Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study and Participants
2.2. Polymorphism Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Q.; Zhou, X.; Negrini, S.; Chen, N.; Yang, X.; Liang, J.; Sun, K. Scoliosis epidemiology is not similar all over the world: A study from a scoliosis school screening on Chongming Island (China). BMC Musculoskelet. Disord. 2016, 17, 303. [Google Scholar] [CrossRef] [PubMed]
- Hresko, M.T. Clinical practice. Idiopathic scoliosis in adolescents. N. Engl. J. Med. 2013, 368, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, M.R.; Senyurt, H.; Krauspe, R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 2013, 7, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; De Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Fadzan, M.; Bettany-Saltikov, J. Etiological Theories of Adolescent Idiopathic Scoliosis: Past and Present. Open Orthop. J. 2017, 11, 1466–1489. [Google Scholar] [CrossRef]
- Marya, S.; Tambe, A.D.; Millner, P.A.; Tsirikos, A.I. Adolescent idiopathic scoliosis: A review of aetiological theories of a multifactorial disease. Bone Jt. J. 2022, 104, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Jia, Q.; Guo, H.; Xu, J.; Bai, Y.; Yang, K.; Luo, F.; Zhang, Z.; Hou, T. Epidemiological survey of idiopathic scoliosis and sequence alignment analysis of multiple candidate genes. Int. Orthop. 2012, 36, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.O.; Thomsen, K.; Kyvik, K.O. Adolescent idiopathic scoliosis in twins: A population-based survey. Spine 2007, 32, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Minami, S.; Kitahara, H.; Otsuka, Y.; Nakata, Y.; Takaso, M.; Moriya, H. Idiopathic scoliosis in twins studied by DNA fingerprinting: The incidence and type of scoliosis. J. Bone Jt. Surg. Br. 1998, 80, 212–217. [Google Scholar] [CrossRef]
- Kesling, K.L.; Reinker, K.A. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine 1997, 22, 2009–2014; discussion 15. [Google Scholar] [CrossRef]
- Simony, A.; Carreon, L.Y.; Karen, H.; Kyvik, K.O.; Andersen, M.O. Concordance Rates of Adolescent Idiopathic Scoliosis in a Danish Twin Population. Spine 2016, 41, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Kou, I.; Takahashi, Y.; Johnson, T.A.; Takahashi, A.; Guo, L.; Dai, J.; Qiu, X.; Sharma, S.; Takimoto, A.; Ogura, Y.; et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat. Genet. 2013, 45, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Buchan, J.G.; Alvarado, D.M.; Haller, G.E.; Cruchaga, C.; Harms, M.B.; Zhang, T.; Willing, M.C.; Grange, D.K.; Braverman, A.C.; Miller, N.H.; et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum. Mol. Genet. 2014, 23, 5271–5282. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Kou, I.; Miura, S.; Takahashi, A.; Xu, L.; Takeda, K.; Takahashi, Y.; Kono, K.; Kawakami, N.; Uno, K.; et al. A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am. J. Hum. Genet. 2015, 97, 337–342. [Google Scholar] [CrossRef]
