Association of a Single Nucleotide Variant in TERT with Airway Disease in Japanese Rheumatoid Arthritis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping
2.3. Statistical Analysis
3. Results
Association of TERT rs2736100 with AD in RA and ATP11A rs1278769 with NSIP in RA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef] [PubMed]
- Stainer, A.; Tonutti, A.; De Santis, M.; Amati, F.; Ceribelli, A.; Bongiovanni, G.; Torrisi, C.; Iacopino, A.; Mangiameli, G.; Aliberti, S.; et al. Unmet needs and perspectives in rheumatoid arthritis-associated interstitial lung disease: A critical review. Front. Med. 2023, 10, 1129939. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Oka, S.; Shimada, K.; Sugii, S.; Ohashi, J.; Matsui, T.; Ikenaka, T.; Nakayama, H.; Hashimoto, A.; Takaoka, H.; et al. Association of human leukocyte antigen with interstitial lung disease in rheumatoid arthritis: A protective role for shared epitope. PLoS ONE 2012, 7, e33133. [Google Scholar] [CrossRef] [PubMed]
- Koduri, G.; Norton, S.; Young, A.; Cox, N.; Davies, P.; Devlin, J.; Dixey, J.; Gough, A.; Prouse, P.; Winfield, J.; et al. Interstitial lung disease has a poor prognosis in rheumatoid arthritis: Results from an inception cohort. Rheumatology 2010, 49, 1483–1489. [Google Scholar] [CrossRef]
- Kim, E.J.; Elicker, B.M.; Maldonado, F.; Webb, W.R.; Ryu, J.H.; Van Uden, J.H.; Lee, J.S.; King, T.E., Jr.; Collard, H.R. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. Eur. Respir. J. 2010, 35, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.T.; Odeyinka, O.; Alhashimi, R.; Thoota, S.; Ashok, T.; Palyam, V.; Sange, I. Rheumatoid Arthritis and Associated Lung Diseases: A Comprehensive Review. Cureus 2022, 14, e22367. [Google Scholar] [CrossRef]
- Mori, S.; Koga, Y.; Sugimoto, M. Different risk factors between interstitial lung disease and airway disease in rheumatoid arthritis. Respir. Med. 2012, 106, 1591–1599. [Google Scholar] [CrossRef]
- Shaw, M.; Collins, B.F.; Ho, L.A.; Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir. Rev. 2015, 24, 1–16. [Google Scholar] [CrossRef]
- Perez, T.; Remy-Jardin, M.; Cortet, B. Airways involvement in rheumatoid arthritis: Clinical, functional, and HRCT findings. Am. J. Respir. Crit. Care Med. 1998, 157, 1658–1665. [Google Scholar] [CrossRef]
- Vergnenegre, A.; Pugnere, N.; Antonini, M.T.; Arnaud, M.; Melloni, B.; Treves, R.; Bonnaud, F. Airway obstruction and rheumatoid arthritis. Eur. Respir. J. 1997, 10, 1072–1078. [Google Scholar] [CrossRef]
- Swinson, D.R.; Symmons, D.; Suresh, U.; Jones, M.; Booth, J. Decreased survival in patients with co-existent rheumatoid arthritis and bronchiectasis. Br. J. Rheumatol. 1997, 36, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Juge, P.A.; Lee, J.S.; Ebstein, E.; Furukawa, H.; Dobrinskikh, E.; Gazal, S.; Kannengiesser, C.; Ottaviani, S.; Oka, S.; Tohma, S.; et al. MUC5B Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. N. Engl. J. Med. 2018, 379, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Honda, S.; Ikari, K.; Kanai, M.; Takeda, Y.; Kamatani, Y.; Morisaki, T.; Tanaka, E.; Kumanogoh, A.; Harigai, M.; et al. Association of the RPA3-UMAD1 locus with interstitial lung diseases complicated with rheumatoid arthritis in Japanese. Ann. Rheum. Dis. 2020, 79, 1305–1309. [Google Scholar] [CrossRef]
