Drug-Induced Epigenetic Alterations: A Set of Forensic Toxicological Fingerprints?
Abstract
1. Introduction
2. Methods
3. Results
3.1. Alcohol
3.2. Cocaine
3.3. Methamphetamine
3.4. Cannabis
3.5. Opioids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernàndez-Castillo, N.; Cabana-Domínguez, J.; Corominas, R.; Cormand, B. Molecular Genetics of Cocaine Use Disorders in Humans. Mol. Psychiatry 2022, 27, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.L.; Jayanthi, S. Epigenetics of Addiction. Neurochem. Int. 2021, 147, 105069. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.J.; Nestler, E.J. Epigenetics and Addiction. Curr. Opin. Neurobiol. 2019, 59, 128–136. [Google Scholar] [CrossRef]
- Sturman, D.A.; Moghaddam, B. Striatum Processes Reward Differently in Adolescents versus Adults. Proc. Natl. Acad. Sci. USA 2012, 109, 1719–1724. [Google Scholar] [CrossRef]
- Nestler, E.J.; Lüscher, C. The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron 2019, 102, 48–59. [Google Scholar] [CrossRef]
- Kaplan, G.; Xu, H.; Abreu, K.; Feng, J. DNA Epigenetics in Addiction Susceptibility. Front. Genet. 2022, 13, 806685. [Google Scholar] [CrossRef]
- Kim, S.; Kaang, B.-K. Epigenetic Regulation and Chromatin Remodeling in Learning and Memory. Exp. Mol. Med. 2017, 49, e281. [Google Scholar] [CrossRef]
- Robison, A.J.; Nestler, E.J. Transcriptional and Epigenetic Mechanisms of Addiction. Nat. Rev. Neurosci. 2011, 12, 623–637. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.Y.; Mill, J.; Fernandes, C. Drugs and Addiction: An Introduction to Epigenetics. Addiction 2011, 106, 480–489. [Google Scholar] [CrossRef]
- Walker, D.M.; Nestler, E.J. Neuroepigenetics and Addiction. Handb. Clin. Neurol. 2018, 148, 747–765. [Google Scholar]
- Lohoff, F.W.; Clarke, T.-K.; Kaminsky, Z.A.; Walker, R.M.; Bermingham, M.L.; Jung, J.; Morris, S.W.; Rosoff, D.; Campbell, A.; Barbu, M.; et al. Epigenome-Wide Association Study of Alcohol Consumption in N = 8161 Individuals and Relevance to Alcohol Use Disorder Pathophysiology: Identification of the Cystine/Glutamate Transporter SLC7A11 as a Top Target. Mol. Psychiatry 2022, 27, 1754–1764. [Google Scholar] [CrossRef]
- Mahna, D.; Puri, S.; Sharma, S. DNA Methylation Signatures: Biomarkers of Drug and Alcohol Abuse. Mutat. Res./Rev. Mutat. Res. 2018, 777, 19–28. [Google Scholar] [CrossRef]
- Zhang, H.; Herman, A.I.; Kranzler, H.R.; Anton, R.F.; Simen, A.A.; Gelernter, J. Hypermethylation of OPRM1 Promoter Region in European Americans with Alcohol Dependence. J. Hum. Genet. 2012, 57, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.L.; YorkWilliams, S.L.; Bidwell, L.C.; Weiland, B.J.; Sabbineni, A.; Blaine, S.K.; Bryan, A.D.; Hutchison, K.E. DRD2 Methylation Is Associated with Executive Control Network Connectivity and Severity of Alcohol Problems among a Sample of Polysubstance Users. Addict. Biol. 2020, 25, e12684. [Google Scholar] [CrossRef] [PubMed]
- Ouko, L.A.; Shantikumar, K.; Knezovich, J.; Haycock, P.; Schnugh, D.J.; Ramsay, M. Effect of Alcohol Consumption on CpG Methylation in the Differentially Methylated Regions of H19 and IG-DMR in Male Gametes—Implications for Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2009, 33, 1615–1627. [Google Scholar] [CrossRef]
- Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene Coexpression Networks in Human Brain Identify Epigenetic Modifications in Alcohol Dependence. J. Neurosci. 2012, 32, 1884–1897. [Google Scholar] [CrossRef]
- Berkel, T.D.M.; Pandey, S.C. Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol. Clin. Exp. Res. 2017, 41, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.M.; Odegaard, K.E.; Hernandez, J.; Chand, S.; Koul, S.; Pendyala, G.; Yelamanchili, S.V. Role of MicroRNAs in the Pathophysiology of Addiction. WIREs RNA 2021, 12, e1637. [Google Scholar] [CrossRef]
- Camilo, C.; Maschietto, M.; Vieira, H.C.; Tahira, A.C.; Gouveia, G.R.; Feio dos Santos, A.C.; Negrão, A.B.; Ribeiro, M.; Laranjeira, R.; Vallada, H.; et al. Genome-Wide DNA Methylation Profile in the Peripheral Blood of Cocaine and Crack Dependents. Braz. J. Psychiatry 2019, 41, 485–493. [Google Scholar] [CrossRef]
- Nestler, E.J. Epigenetic Mechanisms of Drug Addiction. Neuropharmacology 2014, 76, 259–268. [Google Scholar] [CrossRef]
- Zhou, Z.; Yuan, Q.; Mash, D.C.; Goldman, D. Substance-Specific and Shared Transcription and Epigenetic Changes in the Human Hippocampus Chronically Exposed to Cocaine and Alcohol. Proc. Natl. Acad. Sci. USA 2011, 108, 6626–6631. [Google Scholar] [CrossRef]
- Holt, L.M.; Nestler, E.J. Astrocytic Transcriptional and Epigenetic Mechanisms of Drug Addiction. J. Neural Transm. 2024, 131, 409–424. [Google Scholar] [CrossRef]
- Doke, M.; Pendyala, G.; Samikkannu, T. Psychostimulants and Opioids Differentially Influence the Epigenetic Modification of Histone Acetyltransferase and Histone Deacetylase in Astrocytes. PLoS ONE 2021, 16, e0252895. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.N.; Vied, C.; Dennis, J.H.; Bhide, P.G. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes. PLoS ONE 2015, 10, e0139103. [Google Scholar] [CrossRef] [PubMed]
- Desplats, P.; Dumaop, W.; Cronin, P.; Gianella, S.; Woods, S.; Letendre, S.; Smith, D.; Masliah, E.; Grant, I. Epigenetic Alterations in the Brain Associated with HIV-1 Infection and Methamphetamine Dependence. PLoS ONE 2014, 9, e102555. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Ghadirivasfi, M.; Barati, M.; Ghasemzadeh, M.; Narimani, S.; Mousavi-Behbahani, Z.; Joghataei, M.; Soleimani, M.; Taban, M.; Mehrabi, S.; et al. Methamphetamine-induced Psychosis Is Associated with DNA Hypomethylation and Increased Expression of AKT1 and Key Dopaminergic Genes. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 2016, 171, 1180–1189. [Google Scholar] [CrossRef]
- Murphy, S.K.; Itchon-Ramos, N.; Visco, Z.; Huang, Z.; Grenier, C.; Schrott, R.; Acharya, K.; Boudreau, M.-H.; Price, T.M.; Raburn, D.J.; et al. Cannabinoid Exposure and Altered DNA Methylation in Rat and Human Sperm. Epigenetics 2018, 13, 1208–1221. [Google Scholar] [CrossRef]
- Pulk, K.; Somelar-Duracz, K.; Rooden, M.; Anier, K.; Kalda, A. Concentration-Dependent Effect of Delta-9-Tetrahydrocannabinol on Epigenetic DNA Modifiers in Human Peripheral Blood Mononuclear Cells. Transl. Psychiatry 2025, 15, 198. [Google Scholar] [CrossRef]
