Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designing Gastritis Patient Recruitment Protocol
2.2. DNA Preparation and HLA Typing
2.3. Measurement Method of Serum Anti-CagA IgA
2.4. Histopathological Evaluation of Metaplasia in Gastric Mucosa Biopsy Samples
2.5. Gastroendoscopy Procedure
2.6. Prediction of CagA Peptide Presentation by DRB1 Alleles of Interest
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics, Histopathological Evaluation, and Gastroendoscopy Diagnosis of the Study Population
3.2. Allele Frequency of the Study Population and Allele Distribution among the Anti-CagA IgA-Positive and H. pylori-Positive Groups
3.3. Genotype Analysis of HLA-DRB1 *03:01 and *11:04 Polymorphisms with H. pylori and Anti-CagA IgA
3.4. Predicting the Relative Capacity of HLA-DRB1*03:01 and HLA-DRB1*11:04 to Present CagA Peptides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatakeyama, M. Structure and function of Helicobacter pylori CagA, the first identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 196–219. [Google Scholar] [CrossRef]
- Miller, A.K.; Williams, S.M. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun. 2021, 22, 218–226. [Google Scholar] [CrossRef]
- Dellon, E.S.; Peery, A.F.; Shaheen, N.J.; Morgan, D.R.; Hurrell, J.M.; Lash, R.H.; Genta, R.M. Inverse association of esophageal eosinophilia with Helicobacter pylori based on analysis of a US pathology database. Gastroenterology 2011, 141, 1586–1592. [Google Scholar] [CrossRef]
- Reibman, J.; Marmor, M.; Filner, J.; Fernandez-Beros, M.E.; Rogers, L.; Perez-Perez, G.I.; Blaser, M.J. Asthma is inversely associated with Helicobacter pylori status in an urban population. PLoS ONE 2008, 3, e4060. [Google Scholar] [CrossRef]
- Axelrad, J.E.; Cadwell, K.H.; Colombel, J.F.; Shah, S.C. Systematic review: Gastrointestinal infection and incident inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 51, 1222–1232. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Etolhi, G.; Dawodu, J.B.; Gemmell, C.G.; Russell, R.I. Relationship between mucosal levels of Helicobacter pylori-specific IgA, interleukin-8 and gastric inflammation. Clin. Sci. 1999, 96, 409–414. [Google Scholar] [CrossRef]
- Censini, S.; Lange, C.; Xiang, Z.; Crabtree, J.E.; Ghiara, P.; Borodovsky, M.; Rappuoli, R.; Covacci, A. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease associated virulence factors. Proc. Natl. Acad. Sci. USA 1996, 93, 14648–14653. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Liver flukes and Helicobacter pylori. IARC Monogr. Eval. Carcinog. Risks Hum. 1994, 61, 1–241. [Google Scholar]
- Parsonnet, J.; Friedman, G.D.; Vandersteen, D.P.; Chang, Y.; Vogelman, J.H.; Orentreich, N.; Sibley, R.K. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 1991, 325, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.; Stemmermann, G.N.; Chyou, P.H.; Kato, I.; Perez-Perez, G.I.; Blaser, M.J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 1991, 325, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.; Newell, D.G.; Fullerton, F.; Yarnell, J.W.; Stacey, A.R.; Wald, N.; Sitas, F. Association between infection with Helicobacter pylori and risk of gastric cancer: Evidence from a prospective investigation. Br. Med. J. 1991, 302, 1302–1305. [Google Scholar] [CrossRef]
