Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders
Abstract
1. Introduction
2. Biochemical Investigations
3. Genetic Investigations
4. Clinical and Neuropsychology Assessments
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Guarantor
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision; American psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Salari, N.; Rasoulpoor, S.; Rasoulpoor, S.; Shohaimi, S.; Jafarpour, S.; Abdoli, N.; Khaledi-Paveh, B.; Mohammadi, M. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022, 48, 112. [Google Scholar] [CrossRef]
- Kilmer, M.; Boykin, A.A. Analysis of the 2000 to 2018 autism and developmental disabilities monitoring network surveillance reports: Implications for primary care clinicians. J. Pediatr. Nurs. 2022, 65, 55–68. [Google Scholar] [CrossRef]
- Bhandari, R.; Paliwal, J.K.; Kuhad, A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. Adv. Neurobiol. 2020, 24, 97–141. [Google Scholar] [CrossRef]
- Srikantha, P.; Mohajeri, M.H. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int. J. Mol. Sci. 2019, 20, 2115. [Google Scholar] [CrossRef]
- Cheng, N.; Rho, J.M.; Masino, S.A. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front. Mol. Neurosci. 2017, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Shen, L.; Khan, N.U.; Zhang, X.; Chen, L.; Zhao, H.; Luo, P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J. Trace Elem. Med. Biol. 2021, 67, 126782. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Lane, A.L.; Werner, B.A.; McLees, S.E.; Fletcher, T.S.; Frye, R.E. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol. Diagn. Ther. 2022, 26, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.; Alhazmi, S.; Alburae, N.; Bahieldin, A. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. Int. J. Mol. Sci. 2022, 23, 1363. [Google Scholar] [CrossRef]
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin. Microbiol. Rev. 2022, 35, e0033820. [Google Scholar] [CrossRef]
- Ristori, M.V.; Quagliariello, A.; Reddel, S.; Ianiro, G.; Vicari, S.; Gasbarrini, A.; Putignani, L. Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. Nutrients 2019, 11, 2812. [Google Scholar] [CrossRef]
- Applegarth, D.A.; Toone, J.R.; Lowry, R.B. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 2000, 105, e10. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.; Green, A.; Preece, M.A.; Burton, H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch. Dis. Child. 2006, 91, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Pampols, T. Inherited metabolic rare disease. Adv. Exp. Med. Biol. 2010, 686, 397–431. [Google Scholar] [CrossRef]
- Žigman, T.; Petković Ramadža, D.; Šimić, G.; Barić, I. Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention. Front. Neurosci. 2021, 15, 673600. [Google Scholar] [CrossRef]
- Simons, A.; Eyskens, F.; Glazemakers, I.; Van West, D. Can psychiatric childhood disorders be due to inborn errors of metabolism? Eur. Child Adolesc. Psychiatry 2017, 26, 143–154. [Google Scholar] [CrossRef]
- Frye, R.E.; Rossignol, D.A. Metabolic disorders and abnormalities associated with autism spectrum disorder. J. Pediatr. Biochem. 2012, 2, 181–191. [Google Scholar] [CrossRef]
- Caglayan, A.O. Genetic causes of syndromic and non-syndromic autism. Dev. Med. Child. Neurol. 2010, 52, 130–138. [Google Scholar] [CrossRef]
- Zafeiriou, D.I.; Ververi, A.; Dafoulis, V.; Kalyva, E.; Vargiami, E. Autism spectrum disorders: The quest for genetic syndromes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2013, 162, 327–366. [Google Scholar] [CrossRef]
- Fernandez, B.A.; Scherer, S.W. Syndromic autism spectrum disorders: Moving from a clinically defined to a molecularly defined approach. Dialogues Clin. Neurosci. 2017, 19, 353. [Google Scholar] [CrossRef]
- Genovese, A.; Butler, M.G. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int. J. Mol. Sci. 2020, 21, 4726. [Google Scholar] [CrossRef]
- Schiff, M.; Benoist, J.F.; Aïssaoui, S.; Boespflug-Tanguy, O.; Mouren, M.C.; de Baulny, H.O.; Delorme, R. Should metabolic diseases be systematically screened in nonsyndromic autism spectrum disorders? PLoS ONE 2011, 6, e21932. [Google Scholar] [CrossRef]
- Campistol, J.; Diez-Juan, M.; Callejon, L.; Fernandez-De Miguel, A.; Casado, M.; Garcia Cazorla, A.; Lozano, R.; Artuch, R. Inborn error metabolic screening in individuals with nonsyndromic autism spectrum disorders. Dev. Med. Child Neurol. 2016, 58, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Spilioti, M.; Evangeliou, A.E.; Tramma, D.; Theodoridou, Z.; Metaxas, S.; Michailidi, E.; Bonti, E.; Frysira, H.; Haidopoulou, A.; Asprangathou, D.; et al. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD). Front. Hum. Neurosci. 2013, 7, 858. [Google Scholar] [CrossRef] [PubMed]
- Ghaziuddin, M.; Al-Owain, M. Autism spectrum disorders and inborn errors of metabolism: An update. Pediatr. Neurol. 2013, 49, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Saudubray, J.M.; Garcia-Cazorla, A. An overview of inborn errors of metabolism affecting the brain: From neurodevelopment to neurodegenerative disorders. Dialogues Clin. Neurosci. 2018, 20, 301–325. [Google Scholar] [CrossRef]
- Celestino-Soper, P.B.; Violante, S.; Crawford, E.L.; Luo, R.; Lionel, A.C.; Delaby, E.; Cai, G.; Sadikovic, B.; Lee, K.; Lo, C.; et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc. Natl. Acad. Sci. USA 2012, 109, 7974–7981. [Google Scholar] [CrossRef]
- Novarino, G.; El-Fishawy, P.; Kayserili, H.; Meguid, N.A.; Scott, E.M.; Schroth, J.; Silhavy, J.L.; Kara, M.; Khalil, R.O.; Ben-Omran, T.; et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 2012, 338, 394–397. [Google Scholar] [CrossRef]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Trost, B.; Thiruvahindrapuram, B.; Chan, A.J.S.; Engchuan, W.; Higginbotham, E.J.; Howe, J.L.; Loureiro, L.O.; Reuter, M.S.; Roshandel, D.; Whitney, J.; et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 2022, 185, 4409–4427.e18. [Google Scholar] [CrossRef]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. Meta-analysis and multidisciplinary consensus statement: Exomesequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef]
