Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Experimental Animals
2.3. Magnetic Cell Separation
2.4. Cell Line Establishment and Maintenance
2.5. Cytotoxicity Assay
2.6. Antigenic Stimulation
2.7. Theileriacidal Treatment
2.8. Flow Cytometry Analysis
2.9. PCR and Sequencing Analysis
2.10. RNA Extraction and cDNA Synthesis
2.11. Quantitative PCR Analysis
2.12. Data Analysis
3. Results
3.1. Confirmation of Experimental Animals for Piroplasmosis
3.2. Established B-Cell Line
3.3. Specificity Analysis of the B Cells Line
3.4. Optimized Conditions for BW720c and LPS
3.5. Cytokine Primer Optimization
3.6. Interleukins
3.7. Interferons
3.8. Tumor Necrosis Factor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
cDNA | Complementary DNA |
IFN | Interferon |
IL | Interleukin |
LPS | Lipopolysaccharides |
LVRI | Lanzhou Veterinary Research Institute |
NCBI | National Center for Biological Information |
nBC | Normal B cells |
PBMCs | Peripheral blood mononuclear cells |
PCR | Polymerase chain reaction |
rRNA | Ribosomal RNA |
qPCR | Quantitative PCR |
TaBC | Theileria annulata transformed B cells |
TLRs | Toll like receptors |
TNF | Tumor necrosis factor |
BW720c | Buparvaquone |
References
- Hayashida, K.; Hara, Y.; Abe, T.; Yamasaki, C.; Toyoda, A.; Kosuge, T.; Suzuki, Y.; Sato, Y.; Kawashima, S.; Katayama, T. Comparative genome analysis of three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of Theileria-induced leukocyte transformation. MBio 2012, 3, e00204-12. [Google Scholar] [CrossRef]
- Rashid, M.; Akbar, H.; Rashid, I.; Saeed, K.; Ahmad, L.; Ahmad, A.S.; Shehzad, W.; Islam, S.; Farooqi, S. Economic significance of tropical theileriosis on a Holstein Friesian dairy farm in Pakistan. J. Parasitol. 2018, 104, 310–312. [Google Scholar] [CrossRef]
- Preston, P.; Hall, F.; Glass, E.; Campbell, J.; Darghouth, M.; Ahmed, J.; Shiels, B.; Spooner, R.; Jongejan, F.; Brown, C. Innate and adaptive immune responses co-operate to protect cattle against Theileria annulata. Parasitol. Today 1999, 15, 268–274. [Google Scholar] [CrossRef]
- Wykes, M.; Pombo, A.; Jenkins, C.; MacPherson, G.G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 1998, 161, 1313–1319. [Google Scholar]
- Inaba, K.; Metlay, J.P.; Crowley, M.T.; Steinman, R.M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. 1990, 172, 631–640. [Google Scholar] [CrossRef]
- Heesters, B.A.; van der Poel, C.E.; Das, A.; Carroll, M.C. Antigen presentation to B cells. Trends Immunol. 2016, 37, 844–854. [Google Scholar] [CrossRef]
- Stephens, S.; Howard, C. Infection and transformation of dendritic cells from bovine afferent lymph by Theileria annulata. Parasitology 2002, 124, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.-F.; Thibaud, J.-L.; Miled, L.B.; Chaussepied, M.; Baumgartner, M.; Davis, W.C.; Minoprio, P.; Langsley, G. Theileria annulata in CD5+ macrophages and B1 B cells. Infect. Immun. 1999, 67, 6678–6682. [Google Scholar] [PubMed]
- Ferrolho, J.; Domingos, A.; Campino, L. Cattle Specific Immune Mechanisms used against the Protozoan Theileria annulata. Int. Trends Immunity 2016, 4. [Google Scholar] [CrossRef]
- Spooner, R.; Innes, E.; Glass, E.; Brown, C. Theileria annulata and T. parva infect and transform different bovine mononuclear cells. Immunology 1989, 66, 284. [Google Scholar]