- Hsu, P.I.; Lai, K.H.; Hsu, P.N.; Lo, G.H.; Yu, H.C.; Chen, W.C.; Tsay, F.W.; Lin, H.C.; Tseng, H.H.; Ger, L.P.; et al. Helicobacter pylori infection and the risk of gastric malignancy. Am. J. Gastroenterol. 2007, 102, 725–730. [Google Scholar] [CrossRef]
- Tatematsu, M.; Nozaki, K.; Tsukamoto, T. Helicobacter pylori infection and gastric carcinogenesis in animal models. Gastric Cancer 2003, 6, 1–7. [Google Scholar] [CrossRef]
- Zheng, Q.; Chen, X.Y.; Shi, Y.; Xiao, S.D. Development of gastric adenocarcinoma in Mongolian gerbils after long-term infection with Helicobacter pylori. J. Gastroenterol. Hepatol. 2004, 19, 1192–1198. [Google Scholar] [CrossRef]
- Bhat, N.; Gaensbauer, J.; Peek, R.M.; Bloch, K.; Tham, K.T.; Blaser, M.J.; Perez-Perez, G. Local and systemic immune and inflammatory responses to Helicobacter pylori strains. Clin. Diagn. Lab. Immunol. 2005, 12, 1393–1400. [Google Scholar] [CrossRef]
- Peek, R.M., Jr.; Miller, G.G.; Tham, K.T.; Perez-Perez, G.I.; Zhao, X.; Atherton, J.C.; Blaser, M.J. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab. Investig. 1995, 73, 760–770. [Google Scholar]
- Maeda, S.; Kanai, F.; Ogura, K.; Yoshida, H.; Ikenoue, T.; Takahashi, M.; Kawabe, T.; Shiratori, Y.; Omata, M. High seropositivity of anti-CagA antibody in Helicobacter pylori infected patients irrelevant to peptic ulcers and normal mucosa in Japan. Dig. Dis. Sci. 1997, 42, 1841–1847. [Google Scholar] [CrossRef]
- Hayashi, S.; Sugiyama, T.; Yokota, K.; Isogai, H.; Isogai, E.; Oguma, K.; Asaka, M.; Fujii, N.; Hirai, Y. Analysis of immunoglobulin A antibodies to Helicobacter pylori in serum and gastric juice in relation to mucosal inflammation. Clin. Diagn. Lab. Immunol. 1998, 5, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Ermak, T.H.; Giannasca, P.J.; Nichols, R.; Myers, G.A.; Nedrud, J.; Weltzin, R.; Lee, C.K.; Kleanthous, H.; Monath, T.P. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II restricted responses. J. Exp. Med. 1998, 188, 2277–2288. [Google Scholar] [CrossRef] [PubMed]
- Pappo, J.; Torrey, D.; Castriotta, L.; Savinainen, A.; Kabok, Z.; Ibraghimov, A. Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infect. Immun. 1999, 67, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Choo, S.Y. The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Med. J. 2007, 48, 11–23. [Google Scholar] [CrossRef]
- Falk, K.; Rötzschke, O.; Stevanović, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef]
- Ning, Y.; Ye, J.; Wen, J.; Wu, D.; Chen, Z.; Lin, Y.; Hu, B.; Luo, M.; Luo, J.; Ning, L.; et al. Identification of Two Lpp20 CD4+ T Cell Epitopes in Helicobacter pylori-Infected Subjects. Front. Microbiol. 2018, 9, 884. [Google Scholar] [CrossRef]
