Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Injection Procedure
2.3. Tissue Preparation and Histochemistry
2.4. Morphological Analysis and Confocal Microscopy
2.5. Statistical Analysis
2.6. Drugs
2.6.1. Selective PKC Substances
2.6.2. Selective PKA Substances
2.7. Antibodies
3. Results
3.1. Postnatal Polyneuronal Innervation in the NMJ
3.2. PKA Activity Modulation
3.2.1. PKA Activity Prevents the Developmental Axonal Loss
Specific Involvement of PKA Regulatory Subunits
3.2.2. PKA Activity Prevents the Postsynaptic Receptor Cluster Maturation
3.3. PKC Activity Modulation
3.3.1. PKC Activity Potentiates the Developmental Axonal Loss
Specific Involvement of cPKCβI and nPKCε Isoforms
3.3.2. PKC Activity Promotes the Postsynaptic Receptor Cluster During Postnatal Maturation
3.4. Comparison Between the PKA and the PKC Pathways
3.5. Prolonged Inhibition of PKA and PKC
4. Discussion
4.1. PKA and NMJ Maturation
4.1.1. PKA in the Presynaptic Site
4.1.2. PKA in the Postsynaptic Site
4.2. PKC and NMJ Maturation
4.2.1. PKC in the Presynaptic Component
4.2.2. PKC in the Postsynaptic Component
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Benoit, P.; Changeux, J.P. Consequences of tenotomy on the evolution of multiinnervation in developing rat soleus muscle. Brain Res. 1975, 99, 354–358. [Google Scholar] [CrossRef]
- Lichtman, J.W. The reorganization of synaptic connexions in the rat submandibular ganglion during post-natal development. J. Physiol. 1977, 273, 155–177. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Watanabe, T.; Uesaka, N.; Watanabe, M. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. Cerebellum 2018, 17, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Lichtman, J. Elimination of synapses in the developing nervous system. Science 1980, 210, 153–157. [Google Scholar] [CrossRef]
- Jansen, J.K.; Fladby, T. The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog. Neurobiol. 1990, 34, 39–90. [Google Scholar] [CrossRef]
- Sanes, J.R.; Lichtman, J.W. Developement of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 1999, 22, 389–442. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Lichtman, J.W. Mechanism of synapse disassembly at the developing neuromuscular junction. Curr. Opin. Neurobiol. 1996, 6, 104–112. [Google Scholar] [CrossRef]
- Nelson, P.G.; Lanuza, M.A.; Jia, M.; Li, M.-X.; Tomas, J. Phosphorylation reactions in activity-dependent synapse modification at the neuromuscular junction during development. J. Neurocytol. 2003, 32, 803–816. [Google Scholar] [CrossRef]
- Wyatt, R.M.; Balice-Gordon, R.J. Activity-dependent elimination of neuromuscular synapses. J. Neurocytol. 2003, 32, 777–794. [Google Scholar] [CrossRef]
- Buffelli, M.; Busetto, G.; Bidoia, C.; Favero, M.; Cangiano, A. Activity-Dependent Synaptic Competition at Mammalian Neuromuscular Junctions. Physiology 2004, 19, 85–91. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.A.; Ostberg, A.J.; Vrbová, G. Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. J. Physiol. 1978, 282, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Tomàs, J.; Santafé, M.M.; Lanuza, M.A.; García, N.; Besalduch, N.; Tomàs, M. Silent synapses in neuromuscular junction development. J. Neurosci. Res. 2011, 89, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Je, H.S.; Yang, F.; Ji, Y.; Potluri, S.; Fu, X.-Q.; Luo, Z.-G.; Nagappan, G.; Chan, J.P.; Hempstead, B.; Son, Y.-J.; et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J. Neurosci. 2013, 33, 9957–9962. [Google Scholar] [CrossRef] [PubMed]
