The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies
Abstract
1. Introduction
2. Characteristics of HLA-E
| Feature | HLA-E*01:01 | HLA-E*01:03 | Reference |
|---|---|---|---|
| Amino Acid Position | Arginine (Arg) at position 107 in the α2 domain | Glycine (Gly) at position 107 in the α2 domain | [9,25] |
| Cell Surface Expression | Lower | Higher | [25,26] |
| Peptide Binding Affinity | For canonical VL9 peptides, Lower peptide-binding affinity For non-VL9 pathogen-derived peptides, more flexibility for alternative peptides under stress or infection | For canonical VL9 peptides, higher peptide-binding affinity For non-VL9 pathogen-derived peptides, more conserved but stabilize better | [15] |
| Disease Associations | Viral: Protective against EBV-positive classical Hodgkin lymphoma; lower risk of chronic HCV; protective in BK virus nephropathy | Viral: Increased risk of chronic HCV; associated with HIV protection; linked to CMV reactivation, maintain immune responses post-Ad5-nCoV-vaccination. Associated with severe COVID-19. | [12,26,27,28,29] |
| Bacterial: Risk factor for severe bacterial infections | Bacterial: Protective against severe bacterial infections |
3. Activation and Inhibition in NK and T Cell Responses
3.1. CD94–NKG2A/C-Mediated Immune Regulation (Innate Receptor)
3.2. TCR-Mediated Immune Response (Adaptive Receptor)
4. HLA-E in NK and T Cell Response to Viral Infection
4.1. HLA-E and CMV
4.2. HLA-E and SARS-CoV-2
4.3. HLA-E and HBV
4.4. HLA-E and HIV
5. HLA-E in NK and T Cell Response to Bacterial Infection
5.1. HLA-E and M. tuberculosis
5.2. HLA-E and S. Typhi
6. HLA-E in Immunotherapy and Vaccine Development for Infectious Diseases
6.1. HLA-E–Based Vaccine and TCR Strategies for Tuberculosis
6.2. CMV-Vectored Vaccines for SIV
6.3. TCR-Based Therapy for HBV
6.4. Design Principles of HLA-E–Based Vaccines and Potential Risks of Cross-Reactivity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AIDS | Acquired Immunodeficiency Syndrome |
| ALF | Acute Liver Failure |
| APC | Antigen-Presenting Cell |
| BCG | Bacillus Calmette–Guérin (TB vaccine) |
| CHB | Chronic Hepatitis B |
| CMV | Cytomegalovirus |
| COVID-19 | Coronavirus Disease 2019 |
| HBV | Hepatitis B Virus |
| HBV-ALF | HBV-associated Acute Liver Failure |
| HCV | Hepatitis C Virus |
| HCC | Hepatocellular Carcinoma |
| HIV | Human Immunodeficiency Virus |
| HIV-1 | Human Immunodeficiency Virus Type 1 |
| HLA | Human Leukocyte Antigen |
| IFN | Interferon |
| IL-15 | Interleukin 15 |
| LIR-1 | Leukocyte Immunoglobulin-like Receptor 1 |
| MHC | Major Histocompatibility Complex |
| NHP | Non-Human Primate |
| NK | Natural Killer |
| PBMC | Peripheral Blood Mononuclear Cells |
| PD-1 | Programmed Death-1 |
| PRC | Pentameric Receptor Complex |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| SIV | Simian Immunodeficiency Virus |
| TAP | Transporter Associated with Antigen Processing |
| TB | Tuberculosis |
| TCR | T Cell Receptor |
