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Abstract: Gene expression and SNPs data hold great potential for a new understanding of disease
prognosis, drug sensitivity, and toxicity evaluations. Cluster analysis is used to analyze data that do
not contain any specific subgroups. The goal is to use the data itself to recognize meaningful and
informative subgroups. In addition, cluster investigation helps data reduction purposes, exposes
hidden patterns, and generates hypotheses regarding the relationship between genes and phenotypes.
Cluster analysis could also be used to identify bio-markers and yield computational predictive
models. The methods used to analyze microarrays data can profoundly influence the interpretation
of the results. Therefore, a basic understanding of these computational tools is necessary for optimal
experimental design and meaningful data analysis. This manuscript provides an analysis protocol to
effectively analyze gene expression data sets through the K-means and DBSCAN algorithms. The
general protocol enables analyzing omics data to identify subsets of features with low redundancy
and high robustness, speeding up the identification of new bio-markers through pathway enrichment
analysis. In addition, to demonstrate the effectiveness of our clustering analysis protocol, we analyze
a real data set from the GEO database. Finally, the manuscript provides some best practice and tips to
overcome some issues in the analysis of omics data sets through unsupervised learning.

Keywords: data mining; unsupervised learning; clustering; microarrays; SNPs; DEGs

1. Introduction

DNA microarrays, including Single Nucleotide Polymorphisms (SNPs) and differ-
ential expressed genes (DEGs), are becoming essential tools in omics research such as
pharmacogenomics [1] and drug toxicity prediction [2]. Generally, DNA microarrays [3] are
used to detect anomalies in case-control studies [4–6]. SNPs data [7] provide information
about regions in the genome that show differences between individuals at a single base pair
site. In comparison, DEGs data give information about the expression of genes responsible
for the phenotype abnormalities under investigation. An omics platform, e.g., microarrays,
consists of many DNA fragments spotted (or featured) onto a solid surface made of glass,
silicon, or plastic. The DNA in each spot is typically called a DNA probe, and these probes
usually range in size from 100 to 1,000,000 base pairs. A DNA microarray relies on the
hybridization process, the hybridization between the samples of DNA representing a gene
that will bind to the spot containing its complementary DNA sequence. The hybridization
product, e.g., mRNA, is measured and stored as an image file for further analysis. The
human genome contains around 3 billion base pairs; DNA microarrays would require
many spots to cover the entire genome comprehensively. Thus, the number of probes on
the microarray is generally correlated with the accuracy to represent and analyze an entire
genome named microarray resolution. Microarray resolution is responsible for the microar-
rays’ capability to produce a large amount of data, making it challenging to interpret, even
by exploiting modern computational and analytical tools [8–14].
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To help researchers with analyzing and understanding the considerable amount of
available microarray data before it becomes obsolete, several bio-statistical [15–21], machine
learning [22–28], and statistical [29–32] methods are used to interpret the results’ biological
meaning better. Unsupervised learning [33–37] techniques have been widely applied
in the analysis of microarray studies to reveal hidden patterns in the data [38–42]. In
unsupervised learning, only the input examples are provided to the model, without any
expected output, to make it learn some hidden structure in the input data independently.
Clustering methodology belongs to the unsupervised learning technique. Clustering
recognizes the most common elements around which to group similar elements, to reduce
the data necessary for understanding a phenomenon, which is a very important aspect in
the analysis of omics microarrays data.

In mathematical terms, the concept of similarity is translated in distance. The calcula-
tion of similarity becomes that of distance in the space of n-dimensions, where n indicates
the number of variables in which the data are described. Many statistical and computa-
tional approaches, including hierarchical, partitive, and density-based, are available for
clustering. While these algorithms are comparable in terms of performance (i.e., there is no
prevalence of one method over the others), there are multiple issues and challenges due to
the computational analysis of microarray data.

The task of microarray data analysis differs from other data analysis in that many
proven feature dependencies already exist in microarray data, resulting in a high degree
of redundancy. Thus, by exploiting clustering techniques, it is possible to identify subsets
of features with low redundancy and high robustness, speeding up the identification of
new bio-markers.

Clustering involves projecting the data in a low-dimensional space to explore the rela-
tionships among tested samples for visual inspection and exploratory analyses. Clustering
techniques group the experimental samples based on their response across the transcrip-
tomics profile. Indeed, in biomedical research, clustering approaches group together objects,
e.g., genes and tissues more similar than those in different clusters. At the same time, it is
useful for dimensionality reduction purposes, playing a crucial role in pattern and knowl-
edge recognition. This is especially true in high-throughput omics technologies that are
contributing to provide an increasing number of publicly available massive omics data sets
composed from different biological variables for the same samples, allowing the integration
of complementary information and bringing a deeper insight into the same biological
processes. For example, clustering methods can be utilized to analyze toxicity prognosis
experiments to identify drugs showing similar mechanisms of action in a large cohort of
patients. In the medical field, they can be used to identify groups of patients who respond
differently to medical treatments. Although cluster analysis approaches are robust, great
care must be taken in applying these approaches. Even though the algorithms are well
characterized and reproducible, the wrong choice concerning the selected normalization
method or metrics will place different objects into distinct clusters and could bias the results.
For instance, unrelated clustering data will still produce clusters, although they might not
be biologically meaningful. Thus, the challenge is selecting, handling, arranging the data
and applying the algorithms appropriately so that the models that arise from the data are
biologically relevant. The choice of the most suitable method to analyze microarray data
sets is related to the high degree of redundancy that exists in microarray data sets. In this
regard, we propose a general protocol to analyze DEG data sets to identify subsets of fea-
tures with low redundancy and high robustness by using K-Means and DBSCAN, speeding
up the identification of new bio-markers through pathway enrichment analysis. Finally,
to prove the effectiveness of the presented clustering analysis protocol, we downloaded a
real data set from the GEO database that we analyzed by using K-Means and DBSCAN.
The dataset, the Python code to reproduce to results of this work and the example re-
sults are available at https://github.com/mmilano87/PCAPxDEG (accessed on 3 October
2022). The rest of the manuscript is arranged as follows. Section 2 describes the type of
omics data, e.g., SNP and DEGs data sets, and the principal preprocessing methodologies.

https://github.com/mmilano87/PCAPxDEG
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Section 3 introduces some clustering metrics highlighting the most suitable for handling
DEGs data. Section 4 presents the main steps of K-Means and DBSCAN algorithms.
Section 5 introduces a general analysis protocol based on K-Means and DBSCAN to deal
with DEGs data sets obtained by using omics methodology. Section 6 discusses the ob-
tained results, providing some best pratices to improve the analysis of DEGs data through
clustering. Finally, Section 7 concludes the manuscript.