- il Lee, Y.; Thompson, W.J.; Harlow, M.L. Schwann cells participate in synapse elimination at the developing neuromuscular junction. Curr. Opin. Neurobiol. 2017, 47, 176–181. [Google Scholar] [CrossRef]
- Smith, I.W.; Mikesh, M.; il Lee, Y.; Thompson, W.J. Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J. Neurosci. 2013, 33, 17724–17736. [Google Scholar] [CrossRef] [PubMed]
- Nadal, L.; Garcia, N.; Hurtado, E.; Simó, A.; Tomàs, M.; Lanuza, M.A.; Cilleros, V.; Tomàs, J.M. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction. Dev. Neurosci. 2016, 38, 407–419. [Google Scholar] [CrossRef]
- Nadal, L.; Garcia, N.; Hurtado, E.; Simó, A.; Tomàs, M.; Lanuza, M.A.; Santafé, M.; Tomàs, J. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A ) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol. Brain 2016, 9, 1–19. [Google Scholar] [CrossRef]
- Waerhaug, O.; Ottersen, O.P. Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat. Embryol. 1993, 188, 501–513. [Google Scholar] [CrossRef]
- Personius, K.E.; Slusher, B.S.; Udin, S.B. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. J. Neurosci. 2016, 36, 8783–8789. [Google Scholar] [CrossRef] [Green Version]
- Caulfield, M. Muscarinic receptors-characterization, coupling and function. Pharmacol. Ther. 1993, 58, 319–379. [Google Scholar] [CrossRef]
- Felder, C.C. Muscarinic acetylcholine receptors: Signal transduction through multiple effectors. FASEB J. 1995, 9, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Marala, R.B.; Mustafa, S.J. Adenosine A1 receptor-induced upregulation of protein kinase C: Role of pertussis toxin-sensitive G protein(s). Am. J. Physiol. Circ. Physiol. 1995, 269, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, S.; Veggetti, M.; Muchnik, S.; Losavio, A. Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction. Br. J. Pharmacol. 2004, 142, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Correia-de-Sá, P. Protein kinase A and Ca(v)1 (L-Type) channels are common targets to facilitatory adenosine A2A and muscarinic M1 receptors on rat motoneurons. Neurosignals 2005, 14, 262–272. [Google Scholar] [CrossRef]
- Fredholm, B. Adenosine Receptors in the Central Nervous System. Physiology 1995, 10, 122–128. [Google Scholar] [CrossRef]
- Nyce, J.W. Insight into adenosine receptor function using antisense and gene-knockout approaches. Trends Pharmacol. Sci. 1999, 20, 79–83. [Google Scholar] [CrossRef]
- Hille, B. G protein-coupled mechanisms and nervous signaling. Neuron 1992, 9, 187–195. [Google Scholar] [CrossRef]
- Song, W.-J.; Tkatch, T.; Surmeier, D.J. Adenosine Receptor Expression and Modulation of Ca 2+ Channels in Rat Striatal Cholinergic Interneurons. J. Neurophysiol. 2000, 83, 322–332. [Google Scholar] [CrossRef]
- Tomàs, J.; Garcia, N.; Lanuza, M.A.; Santafé, M.M.; Tomàs, M.; Nadal, L.; Hurtado, E.; Simó-Ollé, A.; Cilleros-Mañé, V.; Just-Borràs, L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front. Pharmacol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Lanuza, M.A.; Garcia, N.; Santafé, M.; Nelson, P.G.; Fenoll-Brunet, M.R.; Tomàs, J. Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. J. Neurosci. Res. 2001, 63, 330–340. [Google Scholar] [CrossRef]