- Hyman, S.L.; Levy, S.E.; Myers, S.M.; Kuo, D.Z.; Apkon, S.; Davidson, L.F.; Ellerbeck, K.A.; Foster, J.E.A.; Noritz, G.H.; Leppert, M.O.; et al. Identification, Evaluation, and Management of Children With Autism Spectrum Disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef]
- Yu, T.W.; Chahrour, M.H.; Coulter, M.E.; Jiralerspong, S.; Okamura-Ikeda, K.; Ataman, B.; Schmitz-Abe, K.; Harmin, D.A.; Adli, M.; Malik, A.N.; et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013, 77, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med. 2021, 51, 2260–2273. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, A.; Rodriguez-Fontenla, C.; Carracedo, A. De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis. Front. Genet. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Baieli, S.; Pavone, L.; Meli, C.; Fiumara, A.; Coleman, M. Autism and phenylketonuria. J. Autism Dev. Disord. 2003, 33, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Khemir, S.; Halayem, S.; Azzouz, H.; Siala, H.; Ferchichi, M.; Guedria, A.; Bedoui, A.; Abdelhak, S.; Messaoud, T.; Tebib, N.; et al. Autism in Phenylketonuria Patients: From Clinical Presentation to Molecular Defects. J. Child Neurol. 2016, 31, 843–849. [Google Scholar] [CrossRef]
- Cakar, N.E.; Yilmazbas, P. Cases of inborn errors of metabolism diagnosed in children with autism. Ideggyogy Sz. 2021, 74, 67–72. [Google Scholar] [CrossRef]
- Yoldaş, T.; Gürbüz, B.B.; Akar, H.T.; Özmert, E.N.; Coşkun, T. Autism spectrum disorder in patients with inherited metabolic disorders-a large sample from a tertiary center. Turk. J. Pediatr. 2021, 63, 767–779. [Google Scholar] [CrossRef]
- El Fotoh, W.; El Naby, S.A.A.; Abd El Hady, N.M.S. Autism Spectrum Disorders: The Association with Inherited Metabolic Disorders and Some Trace Elements. A Retrospective Study. CNS Neurol. Disord. Drug. Targets 2019, 18, 413–420. [Google Scholar] [CrossRef]
- Shi, H.; Wang, J.; Zhao, Z. Analysis of inborn error metabolism in 277 children with autism spectrum disorders from Hainan. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019, 36, 870–873. [Google Scholar] [CrossRef]
- Kiykim, E.; Zeybek, C.A.; Zubarioglu, T.; Cansever, S.; Yalcinkaya, C.; Soyucen, E.; Aydin, A. Inherited metabolic disorders in Turkish patients with autism spectrum disorders. Autism Res. 2016, 9, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Tărlungeanu, D.C.; Deliu, E.; Dotter, C.P.; Kara, M.; Janiesch, P.C.; Scalise, M.; Galluccio, M.; Tesulov, M.; Morelli, E.; Sonmez, F.M.; et al. Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell 2016, 167, 1481–1494.e18. [Google Scholar] [CrossRef] [PubMed]
- Cascio, L.; Chen, C.F.; Pauly, R.; Srikanth, S.; Jones, K.; Skinner, C.D.; Stevenson, R.E.; Schwartz, C.E.; Boccuto, L. Abnormalities in the genes that encode Large Amino Acid Transporters increase the risk of Autism Spectrum Disorder. Mol. Genet. Genom. Med. 2020, 8, e1036. [Google Scholar] [CrossRef]
- Schmidtke, K.; Endres, W.; Roscher, A.; Ibel, H.; Herschkowitz, N.; Bachmann, C.; Plöchl, E.; Hadorn, H.B. Hartnup syndrome, progressive encephalopathy and allo-albuminaemia. Eur. J. Pediatr. 1992, 151, 899–903. [Google Scholar] [CrossRef]
- Pillai, N.R.; Yubero, D.; Shayota, B.J.; Oyarzábal, A.; Ghosh, R.; Sun, Q.; Azamian, M.S.; Arjona, C.; Brandi, N.; Palau, F.; et al. Loss of CLTRN function produces a neuropsychiatric disorder and a biochemical phenotype that mimics Hartnup disease. Am. J. Med. Genet. A 2019, 179, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Nava, C.; Rupp, J.; Boissel, J.P.; Mignot, C.; Rastetter, A.; Amiet, C.; Jacquette, A.; Dupuits, C.; Bouteiller, D.; Keren, B.; et al. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders. Amino Acids 2015, 47, 2647–2658. [Google Scholar] [CrossRef]
- Namavar, Y.; Duineveld, D.J.; Both, G.I.A.; Fiksinski, A.M.; Vorstman, J.A.S.; Verhoeven-Duif, N.M.; Zinkstok, J.R. Psychiatric phenotypes associated with hyperprolinemia: A systematic review. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2021, 186, 289–317. [Google Scholar] [CrossRef]
- Moravej, H.; Inaloo, S.; Nahid, S.; Mazloumi, S.; Nemati, H.; Moosavian, T.; Nasiri, J.; Ghasemi, F.; Alaei, M.R.; Dalili, S.; et al. Inborn Errors of Metabolism Associated With Autism Among Children: A Multicenter Study from Iran. Indian Pediatr. 2023, 60, 193–196. [Google Scholar]
- Kido, J.; Matsumoto, S.; Ito, T.; Hirose, S.; Fukui, K.; Kojima-Ishii, K.; Mushimoto, Y.; Yoshida, S.; Ishige, M.; Sakai, N.; et al. Physical, cognitive, and social status of patients with urea cycle disorders in Japan. Mol. Genet. Metab. Rep. 2021, 27, 100724. [Google Scholar] [CrossRef]
- Seminara, J.; Tuchman, M.; Krivitzky, L.; Krischer, J.; Lee, H.S.; Lemons, C.; Baumgartner, M.; Cederbaum, S.; Diaz, G.A.; Feigenbaum, A.; et al. Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol. Genet. Metab. 2010, 100, S97–S105. [Google Scholar] [CrossRef]
- Witters, P.; Debbold, E.; Crivelly, K.; Vande Kerckhove, K.; Corthouts, K.; Debbold, B.; Andersson, H.; Vannieuwenborg, L.; Geuens, S.; Baumgartner, M.; et al. Autism in patients with propionic acidemia. Mol. Genet. Metab. 2016, 119, 317–321. [Google Scholar] [CrossRef] [PubMed]
- de la Bâtie, C.D.; Barbier, V.; Roda, C.; Brassier, A.; Arnoux, J.B.; Valayannopoulos, V.; Guemann, A.S.; Pontoizeau, C.; Gobin, S.; Habarou, F.; et al. Autism spectrum disorders in propionic acidemia patients. J. Inherit. Metab. Dis. 2018, 41, 623–629. [Google Scholar] [CrossRef]
- Márquez-Caraveo, M.E.; Ibarra-González, I.; Rodríguez-Valentín, R.; Ramírez-García, M.; Pérez-Barrón, V.; Lazcano-Ponce, E.; Vela-Amieva, M. Brief Report: Delayed Diagnosis of Treatable Inborn Errors of Metabolism in Children with Autism and Other Neurodevelopmental Disorders. J. Autism Dev. Disord. 2021, 51, 2124–2131. [Google Scholar] [CrossRef] [PubMed]
- Tylki-Szymanska, A.; Gradowska, W.; Sommer, A.; Heer, A.; Walter, M.; Reinhard, C.; Omran, H.; Sass, J.O.; Jurecka, A. Aminoacylase 1 deficiency associated with autistic behavior. J. Inherit. Metab. Dis. 2010, 33, S211–S214. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriou, D.I.; Ververi, A.; Salomons, G.S.; Vargiami, E.; Haas, D.; Papadopoulou, V.; Kontopoulos, E.; Jakobs, C. L-2-Hydroxyglutaric aciduria presenting with severe autistic features. Brain Dev. 2008, 30, 305–307. [Google Scholar] [CrossRef]