2. Materials and Methods
2.1. Microarray Raw Data

Gene expression and SNP data assessed by microarrays are preprocessed using image
analysis techniques to extract expression values and SNPs from images, making expression
values and SNPs comparable across microarrays. The preprocessing is completed using
a specific microarray platform software provided by the vendor. The expression data are
commonly represented as a matrix of values where each column indicates a sample, and
each row denotes a probe (i.e., a specific gene). The cell (i, j) contains the expression level
of gene i evaluated in sample j. Table 1 shows a simple gene expression data matrix.

Table 1. Gene expression data matrix.

S1 . . . Sm

probe1 32.3 . . . 121.4
probe2 87.59 . . . 95.78
...

...
...

...
proben 123.4 . . . 95.78

Conversely, SNP data are represented as a string matrix where each column indicates
a sample, and each row denotes a probe (i.e., a specific gene). The string contained in the
cell (i, j) is the detected SNP on gene i related to sample j. DNA’s bases are adenine (A),
cytosine (C), guanine (G), and thymine (T), which define the SNP alphabet. Given the
following two sequences [AGTGA] and [AGCGA] belonging to two different subjects, we
have an SNP into the 3rd position denoted as T/C. Table 2 shows a simple SNP data matrix.

Table 2. SNPs data matrix.

S1 . . . Sm

probe1 G/A . . . C/G
probe2 A/G . . . T/T
...

...
...

...
proben G/G . . . G/A

Knowing how microarray data are arranged is essential to define the proper data
learning strategy and how the results should be interpreted [43]. The gene expression data
matrix is already in a suitable format to be used as input for the majority of clustering
algorithms. The only recommended operation to complete for speeding up the analysis
is filtering out rows, e.g., genes that are not expressed or are the same across all the
subjects. Conversely, the SNP data matrix is not in a suitable format to perform clustering
analysis. Before performing SNP data clustering analysis, the literal symbols must be
mapped into discrete numerical representation using feature transformation [44,45]. This is
mandatory, as the existing clustering approaches can only deal with numerical vectors but
not string vectors. Several approaches are available to convert SNP literals into numerical
vectors [46–48].

2.2. Microarray Data Filtering

Microarray data filtering [49] reduces the size of both matrices, e.g., gene expression
and SNP matrices. Gene expression data filtering removes genes that are not expressed or
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do not exhibit variation across the subjects. The filtering methodology removes the genes
not expressed or indefinite for the following analysis. The gene filtering strategy includes a
threshold of the gene variance across the matrix, removing all the genes whose expression
is below the chosen threshold value. SNP data filtering removes all the genes that do not
show variation across the samples. Usually, the SNP filtering strategy includes a threshold
of the SNP occurrences across the matrix, removing all the rows whose occurrences are
below the chosen threshold percentage value.

2.3. Microarray Data Normalization

Although clustering methods can be applied to the raw data, it is often more helpful
to forego the analysis by normalizing (or homogenizing) the expression values [50]. Values
normalization allows mitigating the possible bias due to the distance or similarity measure.
Cluster analysis depends on a distance or similarity measure. Because distance or similarity
measures are sensitive to differences in the absolute expression values scale, microarray
data for clustering often need to be transformed to adapt to different scales.

3. Clustering Metrics

Many metrics are available to compare patterns from microarray data. However, the
metric choice to use for group discovery will impact the results. Distance and similarity
are the most used metrics in unsupervised learning. In mathematical terms, the concept of
similarity is translated in distance. The similarity calculation becomes the distance in the
space of n-dimensions, where n indicates the number of variables described in the data.
The distance evaluates how far apart two points p and q are in the space. For a distance
measure d(·) to be a valid measure, it has to always satisfy the following conditions:

1. d(·) is always non-negative;
2. d(·) is symmetric;
3. d(·) must satisfy the triangle inequality;
4. d(·) must be zero only when evaluating the distance of a point from itself.

Without losing in generality, distance d(·) assesses how far or close pairs of points
are, e.g., gene expressions or SNPs data. Well-known distance metrics are Euclidean [51],
Manhattan [52], and Chebychev [53] distance, which are suitable to analyze gene expres-
sions data.

• The Euclidean distance evaluates the distance between each pair of points. Equation (1)
reports the Euclidean distance definition.

e(x, y) =

√
n

∑
i=1
|(xi − yi)|2 (1)

The Euclidean distance is computed by subtracting the value of gene i from gene j,
squaring it in each sample, and then taking the square root of the sum. Euclidean
distance is suitable for handling low-dimensional data, and when measuring the
vectors’ magnitude, it is not necessary.

• The Manhattan distance m(·) between two points is equal to the norm of the dis-
tance between two points p1 and p2 in a plane with coordinates p1 = (x1, y1) and
p2 = (x2, y2), it is m = |x1− x2| + |y1− y2|. Equation (3) reports the Manhattan
distance definition. Manhattan distance is easily generalized to higher dimensions.
Given an array of n coordinates, the m(·) provides the differences between any pairs
of coordinates. Manhattan distance is suitable to manage attributes containing discrete
or binary attributes.

m(x, y) =
n

∑
i=1
|(xi − yi)| (2)

• Chebyshev distance ch(·) measures the maximum difference between the distinct
points pairs of two arrays, which is also known as maximum value or chessboard
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distance. Chebyshev distance is suitable to deal with ordinal or quantitative data sets.
Chebyshev distance is defined in Equation (3).

ch(x, y) = max
i
|(xi − yi)| (3)

Conversely, the similarity function tries to quantify how “similar” two data points are
from the distance function. It must be maximized because the more similar the two points
are, the closer they are; that is, they belong to the same cluster.

A similarity metric s(·) must hold the following criteria:

1. s(·) is symmetric;
2. s(·) fulfills the triangle inequality;
3. s(·) between the same data point must be non-negative;
4. s(·) between any two different data points cannot be larger than the similarity between

a data point and itself.

Well-Known similarity metrics encompass Cosine [54], Jaccard [55], and Sorensen–
Dice [56].