- Santafé, M.M.; Lanuza, M.A.; Garcia, N.; Tomàs, J. Calcium inflow-dependent protein kinase C activity is involved in the modulation of transmitter release in the neuromuscular junction of the adult rat. Synapse 2005, 57, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, A.; Gordon, A.S.; Diamond, I. cAMP-dependent Protein Kinase Types I and II Differentially Regulate cAMP Response Element-mediated Gene Expression. J. Biol. Chem. 2002, 277, 18810–18816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santafé, M.M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. Protein kinase C activity affects neurotransmitter release at polyinnervated neuromuscular synapses. J. Neurosci. Res. 2007, 85, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Kanno, T.; Nagata, T.; Yaguchi, T.; Tanaka, A.; Nishizaki, T. The linoleic acid derivative FR236924 facilitates hippocampal synaptic transmission by enhancing activity of presynaptic α7 acetylcholine receptors on the glutamatergic terminals. Neuroscience 2005, 130, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Yamamoto, H.; Yaguchi, T.; Hi, R.; Mukasa, T.; Fujikawa, H.; Nagata, T.; Yamamoto, S.; Tanaka, A.; Nishizaki, T. The linoleic acid derivative DCP-LA selectively activates PKC-ϵ, possibly binding to the phosphatidylserine binding site. J. Lipid Res. 2006, 47, 1146–1156. [Google Scholar] [CrossRef]
- Sun, M.-K.; Alkon, D.L. Bryostatin-1: Pharmacology and Therapeutic Potential as a CNS Drug. CNS Drug Rev. 2006, 12, 1–8. [Google Scholar] [CrossRef]
- Rigor, R.R.; Hawkins, B.T.; Miller, D.S. Activation of PKC Isoform β I at the Blood–Brain Barrier Rapidly Decreases P-Glycoprotein Activity and Enhances Drug Delivery to the Brain. J. Cereb. Blood Flow Metab. 2010, 30, 1373–1383. [Google Scholar] [CrossRef]
- Santafe, M.M.; Garcia, N.; Lanuza, M.A.; Tomàs, M.; Besalduch, N.; Tomàs, J. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses. J. Neurosci. Res. 2009, 87, 1195–1206. [Google Scholar] [CrossRef]
- Obis, T.; Hurtado, E.; Nadal, L.; Tomàs, M.; Priego, M.; Simon, A.; Garcia, N.; Santafe, M.M.; Lanuza, M.A.; Tomàs, J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol. Brain 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Obis, T.; Besalduch, N.; Hurtado, E.; Nadal, L.; Santafe, M.M.; Garcia, N.; Tomàs, M.; Priego, M.; Lanuza, M.A.; Tomàs, J. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: Location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol. Brain 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Erzen, I.; Cvetko, E.; Obreza, S.; Angaut-Petit, D. Fiber types in the mouse levator auris longus muscle: A convenient preparation to study muscle and nerve plasticity. J. Neurosci. Res. 2000, 59, 692–697. [Google Scholar] [CrossRef]
- Steinbach, J.H. Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions. Dev. Biol. 1981, 84, 267–276. [Google Scholar] [CrossRef]
- Slater, C.R. Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse. Dev. Biol. 1982, 94, 11–22. [Google Scholar] [CrossRef]
- Lanuza, M.A.; Garcia, N.; Santafé, M.; González, C.M.; Alonso, I.; Nelson, P.G.; Tomàs, J. Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. J. Neurosci. Res. 2002, 67, 607–617. [Google Scholar] [CrossRef]
- Besalduch, N.; Tomàs, M.; Santafé, M.M.; Garcia, N.; Tomàs, J.; Lanuza, M.A. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J. Comp. Neurol. 2010, 518, 211–228. [Google Scholar] [CrossRef]
- Gjertsen, B.T.; Mellgren, G.; Otten, A.; Maronde, E.; Genieser, H.G.; Jastorff, B.; Vintermyr, O.K.; McKnight, G.S.; Døskeland, S.O. Novel (Rp)-cAMPS analogs as tools for inhibition of cAMP-kinase in cell culture. Basal cAMP-kinase activity modulates interleukin-1 beta action. J. Biol. Chem. 1995, 270, 20599–20607. [Google Scholar] [CrossRef]
