith, A.R.; Mosca, L.; Marocchi, A.; Gerardi, F.; Lunetta, C.; Cereda, C.; Gagliardi, S.; Lunnon, K.; Migliore, L.; et al. Reduced Mitochondrial D-Loop Methylation Levels in Sporadic Amyotrophic Lateral Sclerosis. Clin. Epigenetics 2020, 12, 137. [Google Scholar] [CrossRef]
- Kabir, F.; Atkinson, R.; Cook, A.L.; Phipps, A.J.; King, A.E. The Role of Altered Protein Acetylation in Neurodegenerative Disease. Front. Aging Neurosci. 2023, 14, 1025473. [Google Scholar] [CrossRef] [PubMed]
- Rossaert, E.; Pollari, E.; Jaspers, T.; Van Helleputte, L.; Jarpe, M.; Van Damme, P.; De Bock, K.; Moisse, M.; Van Den Bosch, L. Restoration of Histone Acetylation Ameliorates Disease and Metabolic Abnormalities in a FUS Mouse Model. Acta Neuropathol. Commun. 2019, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F. Special Issue “Genetics and Epigenetics of Neuromuscular Diseases”. Genes 2023, 14, 1522. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.L.; Daniels, E.G.; Molenaars, M.; Houtkooper, R.H.; Janssens, G.E. From Molecular Promise to Preclinical Results: HDAC Inhibitors in the Race for Healthy Aging Drugs. EMBO Mol. Med. 2019, 11, e9854. [Google Scholar] [CrossRef]
- Rizzuti, M.; Sali, L.; Melzi, V.; Scarcella, S.; Costamagna, G.; Ottoboni, L.; Quetti, L.; Brambilla, L.; Papadimitriou, D.; Verde, F.; et al. Genomic and Transcriptomic Advances in Amyotrophic Lateral Sclerosis. Ageing Res. Rev. 2023, 92, 102126. [Google Scholar] [CrossRef]
- Figueroa-Romero, C.; Hur, J.; Lunn, J.S.; Paez-Colasante, X.; Bender, D.E.; Yung, R.; Sakowski, S.A.; Feldman, E.L. Expression of MicroRNAs in Human Post-Mortem Amyotrophic Lateral Sclerosis Spinal Cords Provides Insight into Disease Mechanisms. Mol. Cell. Neurosci. 2016, 71, 34–45. [Google Scholar] [CrossRef]
- Hop, P.J.; Zwamborn, R.A.J.; Hannon, E.; Shireby, G.L.; Nabais, M.F.; Walker, E.M.; van Rheenen, W.; van Vugt, J.J.F.A.; Dekker, A.M.; Westeneng, H.-J.; et al. Genome-Wide Study of DNA Methylation in Amyotrophic Lateral Sclerosis Identifies Differentially Methylated Loci and Implicates Metabolic, Inflammatory and Cholesterol Pathways. Sci. Transl. Med. 2022, 14, eabj0264. [Google Scholar] [CrossRef]
- Li, C.; Wei, Q.; Hou, Y.; Lin, J.; Ou, R.; Zhang, L.; Jiang, Q.; Xiao, Y.; Liu, K.; Chen, X.; et al. Genome-Wide Analyses Identify NEAT1 as Genetic Modifier of Age at Onset of Amyotrophic Lateral Sclerosis. Mol. Neurodegener. 2023, 18, 77. [Google Scholar] [CrossRef]
- Dey, B.; Kumar, A.; Patel, A.B. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr. Neuropharmacol. 2023, 22, 1778–1806. [Google Scholar] [CrossRef]
- Coppedè, F. Epigenetics of Neuromuscular Disorders. Epigenomics 2020, 12, 2125–2139. [Google Scholar] [CrossRef] [PubMed]
- Schroth, M.; Deans, J.; Arya, K.; Castro, D.; De Vivo, D.C.; Gibbons, M.A.; Ionita, C.; Kuntz, N.L.; Lakhotia, A.; Neil Knierbein, E.; et al. Spinal Muscular Atrophy Update in Best Practices. Neurol. Clin. Pract. 2024, 14, e200310. [Google Scholar] [CrossRef] [PubMed]
- Nishio, H.; Niba, E.T.E.; Saito, T.; Okamoto, K.; Takeshima, Y.; Awano, H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 11939. [Google Scholar] [CrossRef]
- Singh, R.N.; Ottesen, E.W.; Singh, N.N. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci. Insights 2020, 15, 2633105520973985. [Google Scholar] [CrossRef]
- Maretina, M.A.; Valetdinova, K.R.; Tsyganova, N.A.; Egorova, A.A.; Ovechkina, V.S.; Schiöth, H.B.; Zakian, S.M.; Baranov, V.S.; Kiselev, A.V. Identification of Specific Gene Methylation Patterns during Motor Neuron Differentiation from Spinal Muscular Atrophy Patient-Derived IPSC. Gene 2022, 811, 146109. [Google Scholar] [CrossRef] [PubMed]