- Kozlenkov, A.; Jaffe, A.; Timashpolsky, A.; Apontes, P.; Rudchenko, S.; Barbu, M.; Byne, W.; Hurd, Y.; Horvath, S.; Dracheva, S. DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes 2017, 8, 152. [Google Scholar] [CrossRef]
- Trivedi, M.; Shah, J.; Hodgson, N.; Byun, H.-M.; Deth, R. Morphine Induces Redox-Based Changes in Global DNA Methylation and Retrotransposon Transcription by Inhibition of Excitatory Amino Acid Transporter Type 3–Mediated Cysteine Uptake. Mol. Pharmacol. 2014, 85, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, Y.; Justice, A.C.; Li, B.; Wang, Z.; Zhao, H.; Krystal, J.H.; Xu, K. DNA Methylation Signatures of Illicit Drug Injection and Hepatitis C Are Associated with HIV Frailty. Nat. Commun. 2017, 8, 2243. [Google Scholar] [CrossRef]
- Zaidi, S.A.H.; Thakore, N.; Singh, S.; Guzman, W.; Mehrotra, S.; Gangaraju, V.; Husain, S. Histone Deacetylases Regulation by δ-Opioids in Human Optic Nerve Head Astrocytes. Invest. Ophthalmol. Vis. Sci. 2020, 61, 17. [Google Scholar] [CrossRef]
- Egervari, G.; Landry, J.; Callens, J.; Fullard, J.F.; Roussos, P.; Keller, E.; Hurd, Y.L. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol. Psychiatry 2017, 81, 585–594. [Google Scholar] [CrossRef]
- Michelhaugh, S.K.; Lipovich, L.; Blythe, J.; Jia, H.; Kapatos, G.; Bannon, M.J. Mining Affymetrix Microarray Data for Long Non-Coding RNAs: Altered Expression in the Nucleus Accumbens of Heroin Abusers. J. Neurochem. 2011, 116, 459–466. [Google Scholar] [CrossRef]
- Grimm, S.L.; Mendez, E.F.; Stertz, L.; Meyer, T.D.; Fries, G.R.; Gandhi, T.; Kanchi, R.; Selvaraj, S.; Teixeira, A.L.; Kosten, T.R.; et al. MicroRNA–MRNA Networks Are Dysregulated in Opioid Use Disorder Postmortem Brain: Further Evidence for Opioid-Induced Neurovascular Alterations. Front. Psychiatry 2023, 13, 1025346. [Google Scholar] [CrossRef]
- Beccegato, E.; Ruggeri, A.; Montisci, M.; Terranova, C. Driving License Regranting in DUI Subjects: Road Accident Variables and Predictive Factors of Substance Use Disorder. Sci. Prog. 2021, 104, 00368504211033702. [Google Scholar] [CrossRef] [PubMed]
- Chandler, R.K.; Fletcher, B.W.; Volkow, N.D. Treating Drug Abuse and Addiction in the Criminal Justice System. JAMA 2009, 301, 183. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Vidal, M.C.; Campuzano, O.; Arena, V.; Alfonsetti, A.; Rossi, S.S.; Scarnicci, F.; Iglesias, A.; Brugada, R.; Oliva, A. Sudden Death without a Clear Cause after Comprehensive Investigation: An Example of Forensic Approach to Atypical/Uncertain Findings. Diagnostics 2021, 11, 886. [Google Scholar] [CrossRef]
- Grassi, S.; Mandarelli, G.; Polacco, M.; Vetrugno, G.; Spagnolo, A.G.; De-Giorgio, F. Suicide of Isolated Inmates Suffering from Psychiatric Disorders: When a Preventive Measure Becomes Punitive. Int. J. Leg. Med. 2018, 132, 1225–1230. [Google Scholar] [CrossRef]
- Basova, L.; Najera, J.A.; Bortell, N.; Wang, D.; Moya, R.; Lindsey, A.; Semenova, S.; Ellis, R.J.; Marcondes, M.C.G. Dopamine and Its Receptors Play a Role in the Modulation of CCR5 Expression in Innate Immune Cells Following Exposure to Methamphetamine: Implications to HIV Infection. PLoS ONE 2018, 13, e0199861. [Google Scholar] [CrossRef]
- Andersen, A.; Dogan, M.; Beach, S.; Philibert, R. Current and Future Prospects for Epigenetic Biomarkers of Substance Use Disorders. Genes 2015, 6, 991–1022. [Google Scholar] [CrossRef]