- Hurtado, E.; Cilleros, V.; Nadal, L.; Simó, A.; Obis, T.; Garcia, N.; Santafé, M.M.; Tomàs, M.; Halievski, K.; Jordan, C.L.; et al. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front. Mol. Neurosci. 2017, 10, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, J.; Jiang, D.; Chang, Z.; Li, H.; Zhang, G.; Gong, S.; Jiang, X.; Tao, J. Urotensin-II receptor stimulation of cardiac L-type Ca2+ channels requires the βγ subunits of Gi/o-protein and phosphatidylinositol 3-kinase-dependent protein kinase C β1 isoform. J. Biol. Chem. 2015, 290, 8644–8655. [Google Scholar] [CrossRef]
- Johnson, J.A.; Gray, M.O.; Chen, C.H.; Mochly-Rosen, D. A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac function. J. Biol. Chem. 1996, 271, 24962–24966. [Google Scholar] [CrossRef]
- Simó, A.; Cilleros-Mañé, V.; Just-Borràs, L.; Hurtado, E.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. nPKCε Mediates SNAP-25 Phosphorylation of Ser-187 in Basal Conditions and After Synaptic Activity at the Neuromuscular Junction. Mol. Neurobiol. 2019, 1–19. [Google Scholar] [CrossRef]
- Simó, A.; Just-Borràs, L.; Cilleros-Mañé, V.; Hurtado, E.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front. Mol. Neurosci. 2018, 11, 207–227. [Google Scholar] [CrossRef] [PubMed]
- il Lee, Y.; Li, Y.; Mikesh, M.; Smith, I.; Nave, K.-A.; Schwab, M.H.; Thompson, W.J. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc. Natl. Acad. Sci. USA 2016, 113, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Tomàs, J.; Garcia, N.; Lanuza, M.A.; Santafé, M.M.; Tomàs, M.; Nadal, L.; Hurtado, E.; Simó, A.; Cilleros, V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front. Mol. Neurosci. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Santafé, M.M.; Lanuza, M.A.; Garcia, N.; Tomàs, M.; Tomàs, J.M. Coupling of presynaptic muscarinic autoreceptors to serine kinases in low and high release conditions on the rat motor nerve terminal. Neuroscience 2007, 148, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Santafé, M.M.; Salon, I.; Garcia, N.; Lanuza, M.A.; Uchitel, O.D.; Tomàs, J. Muscarinic autoreceptors related with calcium channels in the strong and weak inputs at polyinnervated developing rat neuromuscular junctions. Neuroscience 2004, 123, 61–73. [Google Scholar] [CrossRef]
- Malomouzh, A.I.; Nikolsky, E.E.; Vyskočil, F. Purine P2Y receptors in ATP-mediated regulation of non-quantal acetylcholine release from motor nerve endings of rat diaphragm. Neurosci. Res. 2011, 71, 219–225. [Google Scholar] [CrossRef]
- Tsentsevitsky, A.; Nurullin, L.; Nikolsky, E.; Malomouzh, A. Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction. J. Neurosci. Res. 2017, 95, 1391–1401. [Google Scholar] [CrossRef]
- Lanuza, M.A.; Santafe, M.M.; Garcia, N.; Besalduch, N.; Tomàs, M.; Obis, T.; Priego, M.; Nelson, P.G.; Tomàs, J. Protein kinase C isoforms at the neuromuscular junction: Localization and specific roles in neurotransmission and development. J. Anat. 2014, 224, 61–73. [Google Scholar] [CrossRef]
- Tomàs, J.M.; Garcia, N.; Lanuza, M.A.; Nadal, L.; Tomàs, M.; Hurtado, E.; Simó, A.; Cilleros, V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front. Mol. Neurosci. 2017, 10, 255. [Google Scholar] [CrossRef]
- Perkins, G.A.; Wang, L.; Huang, L.J.; Humphries, K.; Yao, V.J.; Martone, M.; Deerinck, T.J.; Barraclough, D.M.; Violin, J.D.; Smith, D.; et al. PKA, PKC, and AKAP localization in and around the neuromuscular junction. BMC Neurosci. 2001, 2, 17. [Google Scholar] [CrossRef]