- Barbo, M.; Glavač, D.; Jezernik, G.; Ravnik-Glavač, M. MicroRNAs as Biomarkers in Spinal Muscular Atrophy. Biomedicines 2024, 12, 2428. [Google Scholar] [CrossRef]
- LaPelusa, A.; Asuncion, R.M.D.; Kentris, M. Muscular Dystrophy; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Vydra, D.G.; Rayi, A. Myotonic Dystrophy; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Rimoldi, M.; Lucchiari, S.; Pagliarani, S.; Meola, G.; Comi, G.P.; Abati, E. Myotonic Dystrophies: An Update on Clinical Features, Molecular Mechanisms, Management, and Gene Therapy. Neurol. Sci. 2025, 46, 1599–1616. [Google Scholar] [CrossRef]
- Visconti, V.V.; Centofanti, F.; Fittipaldi, S.; Macrì, E.; Novelli, G.; Botta, A. Epigenetics of Myotonic Dystrophies: A Minireview. Int. J. Mol. Sci. 2021, 22, 12594. [Google Scholar] [CrossRef]
- Venugopal, V.; Pavlakis, S. Duchenne Muscular Dystrophy; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bouchard, C.; Tremblay, J.P. Limb–Girdle Muscular Dystrophies Classification and Therapies. J. Clin. Med. 2023, 12, 4769. [Google Scholar] [CrossRef]
- D’Este, G.; Spagna, M.; Federico, S.; Cacciante, L.; Cieślik, B.; Kiper, P.; Barresi, R. Limb-girdle Muscular Dystrophies: A Scoping Review and Overview of Currently Available Rehabilitation Strategies. Muscle Nerve 2025, 71, 138–146. [Google Scholar] [CrossRef]
- Lemmers, R.J.L.F.; Tawil, R.; Petek, L.M.; Balog, J.; Block, G.J.; Santen, G.W.E.; Amell, A.M.; Van Der Vliet, P.J.; Almomani, R.; Straasheijm, K.R.; et al. Digenic Inheritance of an SMCHD1 Mutation and an FSHD-Permissive D4Z4 Allele Causes Faci-oscapulohumeral Muscular Dystrophy Type 2. Nat. Genet. 2012, 44, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Van Den Boogaard, M.L.; Lemmers, R.J.L.F.; Balog, J.; Wohlgemuth, M.; Auranen, M.; Mitsuhashi, S.; Van Der Vliet, P.J.; Straasheijm, K.R.; Van Den Akker, R.F.P.; Kriek, M.; et al. Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. Am. J. Hum. Genet. 2016, 98, 1020–1029. [Google Scholar] [CrossRef]
- Rickard, A.M.; Petek, L.M.; Miller, D.G. Endogenous DUX4 Expression in FSHD Myotubes Is Sufficient to Cause Cell Death and Disrupts RNA Splicing and Cell Migration Pathways. Hum. Mol. Genet. 2015, 24, 5901–5914. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Espinosa-Diez, C.; Mahan, S.; Du, M.; Nguyen, A.T.; Hahn, S.; Chakraborty, R.; Straub, A.C.; Martin, K.A.; Owens, G.K.; et al. H3K4 Di-Methylation Governs Smooth Muscle Lineage Identity and Promotes Vascular Homeostasis by Restraining Plasticity. Dev. Cell 2021, 56, 2765–2782.e10. [Google Scholar] [CrossRef] [PubMed]
- Sandonà, M.; Cavioli, G.; Renzini, A.; Cedola, A.; Gigli, G.; Coletti, D.; McKinsey, T.A.; Moresi, V.; Saccone, V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int. J. Mol. Sci. 2023, 24, 4306. [Google Scholar] [CrossRef] [PubMed]
- Harizi, H.; Holliday, R.; Abdolahi, A.; Georas, S.N.; Brenna, J.T.; Cai, X.; Thevenet-Morrison, K.; Phipps, R.P.; Lawrence, P.; Mousa, S.A.; et al. An Integrative Analysis Reveals Coordinated Reprogramming of the Epigenome and the Transcriptome in Human Skeletal Muscle after Training. Epigenetics 2014, 9, 1557–1569. [Google Scholar]
- Plaza-Diaz, J.; Izquierdo, D.; Torres-Martos, Á.; Baig, A.T.; Aguilera, C.M.; Ruiz-Ojeda, F.J. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022, 10, 126. [Google Scholar] [CrossRef]
- Barrès, R.; Yan, J.; Egan, B.; Treebak, J.T.; Rasmussen, M.; Fritz, T.; Caidahl, K.; Krook, A.; O’Gorman, D.J.; Zierath, J.R. Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metab. 2012, 15, 405–411. [Google Scholar] [CrossRef]