• Cosine metric computes similarity converting two vectors in points and estimating
the cosine of the angle between the two points in the vectors’ space.

c(v, w) = cos Θ =
v · w
‖ v ‖ w ‖ (4)

A limit of cosine similarity measure is the impossibility of evaluating the magnitude of
the vectors–it can only measure their direction. Cosine similarity is used for handling
high-dimensional data sets and when it is not necessary to evaluate the magnitude of
the vectors.

• Jaccard index computes the similarity and diversity by estimating the ratio between
the size of the intersection between two groups divided by the size of the union of two
groups. Thus, it is also known as intersection over union.

J(v, w) = 1− v ∩ w
v ∪ w

(5)

Jaccard index is used to analyze data sets containing binary or binarized data.
• The Sorensen–Dice (SD) index computes the similarity and diversity by estimating the

percentage of overlap between two groups. The SD index is used to analyze data sets
containing binary or binarized data.

SD(v, w) =
2|v ∩ w|
|v|+ |w| (6)

4. Clustering Algorithms

Clustering is an unsupervised procedure to organize data into groups of items with
similar patterns distinctive for each group. In microarray data analysis, the main goal of the
clustering procedure is to organize genes or samples with common characteristics or profiles
together. Collecting genes or samples together allows researchers to make meaningful
biological assumptions about the set of gene or sample groups. Clustering procedures
can be classified as hierarchical or non-hierarchical. Hierarchical clustering groups objects
into clusters and specifies relationships among items in the clusters. Conversely, non-
hierarchical methods group items into clusters without establishing relationships between
objects in the same cluster. Hierarchical clustering may be divided into two categories:
agglomerative and divisive. Agglomerative clustering starts with the hypothesis that
each object is a cluster, grouping similar objects into bigger clusters (bottom–up strategy).
Conversely, divisive clustering begins with all the objects in one cluster. Next, it breaks
the big cluster into smaller clusters of objects with comparable properties. Hierarchical
agglomerative clustering considers each object a cluster. It is an iterative methodology
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where the objects are consecutively grouped until all the objects are not included. The
main steps of the method are the following. The first step calculates the pairwise distance
between the objects to group. Based on the pairwise distances between objects, objects that
are similar among them are grouped into clusters. Next, pairwise distances between the
clusters are re-calculated, and similar clusters are grouped iteratively until all the objects
are included in a single cluster. The output of the hierarchical agglomerative approach
can be represented as a dendrogram, where the distance from the branch point indicates
the distance between the two clusters of objects. Hierarchical divisive clustering considers
the entire set of objects as a single cluster, and iteratively, the cluster is broken down into
clusters with similar patterns (top–down strategy). The hierarchical divisive clustering
considers each cluster separately, and the divisive process is repeated until all objects have
been separated into single objects.

The main goal of both variants is to reach through the consecutive partitioning of
optimal data separation.

Conversely, from hierarchical clustering, non-hierarchical clustering groups existing
objects into some predefined clusters rather than organizing them into a hierarchical
structure. Non-hierarchical clustering requires predetermination of the number of clusters.

Another category of cluster algorithms is based on the concept of density and does
not require any assumptions about the formation of the classes. The intuitive concept of
density starts from the consideration that a cluster in the space of a point is a region of high
point density. Thus, each pattern of a cluster must have at least a certain number of other
patterns in its neighbor, so the density in the vicinity of the considered pattern must exceed
a certain threshold.

Gene clustering of microarray data has been widely used to group and organize DEGs
and SNPs. Gene clustering is also used for multi-group data in which several gene expres-
sion patterns may exist. Thus, identifying gene expression patterns and grouping genes
into expression groups could provide much greater insight into their biological processes.

In the following, we provide a brief description of two of the most known divisive
and density cluster algorithms, K-Means and DBSCAN.

4.1. K-Means

K-Means [57] is a popular non-hierarchical clustering method. The K-Means algorithm
belongs to the category of clustering based on prototypes. Clustering based on prototypes
means that each cluster is represented by a prototype, e.g., centroid (the mean), of similar
points and with continuous characteristics, or the medoid (the points that occur most
frequently) in the case of categorical features. K-Means is very effective in identifying
clusters of spherical shape. One of its weaknesses is that it requires specifying a priori
the number of clusters, k. An inappropriate choice of k can result in poor clustering
arrangement. K-Means performs the following four steps.

1. Randomly selects k centroids of the sample points, which will act as interim cluster
centers. The number of clusters can be chosen randomly or estimated by first perform-
ing hierarchical clustering of the data. Next, each cluster is initialized by computing
its centroid.

2. Assign the closest centroid to each sample. Individual objects are moved from one
cluster to another depending on which centroid is closer to the object.

3. Move centroids to the center of the samples that have been assigned to it. This
procedure of calculating the centroid for each cluster and re-grouping objects closer to
available centroids is performed in an iterative manner for a fixed number of times
or until convergence (state when the composition of clusters remains unaltered by
further iterations). However, there is no guarantee that the procedure will converge.

4. Repeat steps 2 and 3 until the cluster assignment stops changing or when a certain
tolerance or a maximum number of iterations is reached.
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4.2. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [58] defines
the concept of density as the number of points that fall within a given radius ε. In DBSCAN,
a specific label is assigned to each object (point) using the following criteria.

1. A point is considered a core point if at least a certain number (MinPts) of neighboring
points fall within the specified radius.

2. A boundary point is a point with fewer neighbors than MinPts that they are within
but still comes within the radius of distance from a core point.

3. All other points that are neither core nor boundary are assumed to be noise points.

After labeling the points as core, boundary, or noise, the DBSCAN’s core algorithm
can be summarized in two simple steps.

1. Create a distinct cluster for each core point or connected group of core points (core
points are connected if they are no more than ε apart from each other).

2. Assign each boundary point to the corresponding core point cluster.

5. Gene Expression Clustering Analysis Protocol

This section defines a general analysis protocol for analyzing massive gene expression
data sets through unsupervised learning methods. First, we introduce the most suitable
preprocessing methods for the gene expression data, which is followed by the dimensional-
ity reduction and feature scaling. Next, we show how to tune K-Means and DBSCAN to
produce relevant clusters exploiting the handled data. Finally, as a possible use case, gene
clusters can be used to perform pathway enrichment analysis, linking each gene with the
affected underlying biological mechanisms.