- Boris, M.; Goldblatt, A.; Galanko, J.; James, S.J. Association of MTHFR gene variants with autism. J. Am. Phys. Surg. 2004, 9, 106–108. [Google Scholar]
- Tisato, V.; Silva, J.A.; Longo, G.; Gallo, I.; Singh, A.V.; Milani, D.; Gemmati, D. Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes 2021, 12, 782. [Google Scholar] [CrossRef]
- Huijmans, J.G.M.; Schot, R.; de Klerk, J.B.C.; Williams, M.; de Coo, R.F.M.; Duran, M.; Verheijen, F.W.; van Slegtenhorst, M.; Mancini, G.M.S. Molybdenum cofactor deficiency: Identification of a patient with homozygote mutation in the MOCS3 gene. Am. J. Med. Genet. A 2017, 173, 1601–1606. [Google Scholar] [CrossRef]
- Lionel, A.C.; Vaags, A.K.; Sato, D.; Gazzellone, M.J.; Mitchell, E.B.; Chen, H.Y.; Costain, G.; Walker, S.; Egger, G.; Thiruvahindrapuram, B.; et al. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum. Mol. Genet. 2013, 22, 2055–2066. [Google Scholar] [CrossRef]
- Nashabat, M.; Maegawa, G.; Nissen, P.H.; Nexo, E.; Al-Shamrani, H.; Al-Owain, M.; Alfadhel, M. Long-term Outcome of 4 Patients With Transcobalamin Deficiency Caused by 2 Novel TCN2 Mutations. J. Pediatr. Hematol. Oncol. 2017, 39, e430–e436. [Google Scholar] [CrossRef]
- Thurm, A.; Tierney, E.; Farmer, C.; Albert, P.; Joseph, L.; Swedo, S.; Bianconi, S.; Bukelis, I.; Wheeler, C.; Sarphare, G.; et al. Development, behavior, and biomarker characterization of Smith-Lemli-Opitz syndrome: An update. J. Neurodev. Disord. 2016, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Sikora, D.M.; Pettit-Kekel, K.; Penfield, J.; Merkens, L.S.; Steiner, R.D. The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. A 2006, 140, 1511–1518. [Google Scholar] [CrossRef]
- Stelten, B.M.L.; Bonnot, O.; Huidekoper, H.H.; van Spronsen, F.J.; van Hasselt, P.M.; Kluijtmans, L.A.J.; Wevers, R.A.; Verrips, A. Autism spectrum disorder: An early and frequent feature in cerebrotendinous xanthomatosis. J. Inherit. Metab. Dis. 2018, 41, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, C.; Wittkowski, A.; Hare, D.J. Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review. J. Autism Dev. Disord. 2017, 47, 3620–3633. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, Y.J.; Kim, E.J.; Lee, M.J. Overlap of autism spectrum disorder and glucose transporter 1 deficiency syndrome associated with a heterozygous deletion at the 1p34.2 region. J. Neurol. Sci. 2015, 356, 212–214. [Google Scholar] [CrossRef] [PubMed]
- İnci, A.; Özaslan, A.; Okur, İ.; Biberoğlu, G.; Güney, E.; Ezgü, F.S.; Tümer, L.; İşeri, E. Autism: Screening of inborn errors of metabolism and unexpected results. Autism Res. 2021, 14, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.K.; Levy, R.J. Evidence of Mitochondrial Dysfunction in Autism: Biochemical Links, Genetic-Based Associations, and Non-Energy-Related Mechanisms. Oxid. Med. Cell. Longev. 2017, 2017, 4314025. [Google Scholar] [CrossRef]
- Connolly, B.S.; Feigenbaum, A.S.J.; Robinson, B.H.; Dipchand, A.I.; Simon, D.K.; Tarnopolsky, M.A. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation. Biochem. Biophys. Res. Commun. 2010, 402, 443–447. [Google Scholar] [CrossRef]
- Knerr, I.; Gibson, K.M.; Jakobs, C.; Pearl, P.L. Neuropsychiatric morbidity in adolescent and adult succinic semialdehyde dehydrogenase deficiency patients. CNS Spectr. 2008, 13, 598–605. [Google Scholar] [CrossRef]
- Jurecka, A.; Zikanova, M.; Kmoch, S.; Tylki-Szymańska, A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015, 38, 231–242. [Google Scholar] [CrossRef]
- Stockler, S.; Schutz, P.W.; Salomons, G.S. Cerebral creatine deficiency syndromes: Clinical aspects, treatment and pathophysiology. Subcell. Biochem. 2007, 46, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Comeaux, M.S.; Wang, J.; Wang, G.; Kleppe, S.; Zhang, V.W.; Schmitt, E.S.; Craigen, W.J.; Renaud, D.; Sun, Q.; Wong, L.J. Biochemical, molecular, and clinical diagnoses of patients with cerebral creatine deficiency syndromes. Mol. Genet. Metab. 2013, 109, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Póo-Argüelles, P.; Arias, A.; Vilaseca, M.A.; Ribes, A.; Artuch, R.; Sans-Fito, A.; Moreno, A.; Jakobs, C.; Salomons, G. X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J. Inherit. Metab. Dis. 2006, 29, 220–223. [Google Scholar] [CrossRef]
- Mak, C.M.; Lee, H.C.; Chan, A.Y.; Lam, C.W. Inborn errors of metabolism and expanded newborn screening: Review and update. Crit. Rev. Clin. Lab. Sci. 2013, 50, 142–162. [Google Scholar] [CrossRef]
- Therrell, B.L., Jr.; Padilla, C.D. Newborn screening in the developing countries. Curr. Opin. Pediatr. 2018, 30, 734–739. [Google Scholar] [CrossRef]
- Delhey, L.M.; Tippett, M.; Rose, S.; Bennuri, S.C.; Slattery, J.C.; Melnyk, S.; James, S.J.; Frye, R.E. Comparison of Treatment for Metabolic Disorders Associated with Autism:Reanalysis of Three Clinical Trials. Front. Neurosci. 2018, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin. Pediatr. Neurol. 2020, 35, 100829. [Google Scholar] [CrossRef]
- Niyazov, D.M.; Kahler, S.G.; Frye, R.E. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment. Mol. Syndromol. 2016, 7, 122–137. [Google Scholar] [CrossRef]
- Sun, J.M.; Kurtzberg, J. Cell therapy for diverse central nervous system disorders: Inherited metabolic diseases and autism. Pediatr. Res. 2018, 83, 364–371. [Google Scholar] [CrossRef]
- Paprocka, J.; Kaminiów, K.; Kozak, S.; Sztuba, K.; Emich-Widera, E. Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder-A Systematic Review. Brain Sci. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Schaefer, G.B.; Mendelsohn, N.J. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. 2013, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021, 11, 15. [Google Scholar] [CrossRef]
- Guo, B.Q.; Ding, S.B.; Li, H.B. Blood biomarker levels of methylation capacity in autism spectrum disorder: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2020, 141, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Indika, N.R.; Deutz, N.E.P.; Engelen, M.; Peiris, H.; Wijetunge, S.; Perera, R. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis. Biochimie 2021, 184, 143–157. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Ferrara, F.; Messano, N.; Cordone, V.; Schiavone, M.L.; Cervellati, F.; Woodby, B.; Cervellati, C.; Hayek, J.; Valacchi, G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J. 2020, 34, 6521–6538. [Google Scholar] [CrossRef]