| TGF | Transforming Growth Factor |
| TLR | Toll-like Receptor |
| TNF | Tumor Necrosis Factor |
References
- Peters, B.; Nielsen, M.; Sette, A. T Cell Epitope Predictions. Annu. Rev. Immunol. 2020, 38, 123–145. [Google Scholar] [CrossRef]
- Wooldridge, L.; Ekeruche-Makinde, J.; van den Berg, H.A.; Skowera, A.; Miles, J.J.; Tan, M.P.; Dolton, G.; Clement, M.; Llewellyn-Lacey, S.; Price, D.A.; et al. A Single Autoimmune T Cell Receptor Recognizes More Than a Million Different Peptides. J. Biol. Chem. 2012, 287, 1168–1177. [Google Scholar] [CrossRef]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of Antigen Processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef]
- Sauter, J.; Putke, K.; Schefzyk, D.; Pruschke, J.; Solloch, U.V.; Bernas, S.N.; Massalski, C.; Daniel, K.; Klussmeier, A.; Hofmann, J.A.; et al. HLA-E Typing of More than 2.5 Million Potential Hematopoietic Stem Cell Donors: Methods and Population-Specific Allele Frequencies. Hum. Immunol. 2021, 82, 541–547. [Google Scholar] [CrossRef]
- Paech, C.; Albrecht, V.; Putke, K.; Schöfl, G.; Schöne, B.; Schmidt, A.H.; Lange, V.; Klussmeier, A. HLA-E Diversity Unfolded: Identification and Characterization of 170 Novel HLA-E Alleles. HLA 2021, 97, 389–398. [Google Scholar] [CrossRef]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2019, 48, D948–D955. [Google Scholar] [CrossRef]
- Robinson, J.; Halliwell, J.A.; Hayhurst, J.D.; Flicek, P.; Parham, P.; Marsh, S.G.E. The IPD and IMGT/HLA Database: Allele Variant Databases. Nucleic Acids Res. 2015, 43, D423–D431. [Google Scholar] [CrossRef] [PubMed]
- Immuno Polymorphism Database. 2025. Available online: https://www.ebi.ac.uk/ipd/ (accessed on 1 July 2025).
- Strong, R.K.; Holmes, M.A.; Li, P.; Braun, L.; Lee, N.; Geraghty, D.E. HLA-E Allelic Variants. J. Biol. Chem. 2003, 278, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Hò, G.-G.T.; Celik, A.A.; Huyton, T.; Hiemisch, W.; Blasczyk, R.; Simper, G.S.; Bade-Doeding, C. NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain. Int. J. Mol. Sci. 2020, 21, 4362. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, D.; Gentili, V.; Santi, E.; Taliento, C.; Vitagliano, A.; Schiuma, G.; Beltrami, S.; Rizzo, S.; Lanza, G.; Rizzo, R.; et al. Late-onset Intrauterine Growth Restriction and HHV-6 Infection: A Pilot Study. J. Med. Virol. 2021, 93, 6317–6322. [Google Scholar] [CrossRef] [PubMed]
- Kanevskiy, L.; Erokhina, S.; Kobyzeva, P.; Streltsova, M.; Sapozhnikov, A.; Kovalenko, E. Dimorphism of HLA-E and Its Disease Association. Int. J. Mol. Sci. 2019, 20, 5496. [Google Scholar] [CrossRef]
- He, W.; Gea-Mallorquí, E.; Colin-York, H.; Fritzsche, M.; Gillespie, G.M.; Brackenridge, S.; Borrow, P.; McMichael, A.J. Intracellular Trafficking of HLA-E and Its Regulation. J. Exp. Med. 2023, 220, e20221941. [Google Scholar] [CrossRef]