- Hu, J.; Chen, L.; Yang, W.; Li, B.; Sun, H.; Wei, S.; He, Y.; Zhao, Z.; Yang, S.; Zou, Q.; et al. Systematic identification of immunodominant CD4+ T cell responses to HpaA in Helicobacter pylori infected individuals. Oncotarget 2016, 7, 54380–54391. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian Safaei, H.; Faghri, J.; Moghim, S.; Nasr Esfahani, B.; Fazeli, H.; Makvandi, M.; Adib, M.; Rashidi, N. Production of IFN-γ and IL-4 against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori from T-Cells. Jundishapur J. Microbiol. 2015, 8, e24697. [Google Scholar] [CrossRef]
- Yang, W.C.; Chen, L.; Li, H.B.; Li, B.; Hu, J.; Zhang, J.Y.; Yang, S.M.; Zou, Q.M.; Guo, H.; Wu, C. Identification of two novel immunodominant UreB CD4+ T cell epitopes in Helicobacter pylori infected subjects. Vaccine 2013, 31, 1204–1209. [Google Scholar] [CrossRef]
- Chen, L.; Li, B.; Yang, W.C.; He, J.L.; Li, N.Y.; Hu, J.; He, Y.F.; Yu, S.; Zhao, Z.; Luo, P.; et al. A dominant CD4+ T-cell response to Helicobacter pylori reduces risk for gastric disease in humans. Gastroenterology 2013, 144, 591–600. [Google Scholar] [CrossRef] [PubMed]
- James, E.A.; Moustakas, A.K.; Bui, J.; Nouv, R.; Papadopoulos, G.K.; Kwok, W.W. The binding of antigenic peptides to HLA-DR is influenced by interactions between pocket 6 and pocket 9. J. Immunol. 2009, 183, 3249–3258. [Google Scholar] [CrossRef]
- Chow, I.T.; James, E.A.; Gates, T.J.; Tan, V.; Moustakas, A.K.; Papadopoulos, G.K.; Kwok, W.W. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 is predicted by their structural motifs and correlates with disease risk. J. Immunol. 2013, 190, 4516–4524. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020, 19, 2304–2315. [Google Scholar] [CrossRef]
- Tavera, G.; Morgan, D.R.; Williams, S.M. Tipping the Scale toward Gastric Disease: A Host-Pathogen Genomic Mismatch? Curr. Genet. Med. Rep. 2018, 6, 199–207. [Google Scholar] [CrossRef]
- Kodaman, N.; Pazos, A.; Schneider, B.G.; Piazuelo, M.B.; Mera, R.; Sobota, R.S.; Sicinschi, L.A.; Shaffer, C.L.; Romero-Gallo, J.; de Sablet, T.; et al. Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc. Natl. Acad. Sci. USA 2014, 111, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.; Sen, N.; Küpelioğlu, A.A.; Simşek, I. Detection of H. pylori infection by ELISA and Western blot techniques and evaluation of anti CagA seropositivity in adult Turkish dyspeptic patients. World J. Gastroenterol. 2006, 12, 5375–5378. [Google Scholar] [CrossRef] [PubMed]