- James, S.J.; Melnyk, S.; Jernigan, S.; Cleves, M.A.; Halsted, C.H.; Wong, D.H.; Cutler, P.; Bock, K.; Boris, M.; Bradstreet, J.J.; et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 947–956. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1141. [Google Scholar] [CrossRef]
- Deth, R.; Muratore, C.; Benzecry, J.; Power-Charnitsky, V.A.; Waly, M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology 2008, 29, 190–201. [Google Scholar] [CrossRef]
- Marotta, R.; Risoleo, M.C.; Messina, G.; Parisi, L.; Carotenuto, M.; Vetri, L.; Roccella, M. The Neurochemistry of Autism. Brain Sci. 2020, 10, 163. [Google Scholar] [CrossRef]
- Huang, Z.X.; Chen, Y.; Guo, H.R.; Chen, G.F. Systematic Review and Bioinformatic Analysis of microRNA Expression in Autism Spectrum Disorder Identifies Pathways Associated With Cancer, Metabolism, Cell Signaling, and Cell Adhesion. Front. Psychiatry 2021, 12, 630876. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Toscano, C.V.A.; Barros, L.; Lima, A.B.; Nunes, T.; Carvalho, H.M.; Gaspar, J.M. Neuroinflammation in autism spectrum disorders: Exercise as a “pharmacological” tool. Neurosci. Biobehav. Rev. 2021, 129, 63–74. [Google Scholar] [CrossRef]
- McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics 2014, 133, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Granich, J.; Lin, A.; Hunt, A.; Wray, J.; Dass, A.; Whitehouse, A.J. Obesity and associated factors in youth with an autism spectrum disorder. Autism 2016, 20, 916–926. [Google Scholar] [CrossRef]
- Asato, M.R.; Goldstein, A.C.; Schiff, M. Autism and inborn errors of metabolism: How much is enough? Dev. Med. Child. Neurol. 2015, 57, 788–789. [Google Scholar] [CrossRef]
- Glinton, K.E.; Elsea, S.H. Untargeted Metabolomics for Autism Spectrum Disorders: Current Status and Future Directions. Front. Psychiatry 2019, 10, 647. [Google Scholar] [CrossRef]
- Grunert, S.C.; Stucki, M.; Morscher, R.J.; Suormala, T.; Burer, C.; Burda, P.; Christensen, E.; Ficicioglu, C.; Herwig, J.; Kolker, S.; et al. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet J. Rare Dis. 2012, 7, 31. [Google Scholar] [CrossRef]
- Herbert, M.; Goldstein, J.L.; Rehder, C.; Austin, S.; Kishnani, P.S.; Bali, D.S. Phosphorylase Kinase Deficiency. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993; Updated 2018. [Google Scholar]
- Wolf, B. Biotinidase Deficiency. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993; Updated 2022. [Google Scholar]
- Federico, A.; Gallus, G.N. Cerebrotendinous Xanthomatosis. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Szymanska, E.; Jezela-Stanek, A.; Bogdanska, A.; Rokicki, D.; Ehmke Vel Emczynska-Seliga, E.; Pajdowska, M.; Ciara, E.; Tylki-Szymanska, A. Long Term Follow-Up of Polish Patients with Isovaleric Aciduria. Clinical and Molecular Delineation of Isovaleric Aciduria. Diagnostics 2020, 10, 738. [Google Scholar] [CrossRef]
- Blau, N.; Blaskovics, M.E.; Gibson, K.M. (Eds.) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Karimzadeh, P.; Alaee, M.R.; Zarafshan, H. The Association between EEG Abnormality and Behavioral Disorder: Developmental Delay in Phenylketonuria. ISRN Pediatr. 2012, 2012, 976206. [Google Scholar] [CrossRef]
- Karimzadeh, P.; Ahmadabadi, F.; Jafari, N.; Shariatmadari, F.; Nemati, H.; Ahadi, A.; Karimi Dardashti, S.; Mirzarahimi, M.; Dastborhan, Z.; Zare Noghabi, J. Study on MRI changes in phenylketonuria in patients referred to mofid hospital/iran. Iran. J. Child. Neurol. 2014, 8, 53–56. [Google Scholar]
- Murayama, K.; Kimura, M.; Yamaguchi, S.; Shinka, T.; Kodama, K. Isolated 3-methylcrotonyl-CoA carboxylase deficiency in a 15-year-old girl. Brain Dev. 1997, 19, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.T.; Wilson, L.W.; Christensen, S. Conversion of a qualitative screening test to a quantitative measurement of urinary cystine and homocystine. Ann. Clin. Lab. Sci. 1992, 22, 18–29. [Google Scholar] [PubMed]
- Strauss, K.A.; Puffenberger, E.G.; Carson, V.J. Maple Syrup Urine Disease. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- Cleary, M.; Trefz, F.; Muntau, A.C.; Feillet, F.; van Spronsen, F.J.; Burlina, A.; Belanger-Quintana, A.; Gizewska, M.; Gasteyger, C.; Bettiol, E.; et al. Fluctuations in phenylalanine concentrations in phenylketonuria: A review of possible relationships with outcomes. Mol. Genet. Metab. 2013, 110, 418–423. [Google Scholar] [CrossRef]
- Rifai, N. (Ed.) Tietz Textbook of Laboratory Medicine; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Xia, T.; Gao, S.; Shu, C.; Wen, Y.; Yun, Y.; Tao, X.; Chen, W.; Zhang, F. Analysis of amino acids in human blood using UHPLC-MS/MS: Potential interferences of storage time and vacutainer tube in pre-analytical procedure. Clin. Biochem. 2016, 49, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.B. Clinical Genetic Aspects of ASD Spectrum Disorders. Int. J. Mol. Sci. 2016, 17, 180. [Google Scholar] [CrossRef]
- Firth, H.V.; Wright, C.F. The Deciphering Developmental Disorders (DDD) study. Dev. Med. Child. Neurol. 2011, 53, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Smedley, D.; Smith, K.R.; Martin, A.; Thomas, E.A.; McDonagh, E.M.; Cipriani, V.; Ellingford, J.M.; Arno, G.; Tucci, A.; Vandrovcova, J.; et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report. N. Engl. J. Med. 2021, 385, 1868–1880. [Google Scholar] [CrossRef] [PubMed]
- Polyak, A.; Rosenfeld, J.A.; Girirajan, S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015, 7, 94. [Google Scholar] [CrossRef]
- Jacquemont, S.; Coe, B.P.; Hersch, M.; Duyzend, M.H.; Krumm, N.; Bergmann, S.; Beckmann, J.S.; Rosenfeld, J.A.; Eichler, E.E. A higher mutational burden in females supports a “female protective model“ in neurodevelopmental disorders. Am. J. Hum. Genet. 2014, 94, 415–425. [Google Scholar] [CrossRef]
- Schaefer, G.B.; Mendelsohn, N.J. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet. Med. 2008, 10, 4–12. [Google Scholar] [CrossRef]