5.1. Synthetic Gene Expression Data Set

To perform the analysis, we generated a synthetic gene expression microarray data set
obtained exploiting the features of the Affymetrix Human Genome U133 Plus 2.0 Array.
The GeneChip Human Genome U133 Plus 2.0 Array comprehensively analyzes genome-
wide expression on a single array. It provides comprehensive coverage of the transcribed
human genome on a single array, analyzing the expression level of over 47,000 transcripts
and variants, including well-characterized human genes. The generated data set contains
1000 samples (columns) and 20,531 probes (rows) for each sample connected to the detected
gene expression levels.

5.2. GEO Breast Cancer Data Set

Gene expression Omnibus (GEO) [59,60] is a public repository of high-throughput
functional genomics data submitted by the research community. From GEO, we down-
loaded the GSE183947 data set. The GSE183947 data set refers to breast cancer and
contains 30 pairs of normal and cancerous tissues from the same excision that were in-
vestigated using the RNA sequencing (RNAseq) GPL11154 Illumina HiSeq 2000 (Homo
sapiens) platforms and collected from the Affiliated Cancer Hospital of Guangzhou Med-
ical University. The GSE183947 data set contains 20,246 rows, e.g., the platform’s genes
and 61 columns, e.g., tissues. More details about the GSE183947 data set are avail-
able at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183947 (accessed on
3 October 2022).

5.3. Clustering Analysis Protocol

Understanding how to correctly perform clustering algorithms using gene expression
data is fundamental for partitioning data into groups or clusters that can help identify
meaningful knowledge for the domain expert.

The task of gene expression data analysis differs from other data analysis in that
many proven feature dependencies already exist in gene expression data, resulting in a
high degree of redundancy. Thus, by exploiting clustering techniques, it is possible to

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183947


Genes 2022, 13, 1839 8 of 22

identify subsets of features with low redundancy and high robustness, speeding up the
identification of new bio-markers.

Hence, we present a general clustering protocol for large differential gene expres-
sion data sets commonly derived from genome-scale (omics) technology. The protocol is
intended for experimental biologists, researchers without any programming skills, and
bioinformaticians interested in making the interpretation of their omics data productive.
A detailed description follows of a general step-by-step protocol using the K-Means or
DBSCAN algorithm available in the scikit-learn Python package. Figure 1 shows the main
steps of the proposed analysis protocol.

Data Preprocessing

(a) DEGs Table Transposition

data = data.transpose()

(b) Feature Scaling of Gene Levels

transformer = MaxAbsScaler()

scaled_features = transformer.fit_transform(data)

(c) PCA

pca = PCA(n_components=2, random_state=78, svd_solver=‘full’)

reduced_features = pca.fit_transform(data)

Clustering Analysis

(d) K-Means

kmeans = KMeans(n_clusters=4, init="k-means++", 

                                     n_init=50, max_iter=500,

                                     random_state=78).fit(pca_data)

(e) DBSCAN

dbscan = DBSCAN(eps=0.5, min_samples=13, metric=’euclidean’, 

algorithm=’auto’).fit(pca_data)

Figure 1. The Python statement to use to perform the main steps of data preprocessing and the run
the DEGs data analysis through K-Means and DBSCAN algorithms.

Omics-scale experiments yield raw data that must be processed to obtain gene-level
information suitable for clustering analysis (independently from the chosen algorithm).
Gene expression data sets are organized as huge tables where the rows contain the probes,
e.g., the DNA spots related to a specific gene, whereas the columns have the samples
(as depicted in Table 1). A generic cell, i.e., (i, j), contains the amount of hybridization
(e.g., the level of expression) referring to the gene i-th and the sample j-th. In this form, gene
expression data sets are unsuitable to be handled by the K-Means and DBSCAN algorithms.
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Preprocessing is a fundamental step for putting data in a suitable format for K-Means
and DBSCAN. In particular, it is necessary to perform the transposition of the input data set,
because data arrangement significantly affects the K-Means and DBSCAN performance
and the result’s relevance. Transposition consists of switching rows with columns, making
data in a suitable format for K-Means to provide relevant gene groups. The transposition
step can be performed straightforwardly by loading the input data set in Excel, Matlab, or
SPSS using the available automatic function transpose or using the Python transpose method
(Figure 1a defines the Python statement to perform table transposition on the loaded DEG
data) available in pandas and numpy libraries.

Next, the detected DEGs values present higher variability, contributing to some bias
because machine learning algorithms consider higher values more relevant than the lower
ones. Thus, it is mandatory to transform all the gene expression values to the same
scale. The technique of transforming numerical features to the same scale is known as
feature scaling. Feature scaling is necessary, especially for distance-based machine learning
algorithms, i.e., K-Means, because it can significantly impact the algorithm’s performance.
Feature scaling can be completed through the MaxAbsScaler estimator available in the
sklearn.preprocessing package (Figure 1b defines the Python statement to instantiate and
run a scaler object). MaxAbsScaler scales and translates each element individually such
that the maximal absolute value of each element in the training set will be 1.0. It does not
shift/center the data and thus does not destroy any sparsity, making MaxAbsScaler suitable
for scaling gene expression data.

The high number of features (e.g., the number of genes equals to 20,532) may negatively
impact the final results; consequently, feature reduction is mandatory. Unbiased feature
reduction can be achieved using statistical techniques such as principal component analysis
(PCA). PCA reduces the number of features by either removing or combining them. PCA
available in scikit-learn decomposes a multivariate data set in a set of successive orthogonal
components that present a maximum amount of variance. Figure 1c shows the Python
statement to instantiate and run a PCA object.

Finally, DEG data are in the optimal format for the K-Means and DBSCAN algorithms.
First, we describe how to set up K-Means to effectively analyze the preprocessed

input data. Next, we delineate how to tune DBSCAN to handle the preprocessed input
data, highlighting the difference between the two methods. Before starting the K-Means
algorithm, it is necessary to tune some parameters. The most crucial K-Means parameter to
tune is the number of clusters k. The optimal number of clusters k could be identified by
evaluating the sum of the squared error (SSE), because the goal of K-Means is to minimize the
SSE. Figure 2 illustrates the obtained SSE values varying k into the range {1, . . . , 10}. In
Figure 2, the point where the curve starts to bend, known as the elbow point, represents an
adequate trade-off between error and the number of clusters achieved for k = 3.

