Genetic and Molecular Insights into the Links Between Heat Stroke, Alzheimer’s Disease, and Down Syndrome: A Mini-Review
Abstract
1. Introduction
2. Heat Stroke May Increase the Risk of Alzheimer’s Disease Development
3. Heat Stroke Increases the Expression of Amyloid-β Protein in Human Brain
4. What Effect Does Heat Stroke Have on Individuals with Down Syndrome?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Guo, Y.; Ye, T.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; Vicedo-Cabrera, A.M.; et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. Lancet Planet Health 2021, 5, e415–e425. [Google Scholar] [CrossRef]
- Bongioanni, P.; Del Carratore, R.; Corbianco, S.; Diana, A.; Cavallini, G.; Masciandaro, S.M.; Dini, M.; Buizza, R. Climate change and neurodegenerative diseases. Environ. Res. 2021, 201, 111511. [Google Scholar] [CrossRef]
- Buizza, R.; Del Carratore, R.; Paolo Bongioanni, P. Evidence of climate change impact on Parkinson’s disease. J. Clim. Change Health 2022, 6, 100130. [Google Scholar] [CrossRef]
- Kuo, W.Y.; Huang, C.C.; Chen, C.A.; Ho, C.H.; Tang, L.Y.; Lin, H.J.; Su, S.B.; Wang, J.J.; Hsu, C.C.; Chang, C.P.; et al. Heat-related illness and dementia: A study integrating epidemiological and experimental evidence. Alzheimers Res. Ther. 2024, 16, 145. [Google Scholar] [CrossRef]
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W.; Sherman, S.L.; Reeves, R.H. Down syndrome. Nat. Rev. Dis. Primers 2020, 6, 9. [Google Scholar] [CrossRef]
- Gauer, R.; Meyers, B.K. Heat-related illnesses. Am. Fam. Physician 2019, 99, 482–489. [Google Scholar]
- Bouchama, A.; Knochel, J.P. Heat stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, F.G. Heat-related illnesses. Ann. Intern. Med. 2025, 178, ITC97–ITC112. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Abuyassin, B.; Lehe, C.; Laitano, O.; Jay, O.; O’Connor, F.G.; Leon, L.R. Classic and exertional heat stroke. Nat. Rev. Dis. Primers 2022, 8, 8. [Google Scholar] [CrossRef]
- Xu, Z.; Tong, S.; Cheng, J.; Zhang, Y.; Wang, N.; Zhang, Y.; Hayixibayi, A.; Hu, W. Heatwaves, hospitalizations for Alzheimer’s disease, and postdischarge deaths: A population-based cohort study. Environ. Res. 2019, 178, 108714. [Google Scholar] [CrossRef]
- Gong, J.; Part, C.; Hajat, S. Current and future burdens of heat-related dementia hospital admissions in England. Environ. Int. 2022, 159, 107027. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, L.; Jia, A.; Wang, S.; Guo, Q.; Wang, Y.; Wang, C.; Wu, S.; Zheng, H.; Su, X.; et al. Effect of heatwaves on mortality of Alzheimer’s disease and other dementias among elderly aged 60 years and above in China, 2013-2020: A population-based study. Lancet Reg. Health West. Pac. 2024, 52, 101217. [Google Scholar] [CrossRef]