- Sharma, S.; Londono, D.; Eckalbar, W.L.; Gao, X.; Zhang, D.; Mauldin, K.; Kou, I.; Takahashi, A.; Matsumoto, M.; Kamiya, N.; et al. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat. Commun. 2015, 6, 6452. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Tang, N.L.S.; Xu, L.; Qin, X.; Mao, S.; Song, Y.; Liu, L.; Li, F.; Liu, P.; Yi, L.; et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat. Commun. 2015, 6, 8355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xu, L.; Tang, N.L.-S.; Qin, X.; Feng, Z.; Sun, W.; Zhu, W.; Shi, B.; Liu, P.; Mao, S.; et al. Genome-wide association study identifies novel susceptible loci and highlights Wnt/beta-catenin pathway in the development of adolescent idiopathic scoliosis. Hum. Mol. Genet. 2017, 26, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Kou, I.; Otomo, N.; Takeda, K.; Momozawa, Y.; Lu, H.F.; Kubo, M.; Kamatani, Y.; Ogura, Y.; Takahashi, Y.; Nakajima, M.; et al. Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat. Commun. 2019, 10, 3685. [Google Scholar] [CrossRef] [PubMed]
- De Azevedo, G.B.L.; Perini, J.A.; Araújo Junior, A.E.P.; Moliterno, L.A.M.; Andrande, R.M.; Guimarães, J.A.M.; Defino, H.L.A. Association of FBN1 polymorphism with susceptibility of adolescent idiopathic scoliosis: A case-control study. BMC Musculoskelet. Disord. 2022, 23, 430. [Google Scholar] [CrossRef]
- Nada, D.; Julien, C.; Samuels, M.E.; Moreau, A. A Replication Study for Association of LBX1 Locus with Adolescent Idiopathic Scoliosis in French-Canadian Population. Spine 2018, 43, 172–178. [Google Scholar] [CrossRef]
- Barrios, C.; Cortés, S.; Pérez-Encinas, C.; Escrivá, M.D.; Benet, I.; Burgos, J.; Hevia, E.; Pizá, G.; Domenech, P. Anthropometry and body composition profile of girls with nonsurgically treated adolescent idiopathic scoliosis. Spine 2011, 36, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Diarbakerli, E.; Savvides, P.; Wihlborg, A.; Abbott, A.; Bergström, I.; Gerdhem, P. Bone health in adolescents with idiopathic scoliosis. Bone Jt. J. 2020, 102, 268–272. [Google Scholar] [CrossRef]
- Sadat-Ali, M.; Al-Othman, A.; Bubshait, D.; Al-Dakheel, D. Does scoliosis causes low bone mass? A comparative study between siblings. Eur. Spine J. 2008, 17, 944–947. [Google Scholar] [CrossRef]
- Tarrant, R.C.; Queally, J.M.; Moore, D.P.; Kiely, P.J. Prevalence and impact of low body mass index on outcomes in patients with adolescent idiopathic scoliosis: A systematic review. Eur. J. Clin. Nutr. 2018, 72, 1463–1484. [Google Scholar] [CrossRef]
- Liu, Z.; Tam, E.M.; Sun, G.Q.; Lam, T.P.; Zhu, Z.Z.; Sun, X.; Lee, K.M.; Ng, T.B.; Qiu, Y.; Cheng, J.C.; et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: An important new finding. Spine 2012, 37, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Matusik, E.; Durmala, J.; Olszanecka-Glinianowicz, M.; Chudek, J.; Matusik, P. Association between Bone Turnover Markers, Leptin, and Nutritional Status in Girls with Adolescent Idiopathic Scoliosis (AIS). Nutrients 2020, 12, 2657. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Sun, X.; Qiu, X.; Li, W.; Zhu, Z.; Zhu, F.; Wang, B.; Yu, Y.; Qian, B. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine 2007, 32, 2703–2710. [Google Scholar] [CrossRef]
- Tam, E.M.S.; Liu, Z.; Lam, T.-P.; Ting, T.; Cheung, G.; Ng, B.K.W.; Lee, S.K.M.; Qiu, Y.; Cheng, J.C.Y. Lower Muscle Mass and Body Fat in Adolescent Idiopathic Scoliosis Are Associated With Abnormal Leptin Bioavailability. Spine 2016, 41, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, C.; Hu, W.; Hu, F.; Liu, W.; Zhang, X. Disordered leptin and ghrelin bioactivity in adolescent idiopathic scoliosis (AIS): A systematic review and meta-analysis. J. Orthop. Surg. Res. 2020, 15, 502. [Google Scholar] [CrossRef]