1 2 3 4 5 6 7 8 9 10
Number of Clusters

0

100000

200000

300000

400000

SS
E

Figure 2. The SSE values obtained from K-Means varying the number of clusters k.
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The other K-Means parameters to tune are: the initialization technique parameter, which
must be set up using the option k-means++ to ensure efficient centroids initialization and
to boost the convergence; the number of initializations to perform; and the maximum number
of iterations for each initialization. Figure 1d conveys the Python statement to instantiate
and run a K-Means object on the preprocessed DEG data. Finally, the obtained clusters can
be visualized, and the genes for each cluster can be stored in a file for subsequent analysis.
Figure 3 shows the obtained groups performing K-Means using the input data set.

−10 0 10 20 30 40
X

−5

0

5

10

15

Y

0
1
2

Figure 3. The clusters obtained by K-Means using the input gene expression data set. In the figure,
the X label refers to the gene expression values, whereas the Y label indicates the predicted clusters.

DBSCAN, unlike K-Means, does not need to define the clusters number to group data;
instead, it needs to tune min_samples and eps parameters allowing to define the size of
the density regions. If eps is chosen to be too small, some data could be not clustered
and labeled as noise through the −1 value. Instead, if eps is too large, close clusters
could be merged into one cluster, eventually producing a single cluster. The parameter
min_samples controls the number of samples (or total weight) in a neighborhood for a
point to be considered as a core point. The other parameters to tune are the following. The
metric parameter is used to calculate the distance between instances in a feature array;
we set the metric using the Euclidean distance, e.g., metric=’euclidean’. The algorithm
parameter defines the NearestNeighbors module to compute point-wise distances and find
nearest neighbors. The method should be chosen considering the nature of the problem; in
this case, we set the algorithm using auto, e.g., algorithm=’auto’. Figure 4 illustrates the
identified groups performing DBSCAN using the input data set.

Analyzing Figures 3 and 4, it is worthwhile to note that DBSCAN produced f our not
well-separated clusters, and at the same time, a huge number of points were labeled as as
noise, e.g., identified from the label −1. These results highlight the difficulty of DBSCAN to
deal with this DEG data set. Conversely, K-Means was able to produce three well-separated
clusters and was more informative than DBSCAN. As a result, the genes’ groups yielded
from K-Means and DBSCAN can be employed to perform pathway enrichment analysis.
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Figure 4. The clusters obtained by DBSCAN using the input gene expression data set. In the figure,
the X label refers to the gene expression values, whereas the Y label indicates the predicted clusters.

Pathway enrichment analysis searches for pathways whose genes are enriched from
the list of genes of interest, e.g., the group of genes obtained using K-Means. Pathway
enrichment analysis is a statistical method to link a gene list of interest with the affected
biological mechanisms [61]. The default pathway enrichment analysis implemented in
BiP [15], cPEA [16] and PathDIP [62] software tools searches for pathways whose genes
are particularly enriched (i.e., over-represented) in the fixed list of genes of interest with
respect to genes randomly chosen. The p-value of the enrichment of a pathway in BiP is
computed using a hypergeometric test, and multiple-test correction is applied. Table 3
shows the enriched pathways from BiP by using the gene belonging to cluster1.

Table 3. The BiP-enriched pathways using the genes belonging to cluster 1.

Enriched Pathway p Value

Intra-Golgi traffic 0.0045
Glutamate Neurotransmitter Release Cycle 0.0061
Astrocytic Glutamate–Glutamine Uptake And Metabolism 0.0065
Neurotransmitter uptake and metabolism In glial cells 0.0069
Trafficking of GluR2-containing AMPA receptors 0.0072
Defective SLC24A1 causes congenital stationary night blindness 1D (CSNB1D) 0.0076
MPS VII—Sly syndrome 0.0076
Extracellular matrix organization 0.0080
Presynaptic depolarization and calcium channel opening 0.0098
The canonical retinoid cycle in rods (twilight vision) 0.0102

Pathway enrichment analysis of omics data has several advantages compared to the
analysis of single genes. First, it provides information about genes’ interaction in form of an
interaction system or pathway. Second, it simplifies the result interpretation by providing
the name of the affected biological mechanisms, e.g., extracellular matrix organization, and
finally, it can speed up the identification of new bio-markers and drug targets.

5.4. GSE183947 Data Set Analysis

To validate the proposed Python clustering analysis protocol, we analyze the GSE183947
data set by using the K-Means and DBSCAN algorithms available in the sklearn.cluster
library.
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The K-Means results have been obtained tuning its main parameters as follows:
kmeans=KMeans(n_clusters=3, init="k-means++", n_init=50, max_iter=500,
random_state=42).fit(pca).

The DBSCAN results have been obtained tuning its main parameters as follows:
dbscan = DBSCAN(eps=0.3, min_samples=10, metric=’euclidean’,
algorithm=’auto’).fit(pca).

Analyzing the results produced by K-Means and DBSCAN, it is worthwhile to note
that both methods identified two groups. In particular, the value used to set the parameter
k of K-Means was obtained evaluating the SSE, as shown in Figure 5. DBSCAN needs to
tune epsilon and the minimum number of points to define the regions’ diameter and the
core points without it being necessary to define the number of clusters. The main difference
between the K-Means and DBSCAN results concerns the different number of points in
the two groups. K-Means assigns only a point to cluster 1, e.g., the gene ATP5H. Whereas
DBSCAN labeled six genes as noise, e.g., belonging to cluster -1: NEDD4, BLOC1S6, WDR74,
KIAA1328, ATP5H and NPIPA7.

1 2 3 4 5 6 7 8 9 10
Number of Clusters

0

20

40

60

80
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E

Figure 5. The SSE values obtained from K-Means varying the number of clusters k.

The genes belonging to the two clusters can be used to perform pathway enrichment
analysis, making it possible to link genes with the affected underlying cellular mechanisms.
To perform pathway enrichment, we use BiP and the Homosapiens pathway from the
Reactome database. The enrichment analysis using the six genes belonging to cluster
1 did not enrich any pathway. In contrast, performing pathway enrichment by using
the genes within the cluster 0 computed from both methods, it was possible to enrich
several biological pathways. Table 4 reports for space reasons only 10 enriched pathways
that are the same for both gene lists. All the enrichment results are available at: https:
//github.com/mmilano87/PCAPxDEG/tree/main/results (accessed on 3 October 2022).

Figures 6 and 7 show the clusters produced using K-Means and DBSCAN, analyzing
the GSE183947 data set. Both methods grouped the DEGs in two clusters, with the difference
that DBSCAN clustered some points as noise that were close to the core region. Conversely,
K-Means identified the only outlier, e.g., the farthest point with coordinates (−0.9; 7.1).