- Wen, Y.; Dungan, C.M.; Mobley, C.B.; Valentino, T.; Von Walden, F.; Murach, K.A. Nucleus Type-Specific DNA Methylomics Reveals Epigenetic “Memory” of Prior Adaptation in Skeletal Muscle. Function 2021, 2, zqab038. [Google Scholar] [CrossRef]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef]
- Aguilera, C.M.; Anguita-Ruiz, A.; Gil, Á. Nutriepigenetics. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2023; pp. 176–187. [Google Scholar]
- Tzeplaeff, L.; Wilfling, S.; Requardt, M.V.; Herdick, M. Current State and Future Directions in the Therapy of ALS. Cells 2023, 12, 1523. [Google Scholar] [CrossRef] [PubMed]
- Masala, A.; Sanna, S.; Esposito, S.; Rassu, M.; Galioto, M.; Zinellu, A.; Carru, C.; Carrì, M.T.; Iaccarino, C.; Crosio, C. Epigenetic Changes Associated with the Expression of Amyotrophic Lateral Sclerosis (ALS) Causing Genes. Neuroscience 2018, 390, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cashman, J.R.; Gagliardi, S.; Lanier, M.; Ghirmai, S.; Abel, K.J.; Fiala, M. Curcumins Promote Monocytic Gene Expression Related to β-Amyloid and Superoxide Dismutase Clearance. Neurodegener. Dis. 2012, 10, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.U.; Rehman, M.S.U.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef]
- Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; et al. Safety and Efficacy of Nanocurcumin as Add-on Therapy to Riluzole in Patients with Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial. Neurotherapeutics 2018, 15, 430–438. [Google Scholar] [CrossRef]
- Gómez-Virgilio, L.; Silva-Lucero, M.D.C.; Flores-Morelos, D.S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.M.; Zacapala-Gómez, A.E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science (1979) 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Kabuta, C.; Kono, K.; Wada, K.; Kabuta, T. 4-Hydroxynonenal Induces Persistent Insolubilization of TDP-43 and Alters Its Intracellular Localization. Biochem. Biophys. Res. Commun. 2015, 463, 82–87. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Ying, Z.; Gao, Q. Ibudilast Enhances the Clearance of SOD1 and TDP-43 Aggregates through TFEB-Mediated Autophagy and Lysosomal Biogenesis: The New Molecular Mechanism of Ibudilast and Its Implication for Neuroprotective Therapy. Biochem. Biophys. Res. Commun. 2020, 526, 231–238. [Google Scholar] [CrossRef]
- Sales, N.M.R.; Pelegrini, P.B.; Goersch, M.C. Nutrigenomics: Definitions and Advances of This New Science. J. Nutr. Metab. 2014, 2014, 202759. [Google Scholar] [CrossRef]
- Mazzarella, N.; Giangrieco, I.; Visone, S.; Santonicola, P.; Achenbach, J.; Zampi, G.; Tamburrini, M.; Di Schiavi, E.; Ciardiello, M.A. Green Kiwifruit Extracts Protect Motor Neurons from Death in a Spinal Muscular Atrophy Model in Caenorhabditis Elegans. Food Sci. Nutr. 2019, 7, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Gras, S.; Blasco, A.; Mòdol-Caballero, G.; Tarabal, O.; Casanovas, A.; Piedrafita, L.; Barranco, A.; Das, T.; Rueda, R.; Pereira, S.L.; et al. Beneficial Effects of Dietary Supplementation with Green Tea Catechins and Cocoa Flavanols on Aging-Related Regressive Changes in the Mouse Neuromuscular System. Aging 2021, 13, 18051–18093. [Google Scholar] [CrossRef] [PubMed]
- Dorchies, O.M.; Wagner, S.; Vuadens, O.; Waldhauser, K.; Buetler, T.M.; Kucera, P.; Ruegg, U.T. Green Tea Extract and Its Major Polyphenol (-)-Epigallocatechin Gallate Improve Muscle Function in a Mouse Model for Duchenne Muscular Dystrophy. Am. J. Physiol. Cell Physiol. 2006, 290, C616–C625. [Google Scholar] [CrossRef]