- Campbell, J.; Brown, D.; Glass, E.; Hall, F.; Spooner, R. Theileria annulata sporozoite targets. Parasite Immunol. 1994, 16, 501–505. [Google Scholar] [CrossRef]
- Dobbelaere, D.; Coquerelle, T.M.; Roditi, I.J.; Eichhorn, M.; Williams, R.O. Theileria parva infection induces autocrine growth of bovine lymphocytes. Proc. Natl. Acad. Sci. USA 1988, 85, 4730–4734. [Google Scholar] [CrossRef]
- Tretina, K.; Gotia, H.T.; Mann, D.J.; Silva, J.C. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol. 2015, 31, 306–314. [Google Scholar] [CrossRef]
- Guergnon, J.; Dessauge, F.; Langsley, G.; Garcia, A. Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3. Biochimie 2003, 85, 771–776. [Google Scholar] [CrossRef]
- Naessens, J. Surface Ig on B lymphocytes from cattle and sheep. Int. Immunol. 1997, 9, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Ikebuchi, R.; Konnai, S.; Okagawa, T.; Nishimori, A.; Nakahara, A.; Murata, S.; Ohashi, K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J. Gen. Virol. 2014, 95, 1832–1842. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef]
- Im, Y.B.; Jung, M.; Shin, M.-K.; Kim, S.; Yoo, H.S. Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins. Vet. Res. 2016, 47, 30. [Google Scholar] [CrossRef]
- Norian, R.; Delirezh, N.; Azadmehr, A. Evaluation of proliferation and cytokines production by mitogen-stimulated bovine peripheral blood mononuclear cells. Vet. Res. Forum 2015, 6, 265–271. [Google Scholar] [PubMed]
- Duddy, M.E.; Alter, A.; Bar-Or, A. Distinct profiles of human B cell effector cytokines: A role in immune regulation? J. Immunol. 2004, 172, 3422–3427. [Google Scholar] [CrossRef] [PubMed]
- Amills, M.; Norimine, J.; Olmstead, C.A.; Lewin, H.A. Cytokine mRNA expression in B cells from bovine leukemia virus-infected cattle with persistent lymphocytosis. Cytokine 2004, 28, 25–28. [Google Scholar] [CrossRef]
- Ahmed, J.; Mehlhorn, H. The cellular basis of the immunity to and immunopathogenesis of tropical theileriosis. Parasitol. Res. 1999, 85, 539–549. [Google Scholar] [CrossRef]
- Zhang, J.-M.; An, J. Cytokines, inflammation and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721.e770. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Liu, J.; Rashid, M.; Iqbal, N.; Guan, G.; Yin, H.; Luo, J. Molecular survey of piroplasm species from selected areas of China and Pakistan. Parasites Vectors 2018, 11, 457. [Google Scholar] [CrossRef]
- Marek, R.; Caruso, M.; Rostami, A.; Grinspan, J.B.; Sarma, J.D. Magnetic cell sorting: A fast and effective method of concurrent isolation of high purity viable astrocytes and microglia from neonatal mouse brain tissue. J. Neurosci. Methods 2008, 175, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.A.; De Luca, P.M.; Bertho, Á.L.; Azeredo-Coutinho, R.B.; Coutinho, S.G. Detection of intracytoplasmic cytokines by flow cytometry. Memórias Do Inst. Oswaldo Cruz 2000, 95, 401–402. [Google Scholar] [CrossRef]