The reason is that K-Means updates the centroids at each iteration, making it possible
to rearrange the centroid value in order to expand cluster density by adding the new points,
making K-Means more suitable to deal with data sets with a high degree of redundancy.
Conversely, DBSCAN core points identification is based on the ε and the minimum number
of points that are fixed, and it is not possible to re-arrange at each new iteration. In addition,
the high degree of redundancy of DEG data sets affects the border points identification,
contributing to split data instead of expanding the cluster density.

https://github.com/mmilano87/PCAPxDEG/tree/main/results
https://github.com/mmilano87/PCAPxDEG/tree/main/results
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Table 4. The BiP-enriched pathways using separately the genes belonging to cluster 0 obtained from
DBSCAN and cluster 0 obtained from K-Means.

Pathway Name p Value FDR Correction Bonferroni Correction

(1) Metabolism of proteins 4.48× 10−216 8.00× 10−213 8.00× 10−213

(2) Signaling pathways 4.05× 10−204 3.62× 10−201 7.23× 10−201

(3) Gene expression (transcription) 8.23× 10−172 4.90× 10−169 1.47× 10−168

(4) RNA polymerase II transcription 5.12× 10−133 2.29× 10−130 9.15× 10−130

(5) Immune system 1.35× 10−125 4.81× 10−123 2.41× 10−122

(6) Metabolism 3.93× 10−122 1.17× 10−119 7.03× 10−119

(7) Post-translational protein modification 1.73× 10−121 4.41× 10−119 3.09× 10−118

(8) Cellular responses to stimuli 5.96× 10−109 1.33× 10−106 1.07× 10−105

(9) Cellular responses to stress 3.57× 10−107 7.09× 10−105 6.38× 10−104

(10) Developmental Biology 3.10× 10−82 5.04× 10−80 5.55× 10−79
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Figure 6. The clusters obtained by K-Means using the GSE183947 RNASeq expression data set.
In the figure, the X label refers to the gene expression values, whereas the Y label indicates the
predicted clusters.
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Figure 7. The clusters obtained by DBSCAN using the GSE183947 RNASeq expression data set.
In the figure, the X label refers to the gene expression values, whereas the Y label indicates the
predicted clusters.
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6. Discussion

The proposed step-by-step protocol describes a general methodology to analyze
massive DEG data sets using K-Means and DBSCAN, combining suitable Python statements
as lego pieces without requiring advanced computational skills. For each protocol step, we
identified and used the most appropriate analytical methods and their implementation,
such as Python’s class and functions, to optimally deal with DEG’s data sets. In particular,
the data normalization is performed through the MaxAbsScaler class, which is a method
that does not affect the data distribution, avoiding losing information on gene expression
levels. In addition, the high degree of redundancy of the DEG data sets is handled through
the PCA class that centers but does not scale the input data for each feature before applying
the Singular Value Decomposition (SVD). At the end of the preprocessing steps, the data
are suitable to feed K-Means or DBSCAN for analyzing data aiming to group and stratify
similar genes related to the biological question of interest (e.g., tumor versus normal,
treated versus untreated). In this way, it is possible to identify drugs showing similar
mechanisms of action in a large cohort of patients, identifying groups of patients’ genes
that are responsible for the different responses to medical treatments.

It is worthwhile to note that the proposed analysis protocol is general and could be
used to investigate any type of numerical data sets arranged in a tabular format, and it is
not only limited to analysis of DEGs data. Moreover, keeping in mind the lego analogy, this
protocol can be easily improved even for exploiting high-performance hardware just by
using the high-performance version of K-Means available in the PySpark library. To extend
the script to exploit performance computing, it is necessary to only import the PySpark
library using the following statement (see Listing 1),

Listing 1. The required statement to link into the script the PySpark package.

1 import pyspark

Then, we use the K-Means algorithm available in the PySpark library, using the
instruction in Listing 2.

Listing 2. The statements necessary to link into the script the PySpark package.

1 data = load_input_data(’/home/data.csv’)
2 kmeans= KMeans(k=2, maxIter =20, seed=9, weightCol="weighCol")
3 kmeans.fit(data)

Appendix A describes in a very detailed way all the Python statements composing the
analysis protocol.

Now, we will further validate the contribution of clustering analysis in helping re-
searchers discover subgroups of DEGs responsible for the onset and progression of com-
plex diseases, which could be used as new possible bio-markers to define new treatment
strategies based on the individual genome. To support this idea, we performed pathway
enrichment analysis by individually using the grouped genes produced from K-Means and
DBSCAN from the GSE183947 data set. As a result, it was possible to enrich the same path-
way by using the DEGs belonging to the K-Means and DBSCAN clusters. Table 3 reports
10 enriched pathways. We manually browsed the literature to seek evidence for linking the
enriched biological pathways with breast cancer. The pathway with index (1) Metabolism
of proteins, (2) Signaling pathways (3) Gene expression (transcription) and (6) Metabolism from
Table 3 are crosstalk pathways playing a critical role in breast cancer as described in [63,64].
The (4) RNA polymerase II transcription pathway performs a regulating function in breast
cancer as reported in [65]. The role of pathway (7) Post-translational protein modification is
discussed in [66]. The pathways (8) Cellular responses to stimuli silencing prion protein in
MDA-MB-435 breast cancer, as reported in [67], and (9) Cellular responses to stress regulate
the MCF-7 breast cancer cells entering quiescence [68]. The role of the pathway (5) Immune
system in breast cancer is discussed in [69]. Finally, Furth et al. [70] describes the involve-
ment of the developmental biology pathway in breast cancer through the signaling pathway,
highlighting the cross-relation between pathways (1) and (10) of Table 3.
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Even using the most suitable statements and tuning properly the main K-Means and
DBSCAN parameters, there are other factors to take into account to ensure high accuracy
of the results and reproducibility. Among them, it is worthy to keep the following in mind:
(i) clustering analysis depends on gene sets and databases used in the investigation, and
outdated resources strongly impact the study quality and results. (ii) Genes are associated
with many diverse identifiers. The recommendation is to use the unambiguous, unique,
and stable identifier, as some identifiers become obsolete over time. We recommend using
data sets based on the Entrez Gene database, or gene symbols, for human genes. Because
gene symbols change over time, the recommendation is to maintain both gene symbols and
Entrez Gene IDs as a final tip; there are many tools available that support the automatic
conversion of multiple identifier types to standard identifiers.