- Higuchi, T.; Oka, S.; Furukawa, H.; Shimada, K.; Tohma, S. Lack of Association of rs12702634 in RPA3-UMAD1 With Interstitial Lung Diseases in Japanese Rheumatoid Arthritis Patients. Biomark. Insights 2022, 17, 11772719221091758. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, E.; Ljung, L.; Norrman, E.; Freyhult, E.; Ärlestig, L.; Dahlqvist, J.; Rantapää-Dahlqvist, S. Pulmonary fibrosis in relation to genetic loci in an inception cohort of patients with early rheumatoid arthritis from northern Sweden. Rheumatology 2022, 61, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Oka, S.; Furukawa, H.; Shimada, K.; Tsunoda, S.; Ito, S.; Okamoto, A.; Katayama, M.; Saisho, K.; Shinohara, S.; et al. Association of a FAM13A variant with interstitial lung disease in Japanese rheumatoid arthritis. RMD Open 2023, 9, 2022–002828. [Google Scholar] [CrossRef] [PubMed]
- Radoux, V.; Menard, H.A.; Begin, R.; Decary, F.; Koopman, W.J. Airways disease in rheumatoid arthritis patients. One element of a general exocrine dysfunction. Arthritis Rheum. 1987, 30, 249–256. [Google Scholar] [CrossRef]
- Sweatman, M.C.; Markwick, J.R.; Charles, P.J.; Jones, S.E.; Prior, J.M.; Maini, R.N.; Turner-Warwick, M.E. Histocompatibility antigens in adult obliterative bronchiolitis with or without rheumatoid arthritis. Dis. Markers 1986, 4, 19–26. [Google Scholar]
- Hillarby, M.C.; McMahon, M.J.; Grennan, D.M.; Cooper, R.G.; Clarkson, R.W.; Davies, E.J.; Sanders, P.A.; Chattopadhyay, C.; Swinson, D. HLA associations in subjects with rheumatoid arthritis and bronchiectasis but not with other pulmonary complications of rheumatoid disease. Br. J. Rheumatol. 1993, 32, 794–797. [Google Scholar] [CrossRef]
- Hassan, W.U.; Keaney, N.P.; Holland, C.D.; Kelly, C.A. Association of HLA-DR4, protease inhibitor phenotypes and keratoconjunctivitis sicca with pulmonary abnormalities in rheumatoid arthritis. Br. J. Rheumatol. 1995, 34, 37–40. [Google Scholar] [CrossRef]
- Oka, S.; Furukawa, H.; Shimada, K.; Sugii, S.; Hashimoto, A.; Komiya, A.; Fukui, N.; Suda, A.; Tsunoda, S.; Ito, S.; et al. Association of Human Leukocyte Antigen Alleles with Chronic Lung Diseases in Rheumatoid Arthritis. Rheumatology 2016, 55, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Fingerlin, T.E.; Murphy, E.; Zhang, W.; Peljto, A.L.; Brown, K.K.; Steele, M.P.; Loyd, J.E.; Cosgrove, G.P.; Lynch, D.; Groshong, S.; et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 2013, 45, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Porte, J.; Braybrooke, R.; Flores, C.; Fingerlin, T.E.; Oldham, J.M.; Guillen-Guio, B.; Ma, S.F.; Okamoto, T.; John, A.E.; et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: A genome-wide association study. Lancet Respir. Med. 2017, 5, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Mushiroda, T.; Wattanapokayakit, S.; Takahashi, A.; Nukiwa, T.; Kudoh, S.; Ogura, T.; Taniguchi, H.; Kubo, M.; Kamatani, N.; Nakamura, Y. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet 2008, 45, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Vargas, J.; Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Ponce-Gallegos, M.A.; Hernández-Zenteno, R.J.; Mejía, M.; Ramírez-Venegas, A.; Buendia-Roldan, I.; Falfán-Valencia, R. Differential Genomic Profile in TERT, DSP, and FAM13A Between COPD Patients With Emphysema, IPF, and CPFE Syndrome. Front. Med. 2021, 8, 725144. [Google Scholar] [CrossRef]