- Buchanan, R.; Popowych, Y.; Dagenais, C.; Arsic, N.; Mutwiri, G.K.; Potter, A.A.; Babiuk, L.A.; Griebel, P.J.; Wilson, H.L. Interferon-gamma and B-cell Activating Factor (BAFF) promote bovine B cell activation independent of TLR9 and T-cell signaling. Vet. Immunol. Immunopathol. 2012, 145, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Guan, G.; Liu, J.; Liu, A.; Li, Y.; Yin, H.; Luo, J. Screening and identification of host proteins interacting with Theileria annulata cysteine proteinase (TaCP) by yeast-two-hybrid system. Parasites Vectors 2017, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.; Lee, D.; Stucky, J.; Chiu, Y.-L.; Rubin, A.; Horton, H.; McElrath, M.J. Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J. Immunol. Methods 2007, 322, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Obermaier, B.; Dauer, M.; Herten, J.; Schad, K.; Endres, S.; Eigler, A. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol. Proced. Online 2003, 5, 197. [Google Scholar] [CrossRef]
- Ryan, J. Cell Cloning by Serial Dilution in 96 Well Plates; Corning: Lowell, MA, USA, 2008. [Google Scholar]
- Durrani, Z.; Weir, W.; Pillai, S.; Kinnaird, J.; Shiels, B. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata. Cell. Microbiol. 2012, 14, 1434–1454. [Google Scholar] [CrossRef]
- Sharifiyazdi, H.; Namazi, F.; Oryan, A.; Shahriari, R.; Razavi, M. Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Vet. Parasitol. 2012, 187, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Sager, H.; Bertoni, G.; Jungi, T.W. Differences between B cell and macrophage transformation by the bovine parasite, Theileria annulata: A clonal approach. J. Immunol. 1998, 161, 335–341. [Google Scholar]
- Monrad, S.U.; Rea, K.; Thacker, S.; Kaplan, M.J. Myeloid dendritic cells display downregulation of C-type lectin receptors and aberrant lectin uptake in systemic lupus erythematosus. Arthritis Res. Ther. 2008, 10, R114. [Google Scholar] [CrossRef]
- Wong, N.K.; Shenoi, R.A.; Abbina, S.; Chafeeva, I.; Kizhakkedathu, J.N.; Khan, M.K. Nontransformed and cancer cells can utilize different endocytic pathways to internalize dendritic nanoparticle variants: Implications on nanocarrier design. Biomacromolecules 2017, 18, 2427–2438. [Google Scholar] [CrossRef]
- Bao, Y.; Cao, X. The immune potential and immunopathology of cytokine-producing B cell subsets: A comprehensive review. J. Autoimmun. 2014, 55, 10–23. [Google Scholar] [CrossRef]
- GeneScript. Available online: https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool (accessed on 4 October 2018).
- NCBI. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 8 October 2018).
- Integrated DNA Technologies. Available online: https://sg.idtdna.com/calc/analyzer (accessed on 10 October 2018).
- Hassan, M.A.; Liu, J.; Sajid, M.S.; Mahmood, A.; Zhao, S.Y.; Abbas, Q.; Guan, G.; Yin, H.; Luo, J. Molecular detection of Theileria annulata in cattle from different regions of Punjab, Pakistan using recombinase polymerase amplification and PCR. J. Parasitol. 2018, 104, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010. [Google Scholar] [CrossRef]
- Konnai, S.; Usui, T.; Ohashi, K.; Onuma, M. The rapid quantitative analysis of bovine cytokine genes by real-time RT-PCR. Vet. Microbiol. 2003, 94, 283–294. [Google Scholar] [CrossRef]
- Coussens, P.M.; Verman, N.; Coussens, M.A.; Elftman, M.D.; McNulty, A.M. Cytokine gene expression in peripheral blood mononuclear cells and tissues of cattle infected with Mycobacterium avium subsp. paratuberculosis: Evidence for an inherent proinflammatory gene expression pattern. Infect. Immun. 2004, 72, 1409–1422. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2–ΔΔCT method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71. [Google Scholar]