- Middelburg, J.; Ghaffari, S.; Schoufour, T.A.W.; Sluijter, M.; Schaap, G.; Göynük, B.; Sala, B.M.; Al-Tamimi, L.; Scheeren, F.; Franken, K.L.M.C.; et al. The MHC-E Peptide Ligands for Checkpoint CD94/NKG2A Are Governed by Inflammatory Signals, Whereas LILRB1/2 Receptors Are Peptide Indifferent. Cell Rep. 2023, 42, 113516. [Google Scholar] [CrossRef]
- Walters, L.C.; McMichael, A.J.; Gillespie, G.M. Detailed and Atypical HLA-E Peptide Binding Motifs Revealed by a Novel Peptide Exchange Binding Assay. Eur. J. Immunol. 2020, 50, 2075–2091. [Google Scholar] [CrossRef] [PubMed]
- Walters, L.C.; Harlos, K.; Brackenridge, S.; Rozbesky, D.; Barrett, J.R.; Jain, V.; Walter, T.S.; O’Callaghan, C.A.; Borrow, P.; Toebes, M.; et al. Pathogen-Derived HLA-E Bound Epitopes Reveal Broad Primary Anchor Pocket Tolerability and Conformationally Malleable Peptide Binding. Nat. Commun. 2018, 9, 3137. [Google Scholar] [CrossRef]
- Ruibal, P.; Franken, K.L.M.C.; van Meijgaarden, K.E.; van Loon, J.J.F.; van der Steen, D.; Heemskerk, M.H.M.; Ottenhoff, T.H.M.; Joosten, S.A. Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. J. Immunol. 2020, 205, 2861–2872. [Google Scholar] [CrossRef] [PubMed]
- Braud, V.M.; Allan, D.S.J.; O’Callaghan, C.A.; Söderström, K.; D’Andrea, A.; Ogg, G.S.; Lazetic, S.; Young, N.T.; Bell, J.I.; Phillips, J.H.; et al. HLA-E Binds to Natural Killer Cell Receptors CD94/NKG2A, B and C. Nature 1998, 391, 795–799. [Google Scholar] [CrossRef]
- Pump, W.C.; Kraemer, T.; Huyton, T.; Hò, G.-G.T.; Blasczyk, R.; Bade-Doeding, C. Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8+ T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia. Int. J. Mol. Sci. 2019, 20, 1454. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.C.; Nguyen, T.H.O.; Harpur, C.M.; Stankovic, S.; Kanagarajah, A.R.; Koutsakos, M.; Saunders, P.M.; Cai, Z.; Gray, J.A.; Widjaja, J.M.L.; et al. Natural Killer Cell Receptors Regulate Responses of HLA-E–Restricted T Cells. Sci. Immunol. 2021, 6, abe9057. [Google Scholar] [CrossRef]
- Badami, G.D.; La Manna, M.P.; Di Carlo, P.; Stanek, O.; Linhartova, I.; Caccamo, N.; Sebo, P.; Dieli, F. Delivery of Mycobacterium tuberculosis Epitopes by Bordetella Pertussis Adenylate Cyclase Toxoid Expands HLA-E-Restricted Cytotoxic CD8+ T Cells. Front. Immunol. 2023, 14, 1289212. [Google Scholar] [CrossRef]
- La Manna, M.P.; Orlando, V.; Prezzemolo, T.; Di Carlo, P.; Cascio, A.; Delogu, G.; Poli, G.; Sullivan, L.C.; Brooks, A.G.; Dieli, F.; et al. HLA-E–Restricted CD8 + T Lymphocytes Efficiently Control Mycobacterium tuberculosis and HIV-1 Coinfection. Am. J. Respir. Cell Mol. Biol. 2020, 62, 430–439. [Google Scholar] [CrossRef]
- Yang, H.; Sun, H.; Brackenridge, S.; Zhuang, X.; Wing, P.A.C.; Quastel, M.; Walters, L.; Garner, L.; Wang, B.; Yao, X.; et al. HLA-E–Restricted SARS-CoV-2–Specific T Cells from Convalescent COVID-19 Patients Suppress Virus Replication despite HLA Class Ia down-Regulation. Sci. Immunol. 2023, 8, abl8881. [Google Scholar] [CrossRef]