- Pineau, F.; Caimmi, D.; Taviaux, S.; Reveil, M.; Brosseau, L.; Rivals, I.; Drevait, M.; Vachier, I.; Claustres, M.; Chiron, R.; et al. DNA Methylation at ATP11A cg11702988 Is a Biomarker of Lung Disease Severity in Cystic Fibrosis: A Longitudinal Study. Genes 2021, 12, 441. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; McShane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [Google Scholar] [CrossRef]
- Tadaka, S.; Hishinuma, E.; Komaki, S.; Motoike, I.N.; Kawashima, J.; Saigusa, D.; Inoue, J.; Takayama, J.; Okamura, Y.; Aoki, Y.; et al. jMorp updates in 2020: Large enhancement of multi-omics data resources on the general Japanese population. Nucleic. Acids. Res. 2021, 49, D536–D544. [Google Scholar] [CrossRef]
- Dupont, W.D.; Plummer, W.D., Jr. Power and sample size calculations. A review and computer program. Control Clin. Trials 1990, 11, 116–128. [Google Scholar] [CrossRef]
- Wei, R.; Cao, L.; Pu, H.; Wang, H.; Zheng, Y.; Niu, X.; Weng, X.; Zhang, H.; Favus, M.; Zhang, L.; et al. TERT Polymorphism rs2736100-C Is Associated with EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21, 5173–5180. [Google Scholar] [CrossRef] [PubMed]
- Codd, V.; Nelson, C.P.; Albrecht, E.; Mangino, M.; Deelen, J.; Buxton, J.L.; Hottenga, J.J.; Fischer, K.; Esko, T.; Surakka, I.; et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013, 45, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Alder, J.K.; Chen, J.J.; Lancaster, L.; Danoff, S.; Su, S.C.; Cogan, J.D.; Vulto, I.; Xie, M.; Qi, X.; Tuder, R.M.; et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13051–13056. [Google Scholar] [CrossRef] [PubMed]
- Birch, J.; Victorelli, S.; Rahmatika, D.; Anderson, R.K.; Jiwa, K.; Moisey, E.; Ward, C.; Fisher, A.J.; De Soyza, A.; Passos, J.F. Telomere Dysfunction and Senescence-associated Pathways in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2016, 193, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Molineros, J.E.; Looger, L.L.; Zhou, X.J.; Kim, K.; Okada, Y.; Ma, J.; Qi, Y.Y.; Kim-Howard, X.; Motghare, P.; et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 2016, 48, 323–330. [Google Scholar] [CrossRef]
- Kawasaki, A.; Namba, N.; Sada, K.E.; Hirano, F.; Kobayashi, S.; Nagasaka, K.; Sugihara, T.; Ono, N.; Fujimoto, T.; Kusaoi, M.; et al. Association of TERT and DSP variants with microscopic polyangiitis and myeloperoxidase-ANCA positive vasculitis in a Japanese population: A genetic association study. Arthritis Res. Ther. 2020, 22, 246. [Google Scholar] [CrossRef]
- GTExConsortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Kousathanas, A.; Pairo-Castineira, E.; Rawlik, K.; Stuckey, A.; Odhams, C.A.; Walker, S.; Russell, C.D.; Malinauskas, T.; Wu, Y.; Millar, J.; et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 2022, 607, 97–103. [Google Scholar] [CrossRef]
UIP | NSIP | AD | CLD(-) | |
---|---|---|---|---|
Number | 98 | 120 | 227 | 422 |
Male, n (%) | 44 (44.9) | 41 (34.2) | 42 (18.7) | 66 (15.7) |
p values | * 2.63 × 10−9 | * 2.42 × 10−5 | * 0.3762 | |
Mean age, years (SD) | 71.3 (9.9) | 68.0 (10.4) | 67.1 (11.6) | 61.6 (12.7) |
p values | 9.78 × 10−13 | 2.01 × 10−7 | 6.44 × 10−9 |
TERT | Genotype | Allele | Allele model | ||||||