- Zaros, L.G.; Bricarello, P.A.; Amarante, A.F.T.; Coutinho, L.L. Quantification of bovine cytokine gene expression using real-time RT-PCR methodology. Genet. Mol. Biol. 2007, 30, 575–579. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.; Guan, G.; Liu, A.; Li, Y.; Yin, H.; Luo, J. Theileria annulata Cyclophilin1 (TaCyp1) Interacts With Host Cell MED21. Front. Microbiol. 2018, 9, 2973. [Google Scholar] [CrossRef]
- Parameswaran, N.; Patial, S. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Glass, E.J.; Craigmile, S.C.; Springbett, A.; Preston, P.M.; Kirvar, E.; Wilkie, G.M.; Eckersall, P.D.; Hall, F.R.; Brown, C.D. The protozoan parasite, Theileria annulata, induces a distinct acute phase protein response in cattle that is associated with pathology. Int. J. Parasitol. 2003, 33, 1409–1418. [Google Scholar] [CrossRef]
- Lund, F.E. Cytokine-producing B lymphocytes—Key regulators of immunity. Curr. Opin. Immunol. 2008, 20, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Paxton, E.; Waddington, D.; Talbot, R.; Darghouth, M.A.; Glass, E.J. Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. Int. J. Parasitol. 2008, 38, 313–325. [Google Scholar] [CrossRef]
- Jensen, K.; Makins, G.D.; Kaliszewska, A.; Hulme, M.J.; Paxton, E.; Glass, E.J. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors. Int. J. Parasitol. 2009, 39, 1099–1108. [Google Scholar] [CrossRef]
- Plattner, F.; Soldati-Favre, D. Hijacking of host cellular functions by the Apicomplexa. Annu. Rev. Microbiol. 2008, 62, 471–487. [Google Scholar] [CrossRef]
- Estes, D.M. Differentiation of B cells in the bovine. Role of cytokines in immunoglobulin isotype expression. Vet. Immunol. Immunopathol. 1996, 54, 61–67. [Google Scholar] [CrossRef]
- Ahmed, J.S.; Glass, E.J.; Salih, D.A.; Seitzer, U. Innate immunity to tropical theileriosis. Innate Immun. 2008, 14, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Procopio, A.; Abe, H.; Scala, G.; Ortaldo, J.; Oppenheim, J. Production of interleukin 1 activity by normal human peripheral blood B lymphocytes. J. Immunol. 1985, 135, 1132–1136. [Google Scholar] [PubMed]
- Haas, K.; Estes, D. Activation of bovine B cells via surface immunoglobulin M cross-linking or CD40 ligation results in different B-cell phenotypes. Immunology 2000, 99, 272–278. [Google Scholar] [CrossRef] [PubMed]
- De Grandmont, M.J.; Racine, C.; Roy, A.; Lemieux, R.; Néron, S. Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood 2003, 101, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Olobo, J.; Black, S. In vitro secretion of bovine immunoglobulins during pokeweed mitogen or pokeweed mitogen and antigen activation of lymphocytes. Vet. Res. Commun. 1989, 13, 193–197. [Google Scholar] [CrossRef]
NCBI Accession No. | Gene Name | Sense (5′ to 3′) | Primers | Product Length (bp) | Reference |
---|---|---|---|---|---|
NM_174092.1 | IL1A | F | AGCTATGAGCCACTTCGTGA | 110 | This study |
R | GCCACCATCACCACATTCTC | ||||
KX013245.1 | IL1B | F | CCTTCCCTGCATTAGTGCTT | 129 | |
R | AGGCTGGCTTTGAGTGAGTA | ||||
NM_180997.2 | IL2 | F | CCTCAACTCCTGCCACAATG | 100 | |
R | CCCGTAGAGCTTGAAGTAGGT | ||||
NM_173921.2 | IL4 | F | GTGCTGGTCTGCTTACTGGT | 102 | |
R | CGTTGTGAGGATGTTCAGCG | ||||
NM_173923.2 | IL6 | F | ACGAGTGGGTAAAGAACGCA | 101 | |
R | GAGCCCCAGCTACTTCATCC | ||||
XM_027544730.1 | IL8 | F | TGGGCCACACTGTGAAAAT | 136 | [47] |
R | TCATGGATCTTGCTTCTCAGC | ||||
NM_174088.1 | IL10 | F | TCAGCACTACTCTGTTGCCTG | 100 | This study |