- Wedemeyer, F.; Kaminski, J.A.; Zillich, L.; Hall, A.S.M.; Friedel, E.; Witt, S.H. Prospects of Genetics and Epigenetics of Alcohol Use Disorder. Curr. Addict. Rep. 2020, 7, 446–452. [Google Scholar] [CrossRef]
- Gerra, M.C.; Dallabona, C.; Cecchi, R. Epigenetic Analyses in Forensic Medicine: Future and Challenges. Int. J. Leg. Med. 2024, 138, 701–719. [Google Scholar] [CrossRef]
- Mantri, C.K.; Mantri, J.V.; Pandhare, J.; Dash, C. Methamphetamine Inhibits HIV-1 Replication in CD4+ T Cells by Modulating Anti–HIV-1 MiRNA Expression. Am. J. Pathol. 2014, 184, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Chang, M.-C.; Lai, Y.-C.; Lin, C.-Y.; Hsu, C.-H.; Tseng, B.-Y.; Hsiao, C.K.; Lu, T.-P.; Yu, S.-L.; Hsieh, S.-T.; et al. Mitochondrial DNA Methylation Profiling of the Human Prefrontal Cortex and Nucleus Accumbens: Correlations with Aging and Drug Use. Clin. Epigenetics 2022, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Piniewska-Róg, D.; Heidegger, A.; Pośpiech, E.; Xavier, C.; Pisarek, A.; Jarosz, A.; Woźniak, A.; Wojtas, M.; Phillips, C.; Kayser, M.; et al. Impact of Excessive Alcohol Abuse on Age Prediction Using the VISAGE Enhanced Tool for Epigenetic Age Estimation in Blood. Int. J. Leg. Med. 2021, 135, 2209–2219. [Google Scholar] [CrossRef]
- Levine, A.; Huang, Y.; Drisaldi, B.; Griffin, E.A.; Pollak, D.D.; Xu, S.; Yin, D.; Schaffran, C.; Kandel, D.B.; Kandel, E.R. Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine. Sci. Transl. Med. 2011, 3, 107ra109. [Google Scholar] [CrossRef]
- Angoa-Pérez, M.; Kuhn, D.M. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol. Rev. 2021, 73, 571–596. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Vaiano, F.; Dimitrova, A.; Vullo, C.; Croce, E.B.; Rossi, R.; Arena, V.; Strano Rossi, S.; Campuzano, O.; Brugada, R.; et al. Fatal Intoxications and Inherited Cardiac Disorders in the Young: Where to Draw the Line? Int. J. Leg. Med. 2025, 139, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.M.; Brown, A.N.; Bhide, P.G. Regulation of BDNF Expression by Cocaine. Yale J. Biol. Med. 2012, 85, 437–446. [Google Scholar]
- Cecil, C.A.M.; Walton, E.; Smith, R.G.; Viding, E.; McCrory, E.J.; Relton, C.L.; Suderman, M.; Pingault, J.-B.; McArdle, W.; Gaunt, T.R.; et al. DNA Methylation and Substance-Use Risk: A Prospective, Genome-Wide Study Spanning Gestation to Adolescence. Transl. Psychiatry 2016, 6, e976. [Google Scholar] [CrossRef]
- Chang, L.; Oishi, K.; Skranes, J.; Buchthal, S.; Cunningham, E.; Yamakawa, R.; Hayama, S.; Jiang, C.S.; Alicata, D.; Hernandez, A.; et al. Sex-Specific Alterations of White Matter Developmental Trajectories in Infants with Prenatal Exposure to Methamphetamine and Tobacco. JAMA Psychiatry 2016, 73, 1217. [Google Scholar] [CrossRef] [PubMed]
- Rompala, G.R.; Homanics, G.E. Intergenerational Effects of Alcohol: A Review of Paternal Preconception Ethanol Exposure Studies and Epigenetic Mechanisms in the Male Germline. Alcohol. Clin. Exp. Res. 2019, 43, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
Feature | Epigenetic Analysis | Conventional Toxicology |
---|---|---|