- Nakae, Y.; Dorchies, O.M.; Stoward, P.J.; Zimmermann, B.F.; Ritter, C.; Ruegg, U.T. Quantitative Evaluation of the Beneficial Effects in the Mdx Mouse of Epigallocatechin Gallate, an Antioxidant Polyphenol from Green Tea. Histochem. Cell Biol. 2012, 137, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Sanchez, I.; De Los Santos, S.; Gonzalez-Basurto, S.; Canto, P.; Mendoza-Lorenzo, P.; Palma-Flores, C.; Ceballos-Reyes, G.; Villarreal, F.; Zentella-Dehesa, A.; Coral-Vazquez, R. (-)-Epicatechin Improves Mitochondrial-Related Protein Levels and Ameliorates Oxidative Stress in Dystrophic δ-Sarcoglycan Null Mouse Striated Muscle. FEBS J. 2014, 281, 5567–5580. [Google Scholar] [CrossRef]
- Won, J.L.; Shim, J.Y.; Zhu, B.T. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids. Mol. Pharmacol. 2005, 68, 1018–1030. [Google Scholar] [CrossRef]
- Gutierrez-Salmean, G.; Ciaraldi, T.P.; Nogueira, L.; Barboza, J.; Taub, P.R.; Hogan, M.C.; Henry, R.R.; Meaney, E.; Villarreal, F.; Ceballos, G.; et al. Effects of (-)-Epicatechin on Molecular Modulators of Skeletal Muscle Growth and Differentiation. J. Nutr. Biochem. 2014, 25, 91–94. [Google Scholar] [CrossRef]
- Versari, I.; Bavelloni, A.; Traversari, M.; Burattini, S.; Battistelli, M.; Gobbi, P.; Faenza, I.; Salucci, S. Functional Foods, a Hope to Delay Muscle Dystrophy Progression: A Potential Role for Omega Fatty Acids. Nutrients 2025, 17, 1039. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Liu, Y.; Zhang, L.; Odle, J.; Lin, X.; Zhu, H.; Wang, X.; Liu, Y. EPA and DHA Inhibit Myogenesis and Downregulate the Expression of Muscle-Related Genes in C2C12 Myoblasts. Genes 2019, 10, 64. [Google Scholar] [CrossRef]
- Fogagnolo Mauricio, A.; Pereira, J.A.; Santo Neto, H.; Marques, M.J. Effects of Fish Oil Containing Eicosapentaenoic Acid and Docosahexaenoic Acid on Dystrophic Mdx Mice Hearts at Later Stages of Dystrophy. Nutrition 2016, 32, 855–862. [Google Scholar] [CrossRef]
- Toniolo, L.; Concato, M.; Giacomello, E. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients 2023, 15, 3413. [Google Scholar] [CrossRef] [PubMed]
Category | Key Factor | Effect on SMA | Mechanism/Evidence | References |
---|---|---|---|---|
Genetic Basis | SMN1 deletion | Results in loss of functional SMN protein | This is the primary cause of spinal muscular atrophy (SMA) | [4,43] |
Disease Modifier | SMN2 copy number | Higher copy number is associated with a milder phenotype | SMN2 compensates for the loss of SMN1 through alternative splicing | [43] |
Epigenetic Regulation | SMN2 methylation | Hypermethylation leads to reduced expression | Methylation status correlates with disease severity | [44] |
Epigenetic Regulation | miRNAs | Potential biomarkers | The most frequently deregulated miRNAs in SMA patients include miR-1-3p, miR-133a-3p, miR-133b, and miR-206 | [47] |
iPSC Studies | PAX6, HB9, CHAT methylation | Alters motor neuron differentiation | Indicates epigenetic dysregulation in SMA neurons | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque-Ramírez, B.; Ríos-López, K.E.; López-Hernández, L.B. Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators. Genes 2025, 16, 622. https://doi.org/10.3390/genes16060622
Roque-Ramírez B, Ríos-López KE, López-Hernández LB. Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators. Genes. 2025; 16(6):622. https://doi.org/10.3390/genes16060622
Chicago/Turabian StyleRoque-Ramírez, Bladimir, Karla Estefanía Ríos-López, and Luz Berenice López-Hernández. 2025. "Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators" Genes 16, no. 6: 622. https://doi.org/10.3390/genes16060622
APA StyleRoque-Ramírez, B., Ríos-López, K. E., & López-Hernández, L. B. (2025). Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators. Genes, 16(6), 622. https://doi.org/10.3390/genes16060622