- Song, W.; Jin, X.A. Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way. Neurosci. Lett. 2015, 591, 8–12. [Google Scholar] [CrossRef] [PubMed]
- DuBord, M.-A.; Liu, H.; Horner, R.L. Protein kinase A activators produce a short-term, but not long-term, increase in respiratory-drive transmission at the hypoglossal motor nucleus in vivo. Neurosci. Lett. 2010, 486, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Hell, J.W. How Ca 2+ -permeable AMPA receptors, the kinase PKA, and the phosphatase PP2B are intertwined in synaptic LTP and LTD. Sci. Signal. 2016, 9, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Pena y Valenzuela, I.; Pires-Oliveira, M.; Akaaboune, M. PKC and PKA Regulate AChR Dynamics at the Neuromuscular Junction of Living Mice. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Santafé, M.M.; Lanuza, M.A.; Garcia, N.; Tomàs, J. Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal. Eur. J. Neurosci. 2006, 23, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Santafé, M.M.; Garcia, N.; Tomàs, M.; Obis, T.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci. Lett. 2014, 561, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- Santafé, M.M.; Priego, M.; Obis, T.; Garcia, N.; Tomàs, M.; Lanuza, M.A.; Tomàs, J. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur. J. Neurosci. 2015, 42, 1775–1787. [Google Scholar] [CrossRef]
- Leenders, A.G.M.; Sheng, Z.-H. Modulation of neurotransmitter release by the second messenger-activated protein kinases: Implications for presynaptic plasticity. Pharmacol. Ther. 2005, 105, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Matti, U.; Nehring, R.B.; Binz, T.; Rettig, J.; Neher, E.; Sørensen, J.B. Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci. 2002, 22, 9278–9286. [Google Scholar] [CrossRef]
- Li, M.-X.; Jia, M.; Jiang, H.; Dunlap, V.; Nelson, P.G. Opposing actions of protein kinase A and C mediate Hebbian synaptic plasticity. Nat. Neurosci. 2001, 4, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-R.; Berrera, M.; Reischl, M.; Strack, S.; Albrizio, M.; Roder, I.V.; Wagner, A.; Petersen, Y.; Hafner, M.; Zaccolo, M.; et al. Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J. Cell Sci. 2012, 125, 714–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanuza, M.A.; Gizaw, R.; Viloria, A.; González, C.M.; Besalduch, N.; Dunlap, V.; Tomàs, J.; Nelson, P.G. Phosphorylation of the nicotinic acetylcholine receptor in myotube-cholinergic neuron cocultures. J. Neurosci. Res. 2006, 83, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, T.; Sumikawa, K. A cAMP-dependent Ca2+ signalling pathway at the endplate provided by the gamma to epsilon subunit switch in ACh receptors. Brain Res. Mol. Brain Res. 1994, 24, 341–345. [Google Scholar] [CrossRef]
- Santafé, M.M.; Garcia, N.; Lanuza, M.A.; Tomàs, M.; Tomàs, J. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse. J. Neurosci. Res. 2009, 87, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Nadal, L.; Garcia, N.; Hurtado, E.; Simó, A.; Tomàs, M.; Lanuza, M.A.; Cilleros, V.; Tomàs, J. Presynaptic muscarinic acetylcholine receptors and TrkB receptor cooperate in the elimination of redundant motor nerve terminals during development. Front. Aging Neurosci. 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Poo, M.M. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 1997, 19, 825–835. [Google Scholar] [CrossRef]
- Garcia, N.; Santafe, M.M.; Tomàs, M.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development. J. Neurosci. Res. 2010, 88, 1406–1419. [Google Scholar] [CrossRef]