R | GGCTGGTTGGCAAGTGGATA | ||||
NM_174355.2 | IL12A | F | ACAACCCTGTGCCTTAGAAGT | 126 | |
R | TGCCAGCATGTTCTGGTCTA | ||||
NM_174356.1 | IL12B | F | ACCAGAGCAGTGAGGTCTTG | 116 | |
R | GAGTGAACGACTCAGAGCCT | ||||
AF143203.1 | IL16 | F | GAGGGCGGTCCCAGAAGT | 73 | [45] |
R | CTCTCTAGATGCAGTCTGTCGTTTGT | ||||
NM_001013401.2 | LTA | F | TGACACCACCTGGACGTCTC | 294 | [21] |
R | GGAGGGAATTGTTGCTCAGA | ||||
M36271.1 | TGFB1 | F | AGAGAGGAAATAGAGGGCTT | 306 | |
R | ATGAATCCACTTCCAGCCCA | ||||
Z46508.1 | IFNA | F | GTGGCAGCCAGTTACAGAAG | 127 | This study |
R | CATAGCTTGTCCAGGAGGCT | ||||
EU276065.1 | IFNB | F | TGCCTGAGGAGATGAAGCAA | 100 | |
R | TCTCTGGTGAGAATGCCGAA | ||||
GU129693.1 | TNFA | F | GGCCAGGATGTGGAGAGTAG | 132 | |
R | CCATGAGGGCATTGGCATAC | ||||
XM_019987862.1 | B-actin | F | GGCATCCTGACCCTCAAGTA | 102 | [48] |
R | CACACGGAGCTCGTTGTAGA | ||||
KF559356.1 | Ta18s | F | AAGCCATGCATGTCTAAGTAGAAGCTTTT | 1586 | [25] |
R | GAATAATTCACCGGATCACTCG |
Cytokines | Slope (-) | R2 | Cultured Cell Groups | |||
---|---|---|---|---|---|---|
nBC-LPS Mean ± SD | TaBCs Mean ± SD | TaBCs-BW720c Mean ± SD | TaBC-LPS Mean ± SD | |||
IL1A | 3.247 | 0.9913 | 44.41 ± 12.87 | 6.33 ± 1.55 | 0.80 ± 0.10 | 0.30 ± 0.05 |
IL1B | 3.308 | 0.9957 | 389.36 ± 83.73 | 1.09 ± 0.51 | 0.19 ± 0.11 | 0.57 ± 0.19 |
IL2 | 3.062 | 0.9957 | 0.11 ± 0.06 | 0.33 ± 0.14 | 0.31 ± 0.13 | 0.22 ± 0.15 |
IL4 | 3.11 | 0.9995 | 0.13 ± 0.08 | 10.57 ± 2.67 | 0.08 ± 0.05 | 0.05 ± 0.03 |
IL6 | 2.934 | 0.9877 | 11.38 ± 5.38 | 9.61 ± 7.91 | 4.96 ± 1.23 | 1.15 ± 0.21 |
IL8 | 3.46 | 0.9956 | 4.36 ± 1.73 | 0.52 ± 0.03 | 1.77 ± 0.22 | 0.21 ± 0.15 |
IL10 | 2.95 | 0.9890 | 2.30 ± 1.16 | 3.44 ± 1.35 | 1.92 ± 0.71 | 0.09 ± 0.06 |
IL12α | 3.112 | 0.9949 | 1.51 ± 0.58 | 18.62 ± 12.55 | 2.60 ± 0.72 | 0.76 ± 0.33 |
IL12β | 3.05 | 0.9968 | 0.59 ± 0.34 | 0.39 ± 0.53 | 4.45 ± 2.50 | 0.75 ± 0.59 |
IL16 | 3.188 | 0.9911 | 2.08 ± 0.92 | 0.12 ± 0.05 | 0.32 ± 0.08 | 0.66 ± 0.33 |
LTA | ND | ND | 0.32 ± 0.08 | 0.27 ± 0.05 | 0.22 ± 0.05 | 0.05 ± 0.02 |
TGFB1 | ND | ND | 0.08 ± 0.07 | 0.31 ± 0.06 | 0.54 ± 0.26 | 0.03 ± 0.03 |
TNFA | 3.154 | 0.9991 | 2.91 ± 1.85 | 1.55 ± 0.96 | 0.78 ± 0.43 | 0.52 ± 0.17± |
IFNA | 2.812 | 0.9936 | 0.66 ± 0.58 | 0.44 ± 0.26 | 0.59 ± 0.23 | 1.08 ± 0.72 |
IFNB | 3.105 | 0.9958 | 0.20 ± 0.11 | 0.28 ± 0.16 | 3.67 ± 1.66 | 2.12 ± 0.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, M.; Guan, G.; Luo, J.; Zhao, S.; Wang, X.; Rashid, M.I.; Hassan, M.A.; Mukhtar, M.U.; Liu, J.; Yin, H. Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line. Genes 2019, 10, 329. https://doi.org/10.3390/genes10050329
Rashid M, Guan G, Luo J, Zhao S, Wang X, Rashid MI, Hassan MA, Mukhtar MU, Liu J, Yin H. Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line. Genes. 2019; 10(5):329. https://doi.org/10.3390/genes10050329
Chicago/Turabian StyleRashid, Muhammad, Guiquan Guan, Jianxun Luo, Shuaiyang Zhao, Xiaoxing Wang, Muhammad Imran Rashid, Muhammad Adeel Hassan, Muhammad Uzair Mukhtar, Junlong Liu, and Hong Yin. 2019. "Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line" Genes 10, no. 5: 329. https://doi.org/10.3390/genes10050329
APA StyleRashid, M., Guan, G., Luo, J., Zhao, S., Wang, X., Rashid, M. I., Hassan, M. A., Mukhtar, M. U., Liu, J., & Yin, H. (2019). Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line. Genes, 10(5), 329. https://doi.org/10.3390/genes10050329