Detection window | Can reveal long-term or past exposure (weeks–months, sometimes persistent after cessation) | Detects recent exposure (hours–days); hair analysis can show chronic exposure but limited by availability/condition of hair |
Specificity | May identify substance-specific molecular signatures (CpGs, miRNAs) | Identifies parent compounds and metabolites, usually substance-specific |
Sensitivity to matrix condition | DNA methylation relatively stable post-mortem; useful when metabolites degraded | Drug metabolites degrade post-mortem; reduced reliability with decomposition |
Cost and complexity | High cost; requires specialized equipment and bioinformatics expertise | Lower cost; standardized and widely available methods (GC-MS, LC-MS/MS) |
Validation | Limited forensic validation; many findings from small or experimental cohorts | Fully validated and standardized for forensic use |
Potential applications | History of abuse, ambiguous cases, post-mortem toxicology, transgenerational/environmental exposure | Routine forensic toxicology (e.g., acute intoxications, impaired driving, doping controls), history of abuse, ambiguous cases, post-mortem toxicology |
Substance | Marker | Reference | Examples of Sites | Target Tissue | Kind of Epigenetic Event |
---|---|---|---|---|---|
Alcohol | 23 CpGs | [12] | SCL7A11, JDP2, GAS5, TRA2B, SLC43A1, PHGDH, PRPF8, ANKS3, TPD52L1, LAMA3, DHX16, DYRK2, SHMT2, SLC1A5, TCF3, RNLS | peripheral blood | M |
Alcohol | miR-34 | [19] | SIRT1 | NAc | R |
Cocaine | 186 CpGs | [20] | PCDH9 | peripheral blood | M |
Cocaine | 3 miRNAs (miR-124 miR-153 miR-9) | [1] | NFAT5, PLCB1, KCTD20 | peripheral blood | R |
Methamphetamine | 235 CpGs | [26] | TTL7, SCN1A, APBA1, UNC5D, TGFBR3 NET1 | frontal cortex | M |
Methamphetamine | 6 miRNAs (miR-4799, miR-4776, miR-550b, miR-9, miR-181a, miR-15b, miR-let-7e miR-let-7d) | [19] | PPP1CB, MAP2K1, MAPK1 | peripheral blood | R |
Opioids | 1298 CpGs | [30] | JUP, CHKB-CPT1B, ATP11A, SEMA6B | orbitofrontal cortex | M |
Opioids | 4 long noncoding RNAs | [35] | MEG3, MIAT, NEAT1, NEAT2 | nucleus accumbens | R |
Cannabis | 183 CpGs | [28] | PTGIR, COL18A1, AHRR, CSNK1E | sperm | M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassi, S.; Costantino, A.; Dimitrova, A.; Croce, E.B.; Iasi, F.; Puggioni, A.; De Micco, F.; Vaiano, F. Drug-Induced Epigenetic Alterations: A Set of Forensic Toxicological Fingerprints? Genes 2025, 16, 1129. https://doi.org/10.3390/genes16101129
Grassi S, Costantino A, Dimitrova A, Croce EB, Iasi F, Puggioni A, De Micco F, Vaiano F. Drug-Induced Epigenetic Alterations: A Set of Forensic Toxicological Fingerprints? Genes. 2025; 16(10):1129. https://doi.org/10.3390/genes16101129
Chicago/Turabian StyleGrassi, Simone, Andrea Costantino, Alexandra Dimitrova, Emma Beatrice Croce, Francesca Iasi, Alessandra Puggioni, Francesco De Micco, and Fabio Vaiano. 2025. "Drug-Induced Epigenetic Alterations: A Set of Forensic Toxicological Fingerprints?" Genes 16, no. 10: 1129. https://doi.org/10.3390/genes16101129
APA StyleGrassi, S., Costantino, A., Dimitrova, A., Croce, E. B., Iasi, F., Puggioni, A., De Micco, F., & Vaiano, F. (2025). Drug-Induced Epigenetic Alterations: A Set of Forensic Toxicological Fingerprints? Genes, 16(10), 1129. https://doi.org/10.3390/genes16101129