- Sinigaglia-Coimbra, R.; Cavalheiro, E.A.; Coimbra, C.G. Postischemic hyperthermia induces Alzheimer-like pathology in the rat brain. Acta Neuropathol. 2002, 103, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Nakamura, M.; Ohtaki, H.; Suzuki, K.; Yamaga, H.; Yanagisawa, K.; Maeda, A.; Yagi, M.; Hayashi, M.; Honda, K.; et al. Heat stroke-induced late-onset neurological deficits in mice caused by white matter demyelination, Purkinje cell degeneration, and synaptic impairment in the cerebellum. Sci. Rep. 2022, 12, 10598. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Yoshida, D.; Ohara, T.; Hata, J.; Shibata, M.; Hirakawa, Y.; Honda, T.; Furuta, Y.; Oishi, E.; Sakata, S.; Kanba, S.; et al. Lifetime cumulative incidence of dementia in a community-dwelling elderly population in Japan. Neurology 2020, 95, e508–e518. [Google Scholar] [CrossRef]
- Noorani, A.A.; Yamashita, H.; Gao, Y.; Islam, S.; Sun, Y.; Nakamura, T.; Enomoto, H.; Zou, K.; Michikawa, M. High temperature promotes amyloid β-protein production and γ-secretase complex formation via Hsp90. J. Biol. Chem. 2020, 295, 18010–18022. [Google Scholar] [CrossRef] [PubMed]
- Chandhok, S.; Pereira, L.; Momchilova, E.A.; Marijan, D.; Zapf, R.; Lacroix, E.; Kaur, A.; Keymanesh, S.; Krieger, C.; Audas, T.E. Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Sci. Rep. 2023, 13, 14471. [Google Scholar] [CrossRef]
- Chung, C.W.; Stephens, A.D.; Konno, T.; Ward, E.; Avezov, E.; Kaminski, C.F.; Hassanali, A.A.; Kaminski Schierle, G.S. Intracellular Aβ42 Aggregation Leads to Cellular Thermogenesis. J. Am. Chem. Soc. 2022, 144, 10034–10041. [Google Scholar] [CrossRef]
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; van der Flier, W.M.; Jessen, F.; Hoozemanns, J.; Thal, D.R.; Boche, D.; Brosseron, F.; Teunissen, C.; Zetterberg, H.; Jacobs, A.H.; et al. Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 2025, 25, 321–352. [Google Scholar] [CrossRef]
- Yoneda, K.; Hosomi, S.; Ito, H.; Togami, Y.; Oda, S.; Matsumoto, H.; Shimazaki, J.; Ogura, H.; Oda, J. How can heatstroke damage the brain? A mini review. Front. Neurosci. 2024, 18, 1437216. [Google Scholar] [CrossRef]
- Schmidt, C.; Wolff, M.; Weitz, M.; Bartlau, T.; Korth, C.; Zerr, I. Rapidly progressive Alzheimer disease. Arch. Neurol. 2011, 68, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef]
- Bouchama, A.; Rashid, M.; Malik, S.S.; Al Mahri, S.; Yassin, Y.; Abdullah, M.; Abdulmalek, N.; Maashi, F.; Mashi, A.; Khan, A.; et al. Whole genome transcriptomic reveals heat stroke molecular signatures in humans. J. Physiol. 2023, 601, 2407–2423. [Google Scholar] [CrossRef] [PubMed]
- Sinton, J.W.; Cooper, D.S.; Wiley, S. Down syndrome and the autonomic nervous system, an educational review for the anesthesiologist. Paediatr. Anaesth. 2022, 32, 609–616. [Google Scholar] [CrossRef]
- Surma, V.; Nagraj, V.P.; Fairchild, K.D.; Vergales, J. Temperature instability in infants with trisomy 21 in the neonatal intensive care unit. J. Perinatol. 2020, 40, 1167–1170. [Google Scholar] [CrossRef]
- Dębiec-Bąk, A.; Wójtowicz, D.; Pawik, Ł.; Ptak, A.; Skrzek, A. Analysis of body surface temperatures in people with Down syndrome after general rehabilitation exercise. J. Therm. Anal. Calorim. 2019, 135, 2399–2410. [Google Scholar] [CrossRef]
- Down Syndrome Resource Foundation. Staying Safe in Extreme Heat. Available online: https://www.dsrf.org/resources/information/down-syndrome-climate-change/staying-safe-in-extreme-heat/ (accessed on 17 August 2025).