- Garza-González, E.; Bosques-Padilla, F.J.; Tijerina-Menchaca, R.; Flores-Gutiérrez, J.P.; Maldonado-Garza, H.J.; Pérez-Pérez, G.I. Comparision of endoscopy-based and serum-based methods for the diagnosis of Helicobacter pylori. Can. J. Gastroenterol. 2003, 17, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Kist, M.; Strobel, S.; Kirchner, T.; Dammann, H.G. Impact of ELISA and immunoblot as diagnostic tools one year after eradication of Helicobacter pylori in a multicentre treatment study. FEMS Immunol. Med. Microbiol. 1999, 24, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Kunstmann, E.; Hardt, C.; Crabtree, J.E.; Suerbaum, S.; Epplen, J.T. Helicobacter pylori infection: CagA-specific antibodies are associated with clinical outcome, but not with HLA-class II polymorphisms of the host. Int. J. Med. Microbiol. 2003, 292, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Scepanovic, P.; Alanio, C.; Hammer, C.; Hodel, F.; Bergstedt, J.; Patin, E.; Thorball, C.W.; Chaturvedi, N.; Charbit, B.; Abel, L.; et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med. 2018, 10, 59. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Liu, Y.; Han, J.; Ma, X.; Luo, Y.; Liang, Y.; Zhang, L.; Hu, Y. Association between HLA-Ⅱ gene polymorphism and Helicobacter pylori infection in Asian and European population: A meta-analysis. Microb. Pathog. 2015, 82, 15–26. [Google Scholar] [CrossRef]
- Kunstmann, E.; Hardt, C.; Treitz, H.; Suerbaum, S.; Faller, G.; Peitz, U.; Schmiegel, W.; Epplen, J.T. In the European population HLA-class II genes are not associated with Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 2002, 14, 49–53. [Google Scholar] [CrossRef]
- Kocak, B.T.; Saribas, S.; Demiryas, S.; Yilmaz, E.; Uysal, O.; Kepil, N.; Demirci, M.; Dinc, H.O.; Akkus, S.; Gülergün, R.; et al. Association between polymorphisms in HLA-A, HLA-B, HLA-DR, and DQ genes from gastric cancer and duodenal ulcer patients and cagL among cagA-positive Helicobacter pylori strains: The first study in a Turkish population. Infect. Genet. Evol. 2020, 82, 104288. [Google Scholar] [CrossRef] [PubMed]
- Gough, S.C.; Simmonds, M.J. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Jamieson, S.E.; Burgner, D. HLA and infectious diseases. Clin. Microbiol. Rev. 2009, 22, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Klitz, W.; Maiers, M.; Spellman, S.; Baxter-Lowe, L.A.; Schmeckpeper, B.; Williams, T.M.; Fernandez-Viña, M. New HLA haplotype frequency reference standards: High-resolution and large sample typing of HLA DR-DQ haplotypes in a sample of European Americans. Tissue Antigens 2003, 62, 296–307. [Google Scholar] [CrossRef]
- Colakogullari, M.; Karatas, L.; Tatar, Z. Investigating associations between HLA DQA1~DQB1 haplotypes, H. pylori infection, metaplasia, and anti-CagA IgA seropositivity in a Turkish gastritis cohort. Immunogenetics 2024, 76, 1–13. [Google Scholar] [CrossRef]
- Fakhre-Yaseri, H.; Baradaran-Moghaddam, A.; Shekaraby, M.; Baradaran, H.R.; Soltani-Arabshahi, S.K. Evaluating the relationship between serum immunoglobulin G (IgG) and A (IgA) anti-CagA antibody and the cagA gene in patients with dyspepsia. Iran. J. Microbiol. 2017, 9, 97–102. [Google Scholar]
Parameters | Study Group (n = 170) | |
---|---|---|
Age (years) | Mean ± S.D. | 37.2 ± 11.5 |
Median (min–max) | 36.0 (16–69) | |
Sex | Female | 91 (53.5%) |
Male | 79 (46.5%) | |