- Yang, H.; Rei, M.; Brackenridge, S.; Brenna, E.; Sun, H.; Abdulhaqq, S.; Liu, M.K.P.; Ma, W.; Kurupati, P.; Xu, X.; et al. HLA-E–Restricted, Gag-Specific CD8 + T Cells Can Suppress HIV-1 Infection, Offering Vaccine Opportunities. Sci. Immunol. 2021, 6, abg1703. [Google Scholar] [CrossRef]
- Gillespie, G.M.; Quastel, M.N.; McMichael, A.J. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol. Rev. 2025, 329, e13434. [Google Scholar] [CrossRef]
- Martín, P.; Krsnik, I.; Navarro, B.; Provencio, M.; García, J.F.; Bellas, C.; Vilches, C.; Gomez-Lozano, N. HLA Allele E*01:01 Is Associated with a Reduced Risk of EBV-Related Classical Hodgkin Lymphoma Independently of HLA-A*01/*02. PLoS ONE 2015, 10, e0135512. [Google Scholar] [CrossRef]
- Schulte, D.; Vogel, M.; Langhans, B.; Krämer, B.; Körner, C.; Nischalke, H.D.; Steinberg, V.; Michalk, M.; Berg, T.; Rockstroh, J.K.; et al. The HLA-E R /HLA-E R Genotype Affects the Natural Course of Hepatitis C Virus (HCV) Infection and Is Associated with HLA-E–Restricted Recognition of an HCV-Derived Peptide by Interferon-γ–Secreting Human CD8 + T Cells. J. Infect. Dis. 2009, 200, 1397–1401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Tang, K.; Zhang, Y.; Zhang, C.; Zhang, Y.; Jin, B.; Zhang, Y.; Zhuang, R.; Ma, Y. Ad5-NCoV Vaccination Could Induce HLA-E Restricted CD8+ T Cell Responses Specific for Epitopes on Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Viruses 2023, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.; Minagar, A.; Ghasemzadeh, M.; Arabkhazaeli, A.; Ghasemzadeh, A. HLA-E*01:01 + HLA-E*01:01 Genotype Confers Less Susceptibility to COVID-19, While HLA-E*01:03 + HLA-E*01:03 Genotype Is Associated with More Severe Disease. Hum. Immunol. 2023, 84, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Prod’homme, V.; Tomasec, P.; Cunningham, C.; Lemberg, M.K.; Stanton, R.J.; McSharry, B.P.; Wang, E.C.Y.; Cuff, S.; Martoglio, B.; Davison, A.J.; et al. Human Cytomegalovirus UL40 Signal Peptide Regulates Cell Surface Expression of the NK Cell Ligands HLA-E and GpUL18. J. Immunol. 2012, 188, 2794–2804. [Google Scholar] [CrossRef]
- Pietra, G.; Romagnani, C.; Mazzarino, P.; Falco, M.; Millo, E.; Moretta, A.; Moretta, L.; Mingari, M.C. HLA-E-Restricted Recognition of Cytomegalovirus-Derived Peptides by Human CD8 + Cytolytic T Lymphocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 10896–10901. [Google Scholar] [CrossRef]
- Brackenridge, S.; John, N.; He, W.; Früh, K.; Borrow, P.; McMichael, A. Regulation of the Cell Surface Expression of Classical and Non-Classical MHC Proteins by the Human Cytomegalovirus UL40 and Rhesus Cytomegalovirus Rh67 Proteins. J. Virol. 2024, 98, e01206-24. [Google Scholar] [CrossRef]
- Celik, A.A.; Kraemer, T.; Huyton, T.; Blasczyk, R.; Bade-Döding, C. The Diversity of the HLA-E-Restricted Peptide Repertoire Explains the Immunological Impact of the Arg107Gly Mismatch. Immunogenetics 2016, 68, 29–41. [Google Scholar] [CrossRef]
- Voogd, L.; Ruibal, P.; Ottenhoff, T.H.M.; Joosten, S.A. Antigen Presentation by MHC-E: A Putative Target for Vaccination? Trends Immunol. 2022, 43, 355–365. [Google Scholar] [CrossRef]