- Rabbani, B.; Tekin, M.; Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 2014, 59, 5–15. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The complete sequence of a human genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Wisniowiecka-Kowalnik, B.; Nowakowska, B.A. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J. Appl. Genet. 2019, 60, 37–47. [Google Scholar] [CrossRef]
- Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes. Brain Behav. 2018, 17, e12423. [Google Scholar] [CrossRef] [PubMed]
- Ladd-Acosta, C.; Hansen, K.D.; Briem, E.; Fallin, M.D.; Kaufmann, W.E.; Feinberg, A.P. Common DNA methylation alterations in multiple brain regions in autism. Mol. Psychiatry 2014, 19, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.E.; Gupta, S.; Moes, A.; West, A.B.; Arking, D.E. Exaggerated CpH methylation in the autism-affected brain. Mol. Autism 2017, 8, 6. [Google Scholar] [CrossRef]
- Duffney, L.J.; Valdez, P.; Tremblay, M.W.; Cao, X.; Montgomery, S.; McConkie-Rosell, A.; Jiang, Y.H. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 426–433. [Google Scholar] [CrossRef]
- Atladottir, H.O.; Henriksen, T.B.; Schendel, D.E.; Parner, E.T. Autism after infection, febrile episodes, and antibiotic use during pregnancy: An exploratory study. Pediatrics 2012, 130, e1447–e1454. [Google Scholar] [CrossRef]
- Fregeac, J.; Colleaux, L.; Nguyen, L.S. The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci. Biobehav. Rev. 2016, 71, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Manickam, K.; McClain, M.R.; Demmer, L.A.; Biswas, S.; Kearney, H.M.; Malinowski, J.; Massingham, L.J.; Miller, D.; Yu, T.W.; Hisama, F.M. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Rose, S.; Slattery, J.; MacFabe, D.F. Gastrointestinal dysfunction in autism spectrum disorder: The role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis. 2015, 26, 27458. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child. Neurol. 2012, 54, 397–406. [Google Scholar] [CrossRef]
- Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 2014, 44, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Tilford, J.M.; Payakachat, N.; Kuhlthau, K.A.; Pyne, J.M.; Kovacs, E.; Bellando, J.; Williams, D.K.; Brouwer, W.B.; Frye, R.E. Treatment for Sleep Problems in Children with Autism and Caregiver Spillover Effects. J. Autism Dev. Disord. 2015, 45, 3613–3623. [Google Scholar] [CrossRef] [PubMed]
- Kamp-Becker, I.; Albertowski, K.; Becker, J.; Ghahreman, M.; Langmann, A.; Mingebach, T.; Poustka, L.; Weber, L.; Schmidt, H.; Smidt, J.; et al. Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice. Eur. Child. Adolesc. Psychiatry 2018, 27, 1193–1207. [Google Scholar] [CrossRef]
- McCarty, P.; Frye, R.E. Early Detection and Diagnosis of Autism Spectrum Disorder: Why Is It So Difficult? Semin. Pediatr. Neurol. 2020, 35, 100831. [Google Scholar] [CrossRef]
- Dupuis, A.; Moon, M.J.; Brian, J.; Georgiades, S.; Levy, T.; Anagnostou, E.; Nicolson, R.; Schachar, R.; Crosbie, J. Concurrent Validity of the ABAS-II Questionnaire with the Vineland II Interview for Adaptive Behavior in a Pediatric ASD Sample: High Correspondence Despite Systematically Lower Scores. J. Autism Dev. Disord. 2021, 51, 1417–1427. [Google Scholar] [CrossRef]
- Mukherjee, S.B. Autism Spectrum Disorders—Diagnosis and Management. Indian J. Pediatr. 2017, 84, 307–314. [Google Scholar] [CrossRef]
- Hoytema van Konijnenburg, E.M.M.; Wortmann, S.B.; Koelewijn, M.J.; Tseng, L.A.; Houben, R.; Stöckler-Ipsiroglu, S.; Ferreira, C.R.; van Karnebeek, C.D.M. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J. Rare Dis. 2021, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Khokhlovich, E.; Martinez, S.; Kannel, B.; Edelson, S.M.; Vyshedskiy, A. Longitudinal Epidemiological Study of Autism Subgroups Using Autism Treatment Evaluation Checklist (ATEC) Score. J. Autism Dev. Disord. 2020, 50, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
ICIMD Category > ICIMD Subcategory | Inherited Metabolic Disease, Phenotype MIM Number [Ref.] | Gene (MIM Number)/Methods of Genetic Testing |
---|---|---|
Disorders of AA metabolism > phenylalanine and tyrosine metabolism | Phenylketonuria/phenylalanine hydroxylase deficiency, #261600 [24,33,36,37,38,39,40,41] | PAH (*612349); More than 740 PVs have been described. Sanger sequencing analysis is performed first (SNVs = 97–99%), followed by gene-targeted deletion/duplication analysis (1–3%). There are seven common PVs: c.1222C>T (6.7%), c.1066-11G>A (5.3%), c.194T>C (4.1%), c.782G>A (3.6%), c.842C>T (2.9%), c.1315+1G>A (2.8%), c.473G>A (2.7%). |
Disorders of AA metabolism > metabolism of sulfur-containing AAs and hydrogen sulfide | Homocystinuria/cystathionine β-synthase deficiency, #236200 [38,41,42] | CBS (*613381) Approximately 164 PVs have been described. Sanger sequencing analysis is performed first (SNVs = 95–98%), followed by gene-targeted deletion/duplication analysis (<5%). There are three common PVs: c.833T>C (25% pan-ethnic), c.919G>A (71% in Ireland), c.1006C>T (93% in Qatari). |
Disorders of AA metabolism > branched-chain AA metabolism | Branched-chain α-keto acid dehydrogenase kinase deficiency, #614923 [28] | BCKDK (*614901) Only eight PVs have been described (SNVs only). Sequence analysis is performed mainly. |
Maple syrup urine disease, #248600 [39] | DBT (*248610), BCKDHB (*248611), BCKDHA (*608348) Approximately 146 in BCKDHB, 123 in BCKDHA, and 108 in DBT of PVs have been described. Sequence analysis is performed first (SNVs 86–93%), followed by gene-targeted deletion/duplication analysis if only one or no pathogenic variant is found (7–14%). | |
Disorders of AA metabolism > AA transport | Large neutral AA transporter defects † [43,44] | SLC3A2 (*158070), SLC7A5 (*600182), SLC7A8 (*604235) Some variants are associated with ASD |
Hartnup disease, #234500 [45] | SLC6A19 (*608893) Only 18 PVs have been described (SNVs only). Sequence analysis is performed mainly. | |
CLTRN deficiency † [46] | CLTRN (*300631) A deletion spanning exons 1–3 of CLTRN has been reported | |
CAT-3 defects † [47] | SCL7A3 (*300443) Some variants are associated with ASD | |
Lysinuric protein intolerance, #222700 [23] | SLC7A7 (*603593) Over 90 PVs have been described. Sequence analysis is performed first (SNVs = 92–95%), followed by gene-targeted deletion/duplication analysis (15–20% in the non-Finnish population). | |