- Garcia, N.; Tomàs, M.; Santafe, M.M.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. Blocking p75NTR receptors alters polyinnervationz of neuromuscular synapses during development. J. Neurosci. Res. 2011, 89, 1331–1341. [Google Scholar] [CrossRef]
- Garcia, N.; Santafé, M.M.; Tomàs, M.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. Involvement of neurotrophin-3 (NT-3) in the functional elimination of synaptic contacts during neuromuscular development. Neurosci. Lett. 2010, 473, 141–145. [Google Scholar] [CrossRef]
- Garcia, N.; Tomas, M.; Santafe, M.M.; Besalduch, N.; Lanuza, M.A.; Tomas, J. The Interaction between Tropomyosin-Related Kinase B Receptors and Presynaptic Muscarinic Receptors Modulates Transmitter Release in Adult Rodent Motor Nerve Terminals. J. Neurosci. 2010, 30, 16514–16522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balice-Gordon, R.J.; Lichtman, J.W. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J. Neurosci. 1993, 13, 834–855. [Google Scholar] [CrossRef] [PubMed]
- Bursztajn, S.; Schneider, L.W.; Jong, Y.J.; Berman, S.A. Phorbol esters inhibit the synthesis of acetylcholine receptors in cultured muscle cells. Biol. Cell 1988, 63, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.G. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. J. Cell Biol. 1988, 107, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Nimnual, A.S.; Chang, W.; Chang, N.-S.; Ross, A.F.; Gelman, M.S.; Prives, J.M. Identification of Phosphorylation Sites on AChR δ-Subunit Associated with Dispersal of AChR Clusters on the Surface of Muscle Cells. Biochemistry 1998, 37, 14823–14832. [Google Scholar] [CrossRef]
- Hilgenberg, L.; Miles, K. Developmental regulation of a protein kinase C isoform localized in the neuromuscular junction. J. Cell Sci. 1995, 108, 51–61. [Google Scholar]
- Lanuza, M.A.; Besalduch, N.; González, C.; Santafé, M.M.; Garcia, N.; Tomàs, M.; Nelson, P.G.; Tomàs, J. Decreased phosphorylation of δ and ε subunits of the acetylcholine receptor coincides with delayed postsynaptic maturation in PKC θ deficient mouse. Exp. Neurol. 2010, 225, 183–195. [Google Scholar] [CrossRef]
- Miles, K.; Wagner, M. Overexpression of nPKCtheta is inhibitory for agrin-induced nicotinic acetylcholine receptor clustering in C2C12 myotubes. J. Neurosci. Res. 2003, 71, 188–195. [Google Scholar] [CrossRef]
- Trachtenberg, J.T.; Thompson, W.J. Nerve terminal withdrawal from rat neuromuscular junctions induced by neuregulin and Schwann cells. J. Neurosci. 1997, 17, 6243–6255. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, N.; Balañà, C.; Lanuza, M.A.; Tomàs, M.; Cilleros-Mañé, V.; Just-Borràs, L.; Tomàs, J. Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination. Cells 2019, 8, 1304. https://doi.org/10.3390/cells8111304
Garcia N, Balañà C, Lanuza MA, Tomàs M, Cilleros-Mañé V, Just-Borràs L, Tomàs J. Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination. Cells. 2019; 8(11):1304. https://doi.org/10.3390/cells8111304
Chicago/Turabian StyleGarcia, Neus, Cori Balañà, Maria A. Lanuza, Marta Tomàs, Víctor Cilleros-Mañé, Laia Just-Borràs, and Josep Tomàs. 2019. "Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination" Cells 8, no. 11: 1304. https://doi.org/10.3390/cells8111304
APA StyleGarcia, N., Balañà, C., Lanuza, M. A., Tomàs, M., Cilleros-Mañé, V., Just-Borràs, L., & Tomàs, J. (2019). Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination. Cells, 8(11), 1304. https://doi.org/10.3390/cells8111304