rs2736100 | n | [C/C] | [C/A] | [A/A] | [C] | p | OR | 95% CI | Pc |
UIP(+)RA, n (%) | 98 | 12 (12.2) | 40 (40.8) | 46 (46.9) | 64 (32.7) | 0.2836 | 0.83 | (0.59–1.15) | 0.8508 |
NSIP(+)RA, n (%) | 120 | 16 (13.3) | 59 (49.2) | 45 (37.5) | 91 (37.9) | 0.8205 | 1.04 | (0.77–1.40) | NS |
AD(+)RA, n (%) | 227 | 45 (19.8) | 115 (50.7) | 67 (29.5) | 205 (45.2) | 0.0043 | 1.40 | (1.11–1.77) | 0.0129 |
CLD(-)RA, n (%) | 422 | 50 (11.8) | 212 (50.2) | 160 (37.9) | 312 (37.0) | ||||
ATP11A | Genotype | Allele | Allele model | ||||||
rs1278769 | n | [G/G] | [G/A] | [A/A] | [G] | p | OR | 95% CI | Pc |
UIP(+)RA, n (%) | 98 | 45 (45.9) | 42 (42.9) | 11 (11.2) | 132 (67.3) | 0.6070 | 0.91 | (0.65–1.27) | NS |
NSIP(+)RA, n (%) | 120 | 75 (62.5) | 33 (27.5) | 12 (10.0) | 183 (76.3) | 0.0439 | 1.41 | (1.01–1.97) | 0.1317 |
AD(+)RA, n (%) | 227 | 117 (51.5) | 94 (41.4) | 16 (7.0) | 328 (72.2) | 0.3078 | 1.15 | (0.89–1.47) | 0.9234 |
CLD(-)RA, n (%) | 422 | 214 (50.7) | 158 (37.4) | 50 (11.8) | 586 (69.4) |
TERT | Genotype | Allele | Allele model | |||||
Age > 65 | n | [C/C] | [C/A] | [A/A] | [C] | p | OR | 95% CI |
AD(+)RA, n (%) | 137 | 23 (16.8) | 78 (56.9) | 36 (26.3) | 124 (45.3) | 0.0438 | 1.40 | (1.02–1.92) |
CLD(-)RA, n (%) | 191 | 26 (13.6) | 90 (47.1) | 75 (39.3) | 142 (37.2) | |||
ATP11A | Genotype | Allele | Allele model | |||||
Age > 65 | n | [G/G] | [G/A] | [A/A] | [G] | p | OR | 95% CI |
NSIP(+)RA, n (%) | 78 | 53 (67.9) | 22 (28.2) | 3 (3.8) | 128 (82.1) | 0.0010 | 2.15 | (1.35–3.40) |
CLD(-)RA, n (%) | 191 | 95 (49.7) | 70 (36.6) | 26 (13.6) | 260 (68.1) |
TERT | Allele | Allele model | |||
rs2736100 | n | [C] | p | OR | 95% CI |
RA, n (%) | 867 | 672 (38.8) | 0.5027 | 0.97 | (0.88–1.07) |
Control, n (%) | 38,721 | 30,635 (39.6) | |||
ATP11A | Allele | Allele model | |||
rs1278769 | n | [G] | p | OR | 95% CI |
RA, n (%) | 867 | 1229 (70.9) | 0.5953 | 1.03 | (0.93–1.14) |
Control, n (%) | 38,720 | 54,405 (70.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, T.; Oka, S.; Furukawa, H.; Shimada, K.; Tsunoda, S.; Ito, S.; Okamoto, A.; Fujimori, M.; Nakamura, T.; Katayama, M.; et al. Association of a Single Nucleotide Variant in TERT with Airway Disease in Japanese Rheumatoid Arthritis Patients. Genes 2023, 14, 2084. https://doi.org/10.3390/genes14112084
Higuchi T, Oka S, Furukawa H, Shimada K, Tsunoda S, Ito S, Okamoto A, Fujimori M, Nakamura T, Katayama M, et al. Association of a Single Nucleotide Variant in TERT with Airway Disease in Japanese Rheumatoid Arthritis Patients. Genes. 2023; 14(11):2084. https://doi.org/10.3390/genes14112084
Chicago/Turabian StyleHiguchi, Takashi, Shomi Oka, Hiroshi Furukawa, Kota Shimada, Shinichiro Tsunoda, Satoshi Ito, Akira Okamoto, Misuzu Fujimori, Tadashi Nakamura, Masao Katayama, and et al. 2023. "Association of a Single Nucleotide Variant in TERT with Airway Disease in Japanese Rheumatoid Arthritis Patients" Genes 14, no. 11: 2084. https://doi.org/10.3390/genes14112084
APA StyleHiguchi, T., Oka, S., Furukawa, H., Shimada, K., Tsunoda, S., Ito, S., Okamoto, A., Fujimori, M., Nakamura, T., Katayama, M., Saisho, K., Shinohara, S., Matsui, T., Migita, K., Nagaoka, S., & Tohma, S. (2023). Association of a Single Nucleotide Variant in TERT with Airway Disease in Japanese Rheumatoid Arthritis Patients. Genes, 14(11), 2084. https://doi.org/10.3390/genes14112084