In addition to the programming tips, we provide some useful tips concerning the
advantages and limitations about the choice of the available cluster algorithm and metrics.
The provided tips could be exploited in case users want to further customize the analysis
protocol by using a different either cluster algorithm or metric to evaluate their data, or
use different unsupervised algorithms for evaluating which best addresses the objectives
that the study intends to achieve. Indeed, the possibility of gene expression data sets
being analyzed through many clustering models could allow highlighting polymorphic
variants and selecting patient subsets for constructing personalized classifiers, making
them a promising tool for personalized prescription for cancer patients [2].

The main limitations of the listed metrics follow. The cosine similarity does not take
into account the difference in rating scale between different points or vectors. In addition,
cosine similarity computed the difference between the two points or vectors in terms of
directions and not magnitude. A major disadvantage of the Jaccard index is that it is highly
influenced by the size of the data sets. Large data sets can have a huge impact on the
index, as it could significantly increase the union while keeping the intersection similar.
In contrast, the Sorensen–Dice metric weights each entity inversely proportionally to the
size of the relevant group rather than treating them equally. It is worth nothing that the
Sorensen–Dice dissimilarity measure is not a metric, since it does not satisfy the triangle
inequality condition. The Euclidean distance is the length of the line segment joining a
given pair of points in a grid/graph. The Euclidean distance only makes sense when all
the dimensions have the same units (such as meters), since it involves adding the squared
value of them. Manhattan distance calculates the distance between two data points in a
grid as a path. The Manhattan distance is the sum of the absolute values of the elements of
a vector. Manhattan drops points with offsets in another dimension, making it suitable to
deal with high-dimensional data.

One potential problem with many hierarchical clustering methods is that as clusters
grow, the centroid that represents the cluster might no longer describe any of the items in
the cluster (e.g., genes). Conversely, divisive approaches are not affected by this limitation,
because they partition data (e.g., genes or SNPs) into groups with similar patterns.

The main advantage of the DBSCAN is that it can cluster data with different distribu-
tions. However, it is worth noting that DBSCAN suffers from the dimensionality curse due
to the increasing number of features in the data set. This problem is particularly evident
using the Euclidean distance. Contrarily, K-Means has the advantage that it is scalable for
large data sets. Conversely to K-Means, DBSCAN does not assume that clusters must have
a spherical shape. In addition, DBSCAN differs from K-Means since it is hierarchical and
does not necessarily assign each point to a cluster but can remove noise points.

One potential disadvantage of K-Means clustering is that it requires defining a priori
the number of clusters, and it is sensitive to outliers. It is worth noting that changing the
order of data can produce different results.

Finally, the shape of the clusters detected with any metrics varies with the data point’s
scale imbalance. To avoid this problem, it is suggested to normalize the scale of each
component of the data. In addition, as the data dimensionality increases, Euclidean,
Manhattan, and Chebyshev distances become less helpful. This is due to the curse of
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dimensionality, concerning the notion that higher-dimensional space does not act as we
would expect from 2D or 3D space.

7. Conclusions

The assumption behind the use of clustering techniques to analyze microarrays data is
that genes in a cluster provide insight into the gene interactions impacting the outcome of
the cellular machinery. However, the identified clusters depend on the respective methods
and metric and/or normalization methods. These methods can significantly affect the
outcome of any analysis and its reproducibility. The choice of the most suitable methods
should be data-driven, highlighting that there is no single way to analyze data. However,
different techniques might be more or less appropriate for different data sets. In particular,
the case study pointed out that K-Means is more suitable than DBSCAN to handle DEGs
data sets obtained from microarray and RNASeq. Furthermore, applying more than one
technique to explore a particular data set could clarify other relationships between the
data. In this work, we provided a simple step-by-step protocol to simplify the use of
programming language to perform data preprocessing and clustering analysis even for
users without programming skills. In particular, the analysis protocol highlights that by
changing just one statement, e.g., the instantiation of the clustering class, it is possible to
run different clustering algorithms. In this way, the identification of new bio-markers is
speeding up. Finally, we provided some best practices and tips to overcome issues in the
study of omics data sets through unsupervised learning.
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Appendix A

In this appendix, we will describe the meaning of the Python statements used to
perform clustering analysis on gene expression data sets. We assume that the users have
already installed Python and all the necessary additional packages on their machines. For
more information on setting up a Python environment for machine learning in Windows,

https://github.com/mmilano87/PCAPxDEG
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Linux and macOS, the readers could go through the Python user guides related to their
installed operating system.

The first lines of code of any Python script identify the import section, and it is
mandatory to include in the script the necessary additional library, i.e., the sklearn, numpy,
matplolib, seaborn and pandas supplied as additional functions to the programmer. In
Listings A1 and A2, the import section starts at line 1 and ends at line 8. In this way, all the
classes and functions of each module can be used by a simple function call; e.g., to show
a plot on the screen by using the matplot functions, the following statement can be used:
plt.show(). It is worthwhile to note that each library other than the one built in must be
explicitly imported into the script before they can be used.

Listing A1. Python script to analyze gene expression data sets using the K-Means algorithm available
in the scikit-learn package.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 import pandas as pd
4 import seaborn as sns
5

6 from sklearn.cluster import KMeans
7 from sklearn.decomposition import PCA
8 from sklearn.preprocessing import MaxAbsScaler
9

10 #the variable containing the path to the input gene expression data set to
analyse

11 data = "./data.csv"
12

13 # Gene expression data set is red using NumPy genfromtxt , setting "," as
delimiter

14 # and skipping first column and row since containing the headers info
15 gene_exp_val = np.genfromtxt(data , delimiter=",", usecols=range(1, 1001),

skip_header =1).transpose ()
16

17 #definition of the MaxAbsScaler estimator object
18 scaler = MaxAbsScaler ()
19 #run the estimator and store the result into the variable transformed_data
20 transformed_data = scaler.fit_transform(gene_exp_val)
21

22 #definition and execution of the pca object
23 pca_data = PCA(n_components =2, random_state =78).fit_transform(

transformed_data)
24

25 #definition and execution of the kmeans object
26 kmeans=KMeans(n_clusters =3, init="k-means++", n_init =50, max_iter =500,

random_state =78).fit(pca_data)
27

28 #code to save the detected cluster as eps image
29 dataframe = pd.DataFrame(pca_data , columns =["X", "Y"])
30 dataframe["clusters"] = kmeans.labels_
31

32 plt.style.use("fivethirtyeight")
33 plt.figure(figsize =(8, 6)) #
34 sns.scatterplot(
35 "X", "Y",
36 s=50,
37 data=dataframe ,
38 hue="clusters",
39 palette="Set2")
40 lg = plt.legend(bbox_to_anchor =(1.05 , 1.0), loc=’upper left’)
41

42 plt.savefig(fname=’./ clusters.eps’,
43 dpi=300,
44 format=’eps’,
45 bbox_extra_artists =(lg ,),
46 bbox_inches=’tight’)
47 plt.tight_layout ()
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48 plt.show()

Listing A2. Python script to analyze gene expression data sets using the DBSCAN algorithm available
in the scikit-learn package.