- Joosten, S.A.; van Meijgaarden, K.E.; van Weeren, P.C.; Kazi, F.; Geluk, A.; Savage, N.D.L.; Drijfhout, J.W.; Flower, D.R.; Hanekom, W.A.; Klein, M.R.; et al. Mycobacterium tuberculosis Peptides Presented by HLA-E Molecules Are Targets for Human CD8+ T-Cells with Cytotoxic as Well as Regulatory Activity. PLoS Pathog. 2010, 6, e1000782. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.G.; Zak, D.E.; Xu, G.; Ford, J.C.; Marshall, E.E.; Malouli, D.; Gilbride, R.M.; Hughes, C.M.; Ventura, A.B.; Ainslie, E.; et al. Prevention of Tuberculosis in Rhesus Macaques by a Cytomegalovirus-Based Vaccine. Nat. Med. 2018, 24, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Voogd, L.; Riou, C.; Scriba, T.J.; van Wolfswinkel, M.; van Meijgaarden, K.E.; Franken, K.L.M.C.; Wilkinson, R.J.; Ottenhoff, T.H.M.; Joosten, S.A. HLA-E/Mtb Specific CD4+ and CD8+ T Cells Have a Memory Phenotype in Individuals with TB Infection. Front. Immunol. 2024, 15, 1505329. [Google Scholar] [CrossRef] [PubMed]
- Früh, K.; Picker, L. CD8+ T Cell Programming by Cytomegalovirus Vectors: Applications in Prophylactic and Therapeutic Vaccination. Curr. Opin. Immunol. 2017, 47, 52–56. [Google Scholar] [CrossRef]
- Tomasec, P.; Braud, V.M.; Rickards, C.; Powell, M.B.; McSharry, B.P.; Gadola, S.; Cerundolo, V.; Borysiewicz, L.K.; McMichael, A.J.; Wilkinson, G.W.G. Surface Expression of HLA-E, an Inhibitor of Natural Killer Cells, Enhanced by Human Cytomegalovirus GpUL40. Science 2000, 287, 1031–1033. [Google Scholar] [CrossRef]
- Huisman, B.D.; Guan, N.; Rückert, T.; Garner, L.; Singh, N.K.; McMichael, A.J.; Gillespie, G.M.; Romagnani, C.; Birnbaum, M.E. High-Throughput Characterization of HLA-E-Presented CD94/NKG2x Ligands Reveals Peptides Which Modulate NK Cell Activation. Nat. Commun. 2023, 14, 4809. [Google Scholar] [CrossRef]
- Hammer, Q.; Rückert, T.; Romagnani, C. Natural Killer Cell Specificity for Viral Infections. Nat. Immunol. 2018, 19, 800–808. [Google Scholar] [CrossRef]
- André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; et al. Anti-NKG2A MAb Is a Checkpoint Inhibitor That Promotes Anti-Tumor Immunity by Unleashing Both T and NK Cells. Cell 2018, 175, 1731–1743.e13. [Google Scholar] [CrossRef]
- Cazzetta, V.; Depierreux, D.; Colucci, F.; Mikulak, J.; Mavilio, D. NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers 2023, 15, 1264. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Liang, J.; Qian, J.; Wu, Z.; Gao, Z.; Qi, J.; Zhu, S.; Li, N.; Chen, Y.; et al. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. Antibodies 2024, 13, 93. [Google Scholar] [CrossRef]