- Doyle, M.E.; Egan, J.M. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 2007, 113, 546–593. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Daniilopoulou, I.; Vlachou, E.; Lambrou, G.I.; Ntikoudi, A.; Dokoutsidou, E.; Fasoi, G.; Govina, O.; Kavga, A.; Tsartsalis, A.N. The Impact of GLP1 Agonists on Bone Metabolism: A Systematic Review. Medicina 2022, 58, 224. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, Y.; Matsui, K.; Egashira, T.; Nozaki, O.; Ishizuka, T.; Kanatsuka, A. Five missense mutations in glucagon-like peptide 1 receptor gene in Japanese population. Diabetes Res. Clin. Pract. 2004, 66, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wessel, J.; Chu, A.Y.; Willems, S.M.; Wang, S.; Yaghootkar, H.; Brody, J.A.; Dauriz, M.; Hivert, M.-F.; Raghavan, S.; Lipovich, L.; et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun. 2015, 6, 5897. [Google Scholar] [CrossRef]
- Moreau, C.; Vézina, H.; Labuda, D. Founder effects and genetic variability in Quebec. Med. Sci. 2007, 23, 1008–1013. [Google Scholar]
- Laberge, A.; Michaud, J.; Richter, A.; Lemyre, E.; Lambert, M.; Brais, B.; Mitchell, G. Population history and its impact on medical genetics in Quebec. Clin. Genet. 2005, 68, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Yotova, V.; Labuda, D.; Zietkiewicz, E.; Gehl, D.; Lovell, A.; Lefebvre, J.-F.; Bourgeois, S.; Lemieux-Blanchard, É.; Labuda, M.; Vézina, H.; et al. Anatomy of a founder effect: Myotonic dystrophy in Northeastern Quebec. Hum. Genet. 2005, 117, 177–187. [Google Scholar] [CrossRef]
- Li, W.; Li, P.; Li, R.; Yu, Z.; Sun, X.; Ji, G.; Yang, X.; Zhu, L.; Zhu, S. GLP1R Single-Nucleotide Polymorphisms rs3765467 and rs10305492 Affect beta Cell Insulin Secretory Capacity and Apoptosis Through GLP-1. DNA Cell Biol. 2020, 39, 1700–1710. [Google Scholar] [CrossRef]
- Dorsey-Trevino, E.G.; Kaur, V.; Mercader, J.M.; Florez, J.C.; Leong, A. Association of GLP1R Polymorphisms with the Incretin Response. J. Clin. Endocrinol. Metab. 2022, 107, 2580–2588. [Google Scholar] [CrossRef]
- El Eid, L.; Reynolds, C.A.; Tomas, A.; Jones, B. Biased agonism and polymorphic variation at the GLP-1 receptor: Implications for the development of personalised therapeutics. Pharmacol. Res. 2022, 184, 106411. [Google Scholar] [CrossRef]
- Lagou, V.; Jiang, L.; Ulrich, A.; Zudina, L.; González, K.S.G.; Balkhiyarova, Z.; Faggian, A.; Chen, S.; Todorov, P.; Sharapov, S.; et al. Random glucose GWAS in 493,036 individuals provides insights into diabetes pathophysiology, complications and treatment stratification. MedRxiv 2021. [Google Scholar] [CrossRef]
- Wang, J.; Yang, D.; Cheng, X.; Yang, L.; Wang, Z.; Dai, A.; Cai, X.; Zhang, C.; Yuliantie, E.; Liu, Q.; et al. Allosteric modulators enhancing GLP-1 binding to GLP-1R via a transmembrane site. ACS Chem. Biol. 2021, 16, 2444–2452. [Google Scholar] [CrossRef]
- Akoume, M.Y.; Elbakry, M.; Veillette, M.; Franco, A.; Nada, D.; Labelle, H.; Mac-Thiong, J.M.; Grimard, G.; Ouellet, J.; Parent, S.; et al. A Differential Hypofunctionality of Galphai Proteins Occurs in Adolescent Idiopathic Scoliosis and Correlates with the Risk of Disease Progression. Sci. Rep. 2019, 9, 10074. [Google Scholar] [CrossRef]