- McGuire, B.E.; Defrin, R. Pain perception in people with Down syndrome: A synthesis of clinical and experimental research. Front. Behav. Neurosci. 2015, 9, 194. [Google Scholar] [CrossRef]
- Hennequin, M.; Morin, C.; Feine, J.S. Pain expression and stimulus localisation in individuals with Down’s syndrome. Lancet 2000, 356, 1882–1887. [Google Scholar] [CrossRef]
- Abu-Saad, H.H. Challenge of pain in the cognitively impaired. Lancet 2000, 356, 1867–1868. [Google Scholar] [CrossRef]
- Maure-Blesa, L.; Carmona-Iragui, M.; Lott, I.; Head, E.; Wisniewski, T.; Rafii, M.S.; Espinosa, J.; Flórez, J.; Mobley, W.C.; Holland, A.; et al. The history of Down syndrome-associated Alzheimer’s disease; past, present, and future. Alzheimers Dement. 2025, 21, e70158. [Google Scholar] [CrossRef]
- Fortea, J.; Zaman, S.H.; Hartley, S.; Rafii, M.S.; Head, E.; Carmona-Iragui, M. Alzheimer’s disease associated with Down syndrome: A genetic form of dementia. Lancet Neurol. 2021, 20, 930–942. [Google Scholar] [CrossRef]
- Condello, C.; Maxwell, A.M.; Castillo, E.; Aoyagi, A.; Graff, C.; Ingelsson, M.; Lannfelt, L.; Bird, T.D.; Keene, C.D.; Seeley, W.W.; et al. Aβ and tau prions feature in the neuropathogenesis of Down syndrome. Proc. Natl. Acad. Sci. USA 2022, 119, e2212954119. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.P.; Galdzicki, Z.; et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef]
- Santoro, J.D.; Patel, L.; Kammeyer, R.; Filipink, R.A.; Gombolay, G.Y.; Cardinale, K.M.; Real de Asua, D.; Zaman, S.; Santoro, S.L.; Marzouk, S.M.; et al. Assessment and diagnosis of Down syndrome regression disorder: International expert consensus. Front. Neurol. 2022, 13, 940175. [Google Scholar] [CrossRef] [PubMed]
- Walpert, M.; Zaman, S.; Holland, A. A systematic review of unexplained early regression in adolescents and adults with Down syndrome. Brain Sci. 2021, 11, 1197. [Google Scholar] [CrossRef]
- Natividade, M.M.P.; Moreira, A.J.; Nassif, L.S.; Dos Santos, B.R.A.; Borin, M.C.; Alvares-Teodoro, J.; Acurcio, F.A.; Guerra, A.A. Causes of Down syndrome regression disorder: A scoping review. Dement. Neuropsychol. 2025, 19, e20240233. [Google Scholar] [CrossRef] [PubMed]
- Worley, G.; Crissman, B.G.; Cadogan, E.; Milleson, C.; Adkins, D.W.; Kishnani, P.S. Down syndrome disintegrative disorder: New-onset autistic regression, dementia, and insomnia in older children and adolescents with Down syndrome. J. Child Neurol. 2015, 30, 1147–1152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishio, H.; Negishi, H.; Awano, H.; Oba, J. Genetic and Molecular Insights into the Links Between Heat Stroke, Alzheimer’s Disease, and Down Syndrome: A Mini-Review. Genes 2025, 16, 1171. https://doi.org/10.3390/genes16101171
Nishio H, Negishi H, Awano H, Oba J. Genetic and Molecular Insights into the Links Between Heat Stroke, Alzheimer’s Disease, and Down Syndrome: A Mini-Review. Genes. 2025; 16(10):1171. https://doi.org/10.3390/genes16101171
Chicago/Turabian StyleNishio, Hisahide, Hirokuni Negishi, Hiroyuki Awano, and Jumpei Oba. 2025. "Genetic and Molecular Insights into the Links Between Heat Stroke, Alzheimer’s Disease, and Down Syndrome: A Mini-Review" Genes 16, no. 10: 1171. https://doi.org/10.3390/genes16101171
APA StyleNishio, H., Negishi, H., Awano, H., & Oba, J. (2025). Genetic and Molecular Insights into the Links Between Heat Stroke, Alzheimer’s Disease, and Down Syndrome: A Mini-Review. Genes, 16(10), 1171. https://doi.org/10.3390/genes16101171