1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4

5

6 from sklearn.cluster import DBSCAN
7 from sklearn.decomposition import PCA
8 from sklearn.preprocessing import MaxAbsScaler
9

10 #the variable containing the path to the input gene expression data set to
analyse

11 data = "./data.csv"
12

13 # Gene expression data set is red using NumPy genfromtxt , setting "," as
delimiter

14 # and skipping first column and row since containing the headers info
15 gene_exp_val = np.genfromtxt(data , delimiter=",", usecols=range(1, 1001),

skip_header =1).transpose ()
16

17 #definition of the MaxAbsScaler estimator object
18 scaler = MaxAbsScaler ()
19 #run the estimator and store the result into the variable transformed_data
20 transformed_data = scaler.fit_transform(gene_exp_val)
21

22 #definition and execution of the pca object
23 pca_data = PCA(n_components =2, random_state =78).fit_transform(

transformed_data)
24

25 #definition and execution of the kmeans object
26 dbscan = DBSCAN(eps=0.5, min_samples =13, metric=’euclidean ’, algorithm=’auto’

).fit(pca_data)
27

28 #code to save the detected cluster as eps image
29 dataframe = pd.DataFrame(pca_data , columns =["X", "Y"])
30 dataframe["clusters"] = dbscan.labels_
31

32 plt.style.use("fivethirtyeight")
33 plt.figure(figsize =(8, 6)) #
34 sns.scatterplot(
35 "X", "Y",
36 s=50,
37 data=dataframe ,
38 hue="clusters",
39 palette="Set2")
40 lg = plt.legend(bbox_to_anchor =(1.05 , 1.0), loc=’upper left’)
41

42 plt.savefig(fname=’./ clusters.eps’,
43 dpi=300,
44 format=’eps’,
45 bbox_extra_artists =(lg ,),
46 bbox_inches=’tight’)
47 plt.tight_layout ()
48 plt.show()

The instruction at line 11 of both Listings A1 and A2 defines the variable named data
that holds the path to the input data to investigate. To upload the input data, the data
variable is passed as argument to the gen f romtxt numpy function that will load, transpose
and memorize the input data within the variable named gene_exp_val. The other arguments
of the gen f romtxt are: (i) delimiter= that defines symbols used to delimit the input data,
e.g., the ’,’; (ii) usecols= allows selecting the range of columns to upload, e.g., all the columns;
(iii) skip_header= we pass the index of the headers row, which is not useful for the clustering
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analysis. At the end of data uploading, using the numpy transpose functions, the input
table will be transposed and stored into the gene_exp_val variable in Listings A1 and A2
line 15.

Data scaling is obtained by instantiating a MaxAbsScaler object using the statement
at Listings A1 and A2 line 18 called scaler. Next, we invoke on the scaler object the
fit_transform(gene_exp_val) and pass the data within the gene_exp_val variable. As a
result, the scaled data will be stored into the transformed_data variable Listings A1 and A2
line 20. Dimensionality reduction is obtained creating an object of the class PCA called the
constructor. The constructor allows setting up the value of the parameters n_componets = 2,
e.g., the number of components to keep and random_state = 78, e.g., using an int value
as argument allows reproducing results across multiple function calls. Next, we use the
fit_transform( transformed_data) method, feeding it with the transformed data within
the transformed_data variable Listings A1 and A2 line 23.

The preprocessed DEG data are held within the variable pca_data that will be supplied
as input data to both the K-Means object Listing A1 line 26 and the DBSCAN objects
Listing A2 line 26. Now, all the information about the K-Means execution is memorized
within the variable named kmeans; in particular, we are interested in the labels_ attribute
value. In addition, for DBSCAN, the information is stored within the variable named
dbscan; in particular, we are interested in the labels_ attribute value.

The values of labels_ of both objects will be used to create and fill the columns of a
data frame line 30 of both Listings A1 and A2 to generate the cluster figure through the
matplot and seaborn library lines 32 . . . 48. The statement at line 32 allows choosing the
figure style, whereas line 33 allows tuning the figure size. The statement at line 34 spread
on multiple lines just for indentation purposes defines the type of seaborn plot to create,
e.g., scatterplot calling the scatterplot function and customizing its parameters as follows.
The “X” and “Y” values define the name of the x and y axes in the plot. The argument s=50
defines the size of scatter markers. The argument data=dataframe allows tuning the input
data structure, whereas hue="clusters" produces points with different colors, and the
palette="Set2" parameters define the colors to use when mapping the hue parameters.

The statement at line 42 of both Listings A1 and A2 allows saving the figure as a file
on the hard disk. The savefig function allows saving the figure in a different format by
setting the format argument; e.g., format=’eps’ saves the figure on the disk as an eps file
at the location defined by the path held by the fname argument, e.g., ’./clusters.eps’.
The dpi=300 argument defines the resolution in dots per inch. The bbox_extra_artists
argument allows defining the extra element to include into the figure list of the Artist,
which is optional when the tight bbox is calculated, e.g., the legend lg defined at line 40.
The bbox_inches=’tight’ defines the portion of the figure to save. The statement at line
47 allows adjusting the padding between and around subplots, and finally, the statement at
line 48 visualizes the screen the scatter plot.

Finally, it is worth noting how simple it is to perform clustering analysis using different
algorithms in Python. The main steps of both data preprocessing and post-processing are
the same if using the K-Means or DBSCAN method; the only difference is the use of K-
Means or DBSCAN at line 26 of both Listings A1 and A2. In this way, it is straightforward to
analyze DEG data sets through several different clustering algorithms, allowing researchers
to chose the algorithm that provides the best results in terms of predicted clusters and the
quality of clusters, contributing to detecting genes groups affecting the underlying cellular
functions to provide new actionable knowledge to provide new treatments as well as to
discover new bio-markers.
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