Stomach endoscopy diagnosis | Normal mucosa | 18 (10.6%) |
Gastritis subgroups | ||
-erythematous | 121 (71.2%) | |
-erosive | 16 (9.4%) | |
-pangastritis | 15 (8.8%) | |
H. pylori, histopathology | Negative | 46 (27.1%) (anti-CagA IgA positive 6/46; 13.0%) |
Positive | 124 (72.9%) (anti-CagA IgA positive 34/124; 27.4%) | |
anti-CagA IgA, serum | Negative | 130 (76.8%) |
Positive | 40 (23.2%) |
HLA DRB1 Alleles | Total Allele Frequency (%) 2N = 340 | Anti-Cag A IgA Negative 2N = 260 (76.4%) AF (%) | Anti-Cag A IgA Positive 2N = 80 (23.6%) AF (%) | H. pylori Negative 2N = 92 (27.1%) AF (%) | H. pylori Positive 2N = 248 (72.9%) AF (%) |
---|---|---|---|---|---|
*01:01 | 8 (2.4) | 5 (1.92) | 3 (3.75) | 2 (2.17) | 6 (2.42) |
*01:02 | 8 (2.4) | 6(2.31) | 2 (2.50) | 2 (2.17) | 6 (2.42) |
*03:01 | 31 (9.1) | 17(6.54) | 14 (17.50) | 5 (5.43) | 26 (10.48) |
Pearson χ2 p | b 8.871 0.030 | n.s. | |||
*03:06 | 1 (0.3) | 1 (0.38) | 0 (0) | 0 (0) | 1 (0.40) |
*04:01 | 6 (1.8) | 4 (1.54) | 2 (2.50) | 0 (0.00) | 6 (2.42) |
*04:02 | 8 (2.4) | 6 (2.31) | 2 (2.50) | 4 (4.35) | 4 (1.61) |
*04:03 | 14 (4.1) | 9 (3.46) | 5 (6.25) | 5 (5.43) | 9 (3.63) |
*04:04 | 5 (1.5) | 5 (1.92) | 0 (0.00) | 3 (3.26) | 2 (0.81) |
*04:05 | 1 (0.3) | 0 (0.00) | 1 (1.25) | 0 (0.00) | 1 (0.40) |
*04:07 | 3 (0.9) | 3 (1.15) | 0 (0.00) | 2 (2.17) | 1 (0.40) |
*04:08 | 2 (0.6) | 1 (0.38) | 1 (1.25) | 1 (1.09) | 1 (0.40) |
*04:13 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*07:01 | 29 (8.5) | 18 (6.90) | 11 (13.75) | 11 (11.96) | 18 (7.26) |
Pearson χ2 p | b 3.655 0.056 | n.s. | |||
*08:03 | 7 (2.1) | 5 (1.92) | 2 (2.50) | 2 (2.17) | 5 (2.02) |
*09:01 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*10:01 | 10 (2.9) | 7 (2.69) | 3 (3.75) | 2 (2.17) | 8 (3.23) |
*10:22 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*11:01 | 36 (10.6) | 29 (11.15) | 7 (8.75) | 8 (8.70) | 28 (11.29) |
*11:03 | 3 (0.9) | 1 (0.38) | 2 (2.50) | 1 (1.09) | 2 (0.81) |
*11:04 | 51 (15.0) | 44 (16.92) | 7 (8.75) | 8 (8.70) | 43 (17.34) |
Pearson χ2 p | b 3.206 0.073 | a 3.932 0.047 | |||
*11:46 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*11:62 | 3 (0.9) | 3 (1.15) | 0 (0.00) | 1 (1.09) | 2 (0.81) |
*12:01 | 6 (1.8) | 4 (1.54) | 2 (2.50) | 3 (3.26) | 3 (1.21) |
*12:14 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 1 (1.09) | 0 (0.00) |
*13:01 | 19 (5.6) | 17 (6.54) | 2 (2.50) | 4 (4.35) | 15 (6.05) |
*13:02 | 7 (2.1) | 6 (2.31) | 1 (1.25) | 4 (4.35) | 3 (1.21) |
*13:03 | 5 (1.5) | 5 (1.92) | 0 (0.00) | 1 (1.09) | 4 (1.61) |
*13:05 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*13:143 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*14:01 | 13 (3.8) | 11 (4.23) | 2 (2.50) | 4 (4.35) | 9 (3.63) |
*14:05 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*14:54 | 8 (2.4) | 6 (2.31) | 2 (2.50) | 3 (3.26) | 5 (2.02) |
*14:172 | 1 (0.3) | 0 (0.00) | 1 (1.25) | 0 (0.00) | 1 (0.40) |
*15:01 | 18 (5.3) | 16 (6.15) | 2 (2.50) | 9 (9.78) | 9 (3.63) |