Disorders of AA metabolism > ornithine, proline, and hydroxyproline metabolism | Hyperprolinemia type I, #239500 and type II, #239510 [48] | PRODH (*606810) Only 11 PVs have been (only SNVs). Mainly sequence analysis is performed. ALDH4A1 (*606811) Only seven PVs have been described (SNVs only). Sequence analysis is performed mainly. |
Disorders of AA metabolism > glycine and serine metabolism | Serine deficiency disorders [23] Nonketotic hyperglycinemia due to aminomethyltransferase deficiency, #605899 [33] | AMT (*238310), GLDC (*238300) and GCSH (*238330) Approximately 363 in GLDC, 88 in AMT, and 4 in GCSH of PVs have been described. The commonest PV is GLDC (80%), AMT (20%), and GCSH (rare). Sequence analysis is performed first (SNVs = 80% and >99%, respectively), followed by gene-targeted deletion/duplication analysis if only one or no pathogenic variant is found (PV = 20% and unknown, respectively). |
Disorders of AA metabolism > UCDs and inherited hyperammonemias | ASLD, #207900 [23,49,50] CTLN1, #215700 [23,41,50] CPS1D, #237300 [24,51] OTCD, #311250 [23,50], unspecified UCDs [51] | ASL (*608310) ASS1 (*603470) CPS1 (*608307) OTC (*300461) Approximately 146 in ASL, 141 in ASS1, 223 in CPS1, and 426 in OTC of PVs have been described. SNVs are found in >90% of ASLD cases, 96% of CTLN1 cases, 80–90% of OTCD cases, and >99% of CPS1D cases. |
Disorders of AA metabolism > organic acidurias | Propionic acidemia, #606054 [41,52,53] | PCCA (*232000), PCCB (*232050) Approximately 181 in PCCA and 172 in PCCB of PVs have been described. Sequence analysis is performed first (SNVs = 78% and >97%, respectively), followed by gene-targeted deletion/duplication analysis if only one or no pathogenic variant is found (CNVs = 3–18%). There are three common PVs in PCCB: c.1218_1231del14ins12 (~30% of disease-causing alleles in individuals of northern European origin), c.1304T>C (associated with a milder form of propionic acidemia, accounts for 25% of mutated alleles in Japanese individuals) and c.1606A>G (homozygous in Amish and Mennonite communities, in individuals who can initially present with cardiomyopathy). |
3-methylcrotonyl-coA carboxylase deficiency, #210200 [41] | MCCC1 (*609010) Approximately 119 PVs have been described (SNVs > 99%). Sequence analysis is performed mainly. | |
Isovaleryl-coA dehydrogenase deficiency, #243500 [41,54] | IVD (*607036) Approximately 119 PVs have been described (SNVs = 98%). Sequence analysis is performed mainly. | |
2-methylbutyrylglycinuria, #610006 [49] | ACADSB (*600301) Only 16 PVs have been described (SNVs = 94%). Sequence analysis is performed mainly. | |
Glutaric aciduria type 1, #231670 [40] | GCDH (*608801) Approximately 223 PVs have been described. Sequence analysis is performed mainly (SNVs = 99%). | |
Disorders of AA metabolism > other disorders of AA metabolism | Aminoacylase 1 deficiency, #609924 [55] | ACY1 (*104620) Only 11 PVs have been described (SNV only). Sequence analysis is performed mainly. |
Disorders of metabolite repair/proofreading > mitochondrial metabolite repair | L-2-hydroxyglutaric aciduria, #236792 [56] | L2HGDH (*609584) Only 30 PVs have been described (SNVs > 99%). Sequence analysis is performed mainly. |
Combined malonic and methylmalonic aciduria, #614265 [49] | ACSF3 (*614245) More than 100 PVs have been described (SNVs only). Sequence analysis is performed mainly. | |
Disorders of fatty acid and ketone body metabolism > mitochondrial fatty acid oxidation | SCADD, #201470 [42,49] | ACADS (*606885) Approximately 70 PVs have been described (SNVs only). Sanger sequencing analysis is performed first. There are two common PVs: c.511C>Tandc.625G>A, which result in the SCADD biochemical abnormality when in trans with an apathogenic variant. Newborns homozygous for the c.625G>A variant have laboratory test values that overlap with those of affected newborns. |
Disorders of fatty acid and ketone body metabolism > carnitine metabolism | Primary carnitine deficiency, #212140 [41] | SLC22A5 (*603377) More than 189 PVs have been described (SNVs > 99). Sequence analysis is performed mainly. |
Epsilon-n-trimethyllysine hydroxylase deficiency, #300872 [27] | TMLHE (*300777) Only three PVs have been described (SNVs only). Sequence analysis is performed mainly. | |
Disorders of fatty acid and ketone bodies > ketone body metabolism | Mitochondrial acetoacetyl-CoA thiolase deficiency, #203750 [54] | ACAT1 (*607809) More than 150 PVs have been described (SNVs = 96%). Sequence analysis is performed mainly. |
Disorders of vitamin and cofactor metabolism > biotin metabolism | Biotinidase deficiency, #253260 [23] Partial biotinidase deficiency [39,42] | BTD (*609019) Approximately 145 PVs have been described (SNVs only). Sequence analysis is performed mainly. |
Disorders of vitamin and cofactor metabolism > folate metabolism | Low-activity variants of MTHFR [57,58] | MTHFR (*607093) Approximately 117 PVs have been described (SNVs only). Sequence analysis is performed mainly. Thermolabile low-activity c.677C>T variant is associated with ASD |
Folate receptor α deficiency, #613068 [23] | FOLR1 (*136430) Only 21 PVs have been described (SNVs only). Sequence analysis is performed mainly. | |
Low-activity variants of DHFR [58] | DHFR (*126060) Only two PVs have been described (SNVs only). Sequence analysis is performed mainly | |
Disorders of vitamin and cofactor metabolism > molybdenum cofactor metabolism | Molybdenum cofactor deficiency, #252150 [59,60] | MOCS1 (*603707) Only 32 PVs have been described (SNVs > 99%). Sequence analysis is performed mainly |
Disorders of vitamin and cofactor metabolism > cobalamin metabolism | Transcobalamin II deficiency, #275350 [61] | TCN2 (*613441) Only 29 PVs have been described (SNVs > 93%). Sequence analysis is performed mainly. |
Disorders of lipid metabolism > sterol biosynthesis | Smith–Lemli–Opitz syndrome, #270400 [62,63] | DHCR7 (*602858) More than 180 PVs have been described (SNVs = 96%). Sanger sequencing analysis is performed first. There are three common variants: c.964-1G>C (~28% of disease alleles; associated with a severe phenotype), c.452G>A (the most common in Central Europe; associated with a severe phenotype), c.278C>T (common in individuals of Mediterranean or Cuban ancestry; associated with a milder phenotype). |