All | French Canadian Cohort | Italian Cohort | |||||||
---|---|---|---|---|---|---|---|---|---|
Controls | AIS | Controls | AIS | Controls | AIS | ||||
(n = 313) | (n = 712) | p-Value | (n = 95) | (n = 541) | p-Value | (n = 218) | (n = 171) | p-Value | |
Sex | <0.0001 a | <0.0001 a | <0.0001 a | ||||||
number of boys | 162.8 | 106.8 | 52.2 | 81.1 | 111.2 | 25.6 | |||
number of girls | 150.2 | 605.2 | 42.8 | 459.9 | 106.8 | 145.4 | |||
Age (years), mean ± SD | |||||||||
At diagnosis | 11.6 ± 2.2 | 13.8 ± 2.0 | <0.0001 b | 13.0 ± 2.2 | 13.8 ± 2.0 | 0.0003 b | 11.0 ± 1.9 | 13.7 ± 2.2 | <0.0001 b |
At last follow-up visit | - | NA | - | 15.2 ± 2.0 | - | - | NA | - | |
Cobb angle (degrees), mean ± SD | - | 31.1 ± 17.8 | - | - | 29.5 ± 16.9 | - | - | 35.9 ± 19.7 | - |
GLP1R | Controls | AIS | Low/Moderate Cases a | Severe Cases b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
rs10305492 | (n = 313) | (n = 712) | OR c | (n = 531) | OR d | (n = 181) | OR e | OR f | ||
n (%) | n (%) | χ2 | p-Value | (95% CI) | n (%) | (95% CI) | n (%) | (95% CI) | (95% CI) | |
Genotype | ||||||||||
G/G | 309 (98.7) | 682 (95.8) | 5.84 | 0.016 | Reference | 508 (95.7) | Reference | 174 (96.1) | Reference | Reference |
A/G | 4 (1.3) | 30 (4.2) | 3.40 (1.24–9.06) | 23 (4.3) | 3.50 (1.30–9.46) | 7 (3.9) | 3.11 (0.98–9.58) | 0.89 (0.19–2.02) | ||
Allele | ||||||||||
G | 622 (99.4) | 1394 (97.9) | 5.74 | 0.017 | Reference | 1039 (97.9) | Reference | 355 (98.1) | Reference | Reference |
A | 4 (0.6) | 30 (2.1) | 3.35 (1.24–8.90) | 23 (2.1) | 3.44 (1.29–9.29) | 7 (1.9) | 3.07 (0.98–9.42) | 0.89 (0.38–1.98) |
GLP1R | Controls | Non-Progressive Scoliosis a | Progressive Scoliosis a | |||
---|---|---|---|---|---|---|
rs10305492 | (n = 95) | (n = 354) | OR b | (n = 187) | OR c | OR d |
n (%) | n (%) | (95% CI) | n (%) | (95% CI) | (95% CI) | |
Genotype | ||||||
G/G | 93 (97.9) | 337 (95.2) | Reference | 176 (94.1) | Reference | Reference |
A/G | 2 (2.1) | 17 (4.8) | 2.35 (0.57–10.40) | 11 (5.9) | 2.91 (0.69–13.34) | 1.24 (0.57–2.70) |
Allele | ||||||
G | 188 (98.9) | 691 (97.6) | Reference | 352 (97.0) | Reference | Reference |
A | 2 (1.1) | 17 (2.4) | 2.31 (0.58–10.19) | 11 (3.0) | 2.94 (0.71–13.39) | 1.27 (0.59–2.68) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Normand, É.; Franco, A.; Parent, S.; Lombardi, G.; Brayda-Bruno, M.; Colombini, A.; Moreau, A.; Marcil, V. Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts. Genes 2024, 15, 481. https://doi.org/10.3390/genes15040481
Normand É, Franco A, Parent S, Lombardi G, Brayda-Bruno M, Colombini A, Moreau A, Marcil V. Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts. Genes. 2024; 15(4):481. https://doi.org/10.3390/genes15040481
Chicago/Turabian StyleNormand, Émilie, Anita Franco, Stefan Parent, Giovanni Lombardi, Marco Brayda-Bruno, Alessandra Colombini, Alain Moreau, and Valérie Marcil. 2024. "Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts" Genes 15, no. 4: 481. https://doi.org/10.3390/genes15040481
APA StyleNormand, É., Franco, A., Parent, S., Lombardi, G., Brayda-Bruno, M., Colombini, A., Moreau, A., & Marcil, V. (2024). Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts. Genes, 15(4), 481. https://doi.org/10.3390/genes15040481