*15:02 | 13 (3.8) | 12 (4.62) | 1 (1.25) | 2 (2.17) | 11 (4.44) |
*15:03 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 1 (1.09) | 0 (0.00) |
*16:01 | 11 (3.2) | 7 (2.69) | 4 (5.00) | 2 (2.17) | 9 (3.63) |
*16:02 | 2 (0.6) | 2 (0.77) | 0 (0.00) | 1 (1.09) | 1 (0.40) |
*16:09 | 1 (0.3) | 1 (0.38) | 0 (0.00) | 0 (0.00) | 1 (0.40) |
*16:25 | 1 (0.3) | 0 (0.00) | 1 (1.25) | 0 (0.00) | 1 (0.40) |
H. pylori, Gastric Mucosa | Anti-CagA IgA, Serum | |||
---|---|---|---|---|
HLA DRB1 Genotypes | Negative N = 46 (27.1%) | Positive N = 124 (72.9%) | Negative N = 130 (76.5%) | Positive N = 40 (23.5%) |
DRB1*03:01−/DRB1*03:01− | 41 (29.5%) | 98 (70.5%) | 113 (81.3%) | 26 (18.7%) |
DRB1*03:01+/DRB1*03:01−+ | 5 (16.1%) | 26 (83.9%) | 17 (54.8%) | 14 (45.2%) |
Pearson χ2 2-tailed p Odds ratio (OR) | a 2.294 0.129 2.175 (0.781–6.058) | b 9.860 0.002 3.579 (1.567–8.174) | ||
DRB1*11:04−/DRB1*11:04− | 39 (31.7%) | 84 (68.3%) | 89 (72.4%) | 34 (27.6%) |
DRB1*11:04+/DRB1*11:04−+ | 7 (14.9%) | 40 (85.1%) | 41 (87.2%) | 6 (12.8%) |
Pearson χ2 2-tailed p Odds ratio (OR) | a 4.871 0.027 2.653 (1.091–6.449) | b 4.183 0.041 0.383 (0.149–0.984) |
Dependent: Anti-CagA IgA, Serum | B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for Exp(B) | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Step 1 | a DRB1*03:01 | 1.200 | 0.438 | 7.524 | 1 | 0.006 | 3.322 | 1.409 | 7.832 |
b DRB1*11:04 | −1.130 | 0.500 | 5.108 | 1 | 0.024 | 0.323 | 0.121 | 0.861 | |
H. pylori | 0.984 | 0.499 | 3.883 | 1 | 0.049 | 2.675 | 1.005 | 7.120 | |
Constant | −1.958 | 0.455 | 18.493 | 1 | 0.000 | 0.141 | |||
Dependent: H. pylori, Gastric Mucosa | B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for Exp(B) | ||
Lower | Upper | ||||||||
Step 1 a | a DRB1*03:01 | 0.816 | 0.528 | 2.389 | 1 | 0.122 | 2.262 | 0.804 | 6.369 |
b DRB1*11:04 | 0.999 | 0.456 | 4.808 | 1 | 0.028 | 2.717 | 1.112 | 6.638 | |
Constant | 0.635 | 0.208 | 9.317 | 1 | 0.002 | 1.887 |
HLA Allele | Nominal Motifs (RBA > 0.1) | Moderate Motifs (RBA > 0.33) | Strong Motifs (RBA > 0.99) | IEDB Nominal (Adj Rank < 50) | IEDB Moderate (Adj Rank < 10) | IEDB Strong (Adj Rank < 3) |
---|---|---|---|---|---|---|
DRB1*03:01 | 191 | 109 | 32 | 434 | 70 | 13 |
DRB1*11:04 | 158 | 78 | 19 | 416 | 58 | 0 |
p-value | 0.056 | 0.018 | 0.066 | 0.37 | 0.30 | 0.0002 |
HLA-DRB1 Alleles | Clinical Feature | Pos § | 15mers of CagA (Total Number = 1170) | Peptide Core | Score EL | % Rank EL |
---|---|---|---|---|---|---|
*11:04 | -Anti-CagA IgA, in serum decreased -H. pylori, in gastric mucosa, increased | 382 | EDQLIGLKQALSQKE | LIGLKQALS | 0.844626 | 0.65 |
103 | GSSIKSFQKFGTQRY | IKSFQKFGT | 0.844022 | 0.65 | ||
102 | TGSSIKSFQKFGTQR | IKSFQKFGT | 0.830930 | 0.72 | ||
381 | KEDQLIGLKQALSQK | LIGLKQALS | 0.781132 | 1.01 | ||
444 | GNDHIAFVSKKDKKH | IAFVSKKDK | 0.781062 | 1.01 | ||
775 | IKDVIINQKITDKVD | VIINQKITD | 0.777171 | 1.03 | ||
656 | KDKIFAIINEEAGKE | IFAIINEEA | 0.775886 | 1.04 | ||
688 | SDKLENINKNLKDFD | LENINKNLK | 0.756505 | 1.15 | ||