Disorders of lipid metabolism > bile acid metabolism | Cerebrotendinous xanthomatosis, #213700 [64] | CYP27A1 (*606530) More than 140 PVs have been described (SNVs > 99%). Sanger sequencing analysis is performed first. There are three common variants: c.355delC (founder variant in Israeli Druze) and c.1183C>T. |
Disorders of complex molecule > glycosaminoglycan degradation | Sanfilippo syndrome, #252920 [23,38,39,42,65] | NAGLU (*609701) More than 200 PVs have been described (SNVs >90%). Sequence analysis is performed mainly. |
Morquio syndrome A, #253000 [39] | GALNS (*612222) Approximately 209 PVs have been described (SNVs > 94%). Sequence analysis is performed mainly. One of the most common PVs is c.1156C>T, accounting for 8.9%. | |
Disorders of carbohydrate metabolism > carbohydrate transmembrane transport and absorption | GLUT1 deficiency, #612126 [23,66] | SLC2A1 (*138140) More than 250 PVs have been described (SNVs = 84%). Sequence analysis is performed mainly. Several pathogenic hot spots have been detected: c.376C>T, c.377G>A, c.377G>T, c.766_767delAAinsGT, c.997C>T, c.884C>T, c.1402C>T. |
Disorders of carbohydrate metabolism > glycogen metabolism | Glycogen storage disease type IXa1, #306000 [67] | PHKA2 (*300798) More than 250 PVs have been described (SNVs = 94%). Sequence analysis is performed mainly. |
mtDNA-related disorders > disorders of mtDNA-encoded tRNA and rRNA > disorders of mtDNA-encoded oxidative phosphorylation proteins | MELAS syndrome, #540000 [68,69] | Several genes: MTTL1 (*590050), MTTQ (*590030), MTTH (*590040), MTTK (*590060), MTTC (*590020), MTTS1 (*590080), MTND1 (*516000), MTND5 (*516005), MTND6 (*516006), and MTTS2 (*590085) More than 90 PVs have been described (SNVs only). Proportion PVs are MTTL1 (>80%), MTND5 (<10%), and other genes (rare). Entire mitochondrial genome sequencing that includes MTTL1, MTND5, and other mtDNA genes is most effective in identifying the genetic cause of the condition. |
Neurotransmitter disorders > γ-aminobutyric acid neurotransmitter disorders | SSADH deficiency, #271980 [23,24,67,70] | ALDH5A1 (*610045) Approximately 108 PVs have been described (SNVs = 97%). Sequence analysis is performed mainly. |
Disorders of nucleobase, nucleotide, and nucleic acid metabolism > purine metabolism | ADSL deficiency, #103050 [23,71] Lesch–Nyhan syndrome, #300322 [23,24] | ADSL (*608222) Approximately 58 PVs have been described (SNVs only). Sequence analysis is performed mainly. HPRT1 (*308000) Approximately 87 PVs have been described. Sequence analysis is performed first (SNVs = 80%), followed by gene-targeted deletion/duplication analysis (CNVs = 20%). |
Disorders of nucleobase, nucleotide, and nucleic acid metabolism > pyrimidine metabolism | Dihydropyrimidine dehydrogenase deficiency, #274270 [23,67] | DPYD (*612779) Approximately 50 PVs have been described (SNVs only). Sequence analysis is performed mainly. |
Disorders of energy substrate metabolism > creatine metabolism | Cerebral creatine deficiency syndromes, #300352 [23,39,49,67,72,73,74] | SLC6A8 (*300036), GAMT (*601240), GATM (*602360) Approximately 100 in SLC6A8, 73 in GAMT and 17 in GATM of PVs have been described (SNVs 95–100%). The proportion of PVs is SLC6A8 (64–72%), GAMT (20–33%), and GATM (3–8%). Sequence analysis is performed mainly. |
Test Category | Investigation | Findings in Different IEM |
---|---|---|
Biochemical | Plasma glucose a | Hypoglycemia in 3-MCCD, GSD IX, PA, primary carnitine deficiency, SCADD |
Serum liver transaminases | Increased in GSD IX, lysinuric protein intolerance, primary carnitine deficiency, SCADD, urea cycle disorders, Wilson’s disease | |
Serum lactate dehydrogenase | Increased in lysinuric protein intolerance | |
Serum uric acid | Increased in Lesch–Nyhan syndrome | |
Decreased in molybdenum cofactor deficiency, Wilson’s disease | ||
Serum urea | Decreased in urea cycle disorders, lysinuric protein intolerance | |
Serum cholesterol | Decreased in Smith–Lemli–Opitz syndrome, CTX | |
Increased b in GSD IX, lysinuric protein intolerance | ||
Serum triglyceride | Increased in GSD IX, lysinuric protein intolerance | |
Acid-base status | Metabolic acidosis with high anion gap in biotinidase deficiency, MSUD, organic acidurias, primary carnitine deficiency, SCADD | |
Respiratory alkalosis in urea cycle disorders | ||
Serum/urine ketones | Increased in 3-MCCD, biotinidase deficiency, GSD IX, isovaleryl-CoA dehydrogenase deficiency, MSUD, PA | |
Haematological | WBC | Neutropenia in isovaleryl-CoA dehydrogenase deficiency, lysinuric protein intolerance, PA, Wilson’s disease |
Vacuolated lymphocytes on peripheral blood smear in Morquio syndrome A, Sanfilippo syndrome | ||
Platelets | Thrombocytopenia in 3-MCCD, isovaleryl-CoA dehydrogenase deficiency, lysinuric protein intolerance, PA | |
RBC | Anemia in isovaleryl-CoA dehydrogenase deficiency, lysinuric protein intolerance, PA, Wilson’s disease | |
Preliminary urine screening tests | Ferric chloride test c | Produce an intense blue-green in the presence of phenylpyruvate in PKU, MSUD |
Cyanide-nitroprusside test with silver nitrate c | Produce a magenta colour in the presence of homocysteine in homocystinuria | |
2,4-dinitrophenylhydrazine test d | Orange precipitate in MSUD | |
Sulfite test e | Positive in molybdenum cofactor deficiency | |
Glycosaminoglycan/creatinine ratio (DMMB assay) | Increased in mucopolysaccharidoses (e.g., Sanfilippo syndrome) | |
Dried blood spot (DBS) screening | Phenylalanine f | Increased in PKU |
Hypermethioninemia g | Increased in homocystinuria | |
Leucine + isoleucine | Increased (leucine + isoleucine) to alanine and phenylalanine in MSUD | |
Radiological studies | X-ray | Osteoporosis in PA |
Dysostosis multiplex in Morquio syndrome A | ||
MRI | White matter involvement with atrophic cortical changes in PKU, 3-MCCD, CTX, ADSL deficiency | |
EEG | Abnormalities in 3-MCCD, biotinidase deficiency, CTX, Folate receptor α deficiency, NKH, PKU |
Test Category | Investigation | Finding | IEM |
---|---|---|---|
Blood metabolites | Plasma lactate a | Increased | Biotinidase deficiency, GSD IX, PA |
Plasma ammonia b | Increased | 3-MCCD, biotinidase deficiency, PA, urea cycle disorders | |