445 | NDHIAFVSKKDKKHL | IAFVSKKDK | 0.734347 | 1.31 | ||
1003 | KQKIDNLNQAVSEAK | IDNLNQAVS | 0.723402 | 1.38 | ||
1066 | HIRINSNVKNGAINE | INSNVKNGA | 0.709862 | 1.50 | ||
774 | SIKDVIINQKITDKV | VIINQKITD | 0.694615 | 1.59 | ||
893 | NEPIYAKVNKKKTGE | YAKVNKKKT | 0.688278 | 1.63 | ||
655 | QKDKIFAIINEEAGK | IFAIINEEA | 0.686480 | 1.65 | ||
687 | LSDKLENINKNLKDF | LENINKNLK | 0.673650 | 1.74 | ||
467 | NGELSYTLKDYGKKQ | LSYTLKDYG | 0.673148 | 1.74 | ||
657 | DKIFAIINEEAGKEA | FAIINEEAG | 0.666546 | 1.80 | ||
1065 | SHIRINSNVKNGAIN | INSNVKNGA | 0.657271 | 1.88 | ||
894 | EPIYAKVNKKKTGEV | YAKVNKKKT | 0.652250 | 1.92 | ||
101 | DTGSSIKSFQKFGTQ | IKSFQKFGT | 0.650966 | 1.93 | ||
443 | LGNDHIAFVSKKDKK | IAFVSKKDK | 0.648912 | 1.94 | ||
776 | KDVIINQKITDKVDN | VIINQKITD | 0.642663 | 1.99 | ||
*03:01 | -Anti-CagA IgA, in serum increased -H. pylori, in gastric mucosa, not changed | 173 | GNQIQSDQKFMGVFD | IQSDQKFMG | 0.976363 | 0.02 |
172 | IGNQIQSDQKFMGVF | IQSDQKFMG | 0.968244 | 0.03 | ||
171 | IIGNQIQSDQKFMGV | IQSDQKFMG | 0.962267 | 0.05 | ||
174 | NQIQSDQKFMGVFDE | IQSDQKFMG | 0.941053 | 0.11 | ||
27 | VAFLKVDNAVASFDP | LKVDNAVAS | 0.872526 | 0.35 | ||
170 | IIIGNQIQSDQKFMG | IQSDQKFMG | 0.862490 | 0.38 | ||
428 | EIEDFQKDSKAYLDA | FQKDSKAYL | 0.840500 | 0.44 | ||
26 | QVAFLKVDNAVASFD | LKVDNAVAS | 0.819071 | 0.50 | ||
429 | IEDFQKDSKAYLDAL | FQKDSKAYL | 0.816953 | 0.51 | ||
36 | VASFDPDQKPIVDKN | FDPDQKPIV | 0.795296 | 0.60 | ||
427 | NEIEDFQKDSKAYLD | FQKDSKAYL | 0.777056 | 0.67 | ||
35 | AVASFDPDQKPIVDK | FDPDQKPIV | 0.763118 | 0.72 | ||
28 | AFLKVDNAVASFDPD | LKVDNAVAS | 0.740305 | 0.82 | ||
430 | EDFQKDSKAYLDALG | FQKDSKAYL | 0.701666 | 0.98 | ||
175 | QIQSDQKFMGVFDES | IQSDQKFMG | 0.697817 | 0.99 | ||
37 | ASFDPDQKPIVDKND | FDPDQKPIV | 0.673853 | 1.11 | ||
25 | LQVAFLKVDNAVASF | LKVDNAVAS | 0.662941 | 1.16 | ||
34 | NAVASFDPDQKPIVD | FDPDQKPIV | 0.645142 | 1.24 | ||
1093 | WLKLVNDKIVAHNVG | LVNDKIVAH | 0.606726 | 1.43 | ||
775 | IKDVIINQKITDKVD | VIINQKITD | 0.551265 | 1.73 | ||
494 | QGNLKHDGVMFVNYS | LKHDGVMFV | 0.540771 | 1.78 | ||
1092 | EWLKLVNDKIVAHNV | LVNDKIVAH | 0.528630 | 1.85 | ||
553 | TSYIRRDLEDKLWAK | IRRDLEDKL | 0.514902 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karataş, L.; Tatar, Z.; James, E.A.; Colakogullari, M. Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes 2024, 15, 339. https://doi.org/10.3390/genes15030339
Karataş L, Tatar Z, James EA, Colakogullari M. Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes. 2024; 15(3):339. https://doi.org/10.3390/genes15030339
Chicago/Turabian StyleKarataş, Lokman, Zeynep Tatar, Eddie A. James, and Mukaddes Colakogullari. 2024. "Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort" Genes 15, no. 3: 339. https://doi.org/10.3390/genes15030339
APA StyleKarataş, L., Tatar, Z., James, E. A., & Colakogullari, M. (2024). Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes, 15(3), 339. https://doi.org/10.3390/genes15030339