Serum uric acid | Decreased | Molybdenum cofactor deficiency | |
Plasma free fatty acid c | Increased | SCADD | |
Serum sterol analysis (7-dehydrocholesterol, 8-dehydrocholesterol) | Increased | Smith–Lemli–Opitz syndrome | |
Serum copper (Cu) | Increased | Wilson’s disease | |
Serum ceruloplasmin d | Decreased | Wilson’s disease | |
Serum transcobalamin | Decreased | Transcobalamin II deficiency | |
Plasma succinylaminoimidazole carboxamide riboside, succinyladenosine | Increased | Adenylosuccinate lyase deficiency | |
Blood vitamin levels | Serum folate | Normal | Folate receptor α deficiency |
Serum cobalamin (Vit B12) | Normal | Transcobalamin II deficiency | |
Plasma AA e | Phenylalanine | Increased | PKU |
Methionine | Increased | Homocystinuria | |
Homocysteine | Increased | Homocystinuria, MTHFRD, transcobalamin II deficiency | |
Cysteine | Increased | Homocystinuria | |
Decreased | Molybdenum cofactor deficiency | ||
S-sulfocysteine | Increased | Molybdenum cofactor deficiency | |
Taurine | Increased | Molybdenum cofactor deficiency | |
Leucine, isoleucine, alloisoleucine | Increased | MSUD | |
Neutral AA (Alanine, serine, threonine, asparagine, glutamine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, histidine, citrulline) | Decreased | Hartnup disorder, collectrin deficiency | |
Proline | Increased | Hyperprolinemia | |
Glycine | Increased | NKH-AD, SSADH | |
Arginine | Decreased | Argininosuccinate lyase deficiency, citrullinemia, OTC deficiency | |
Citrulline | Increased | Citrullinemia, argininosuccinate lyase deficiency | |
Decreased | OCT deficiency | ||
Proline | Increased | Citrullinemia, OCT deficiency | |
Isovaleric acid | Increased | Isovaleryl-CoA dehydrogenase deficiency | |
CSF AA f | Phenylalanine | Increased | PKU |
Glycine | Increased | NKH-AD, SSADH | |
Homocysteine | Increased | Folate receptor α deficiency MTFRD | |
Methionine | Decreased | MTFRD | |
CSF analytes | Glucose, lactate | Decreased | GLUT1 deficiency |
Folate | Decreased | Folate receptor α deficiency | |
5-methyl THF | Decreased | MTHFRD | |
Succinylaminoimidazole carboxamide riboside, succinyladenosine | Increased | ADSL deficiency | |
Plasma carnitine profile g | Propionyl carnitine | Increased | Biotinidase deficiency, PA |
3-hydroxyisovaleryl (CS-OH) | Increased | 3-MCCD, Biotinidase deficiency | |
Carnitine; esterified | Increased | 3-MCCD | |
Carnitine; total and free | Decreased | 3-MCCD | |
Butyrylcarnitine | Increased | SCADD | |
Free carnitine | Decreased | SCADD | |
Plasma porphyrins | ALA, PBG, UPIII | Increased | AIP |
Urinary metabolites | ALA, PBG | Increased | AIP |
Bile acids | Increased | CTX | |
Pterins | Increased | PKU | |
Xanthine and hypoxanthine, thiosulfate | Increased | Molybdenum cofactor deficiency | |
Sulfate | Decreased | Molybdenum cofactor deficiency | |
Urine organic acid profile h | Phenylpyruvate | Increased | PKU |
Branched-chain α-ketoacids | Increased | MSUD | |
Argininosuccinate | Increased | Argininosuccinate lyase deficiency | |
Orotic acid | Increased | Argininosuccinate lyase deficiency, citrullinemia, Lysinuric protein intolerance | |
3-hydroxypropionate, methyicitrate, propionylglycine | Increased | Propionic acidemia | |
3-hydroxyisovaleric acid, 3-methylcrotonylglycine | Increased | 3-MCCD | |
Iso-valerylglycine, 3-OH-isovaleric acid | Increased | Isovaleryl-CoA dehydrogenase deficiency | |
Glutaric acid | Increased | Glutaric aciduria | |
Ethylmalonate, methylsuccinate, butyrylglycine | Increased | SCADD | |
γ-Hydroxybutyric acid | Increased | SSADH | |
Cystathionine | Increased | MTHFRD | |
Methyimalonic acid | Increased | Transcobalamin II deficiency | |
Urine AA | Phenylalanine | Increased | PKU |
Homocysteine | Increased | Homocystinuria Transcobalamin II deficiency | |
S-sulfocysteine | Increased | Molybdenum cofactor deficiency | |
Taurine | Increased | Molybdenum cofactor deficiency | |
Leucine + isoleucine | Increased | MSUD | |
Neutral AA (Alanine, serine, threonine, asparagine, glutamine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, histidine, and citrulline) | Increased | Hartnup disorder | |
Hydroxyproline, glycine | Increased | Hyperprolinemia | |
Citrulline | Increased | Argininosuccinate lyase deficiency | |
Homocitrulline | Increased | Citrullinemia OTC deficiency | |
Glycine | Increased | Propionic acidemia | |
Urine mucopolysaccharide excretion profile i | Heparan sulfate | Increased | Sanfilippo syndrome |
Keratan sulfate | Increased | Morquio syndrome A | |
Stool amino acid | Neutral AA (Alanine, serine, threonine, asparagine, glutamine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, histidine, and citrulline) | Increased | Hartnup disorder Collectrin deficiency |
Enzyme activity | Propionyl-CoA carboxylase activity (WBC, fibroblasts) | Decreased | Propionic acidemia |
Carboxylase activity (WBC) Biotinidase activity | Decreased | Biotinidase deficiency | |
27-hydroxylase (Fibroblasts) | Decreased | CTX | |
Glycogen phosphorylase kinase (Lymphocytes, RBC) | Decreased | GSD IX | |
N-acetylglucosamine 6-sulfatase (Fibroblasts) | Decreased | Sanfilippo syndrome | |
N-acetylgalactosamine 6-sulfatase | Decreased | Morquio syndrome A | |
Sphingomyelinase (WBC, fibroblasts) | Decreased | Niemann–Pick disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senarathne, U.D.; Indika, N.-L.R.; Jezela-Stanek, A.; Ciara, E.; Frye, R.E.; Chen, C.; Stepien, K.M. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes 2023, 14, 803. https://doi.org/10.3390/genes14040803
Senarathne UD, Indika N-LR, Jezela-Stanek A, Ciara E, Frye RE, Chen C, Stepien KM. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes. 2023; 14(4):803. https://doi.org/10.3390/genes14040803
Chicago/Turabian StyleSenarathne, Udara D., Neluwa-Liyanage R. Indika, Aleksandra Jezela-Stanek, Elżbieta Ciara, Richard E. Frye, Cliff Chen, and Karolina M. Stepien. 2023. "Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders" Genes 14, no. 4: 803. https://doi.org/10.3390/genes14040803
APA StyleSenarathne, U. D., Indika, N.-L. R., Jezela-Stanek, A., Ciara, E., Frye, R. E., Chen, C., & Stepien, K. M. (2023). Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes, 14(4), 803. https://doi.org/10.3390/genes14040803