- Joosten, S.A.; Sullivan, L.C.; Ottenhoff, T.H.M. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J. Immunol. Res. 2016, 2016, 2695396. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.C.; Walpole, N.G.; Farenc, C.; Pietra, G.; Sum, M.J.W.; Clements, C.S.; Lee, E.J.; Beddoe, T.; Falco, M.; Mingari, M.C.; et al. A Conserved Energetic Footprint Underpins Recognition of Human Leukocyte Antigen-E by Two Distinct Aβ T Cell Receptors. J. Biol. Chem. 2017, 292, 21149–21158. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Bashirova, A.A.; Viard, M.; Garner, L.; Quastel, M.; Beiersdorfer, M.; Kasprzak, W.K.; Akdag, M.; Yuki, Y.; Ojeda, P.; et al. HLA Class I Signal Peptide Polymorphism Determines the Level of CD94/NKG2–HLA-E-Mediated Regulation of Effector Cell Responses. Nat. Immunol. 2023, 24, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, N.; Pietra, G.; Sullivan, L.C.; Brooks, A.G.; Prezzemolo, T.; La Manna, M.P.; Di Liberto, D.; Joosten, S.A.; van Meijgaarden, K.E.; Di Carlo, P.; et al. Human CD8 T Lymphocytes Recognize Mycobacterium tuberculosis Antigens Presented by HLA-E during Active Tuberculosis and Express Type 2 Cytokines. Eur. J. Immunol. 2015, 45, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Mazzarino, P.; Pietra, G.; Vacca, P.; Falco, M.; Colau, D.; Coulie, P.; Moretta, L.; Mingari, M.C. Identification of Effector-Memory CMV-Specific T Lymphocytes That Kill CMV-Infected Target Cells in an HLA-E-Restricted Fashion. Eur. J. Immunol. 2005, 35, 3240–3247. [Google Scholar] [CrossRef]
- Hansen, S.G.; Wu, H.L.; Burwitz, B.J.; Hughes, C.M.; Hammond, K.B.; Ventura, A.B.; Reed, J.S.; Gilbride, R.M.; Ainslie, E.; Morrow, D.W.; et al. Broadly Targeted CD8 + T Cell Responses Restricted by Major Histocompatibility Complex E. Science 2016, 351, 714–720. [Google Scholar] [CrossRef]
- Malouli, D.; Hansen, S.G.; Hancock, M.H.; Hughes, C.M.; Ford, J.C.; Gilbride, R.M.; Ventura, A.B.; Morrow, D.; Randall, K.T.; Taher, H.; et al. Cytomegaloviral determinants of CD8 + T cell programming and RhCMV/SIV vaccine efficacy. Sci. Immunol. 2021, 6, abg5413. [Google Scholar] [CrossRef]
- Bortolotti, D.; Gentili, V.; Rizzo, S.; Rotola, A.; Rizzo, R. SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway. Cells 2020, 9, 1975. [Google Scholar] [CrossRef] [PubMed]
- Maucourant, C.; Filipovic, I.; Ponzetta, A.; Aleman, S.; Cornillet, M.; Hertwig, L.; Strunz, B.; Lentini, A.; Reinius, B.; Brownlie, D.; et al. Natural Killer Cell Immunotypes Related to COVID-19 Disease Severity. Sci. Immunol. 2020, 5, eabd6832. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Q.; Dunst, J.; Christ, W.; Picarazzi, F.; Wendorff, M.; Momayyezi, P.; Huhn, O.; Netskar, H.K.; Maleki, K.T.; García, M.; et al. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells. Cell Rep. 2022, 38, 110503. [Google Scholar] [CrossRef]
- Vietzen, H.; Zoufaly, A.; Traugott, M.; Aberle, J.; Aberle, S.W.; Puchhammer-Stöckl, E. Deletion of the NKG2C Receptor Encoding KLRC2 Gene and HLA-E Variants Are Risk Factors for Severe COVID-19. Genet. Med. 2021, 23, 963–967. [Google Scholar] [CrossRef]
- Hansen, S.G.; Ford, J.C.; Lewis, M.S.; Ventura, A.B.; Hughes, C.M.; Coyne-Johnson, L.; Whizin, N.; Oswald, K.; Shoemaker, R.; Swanson, T.; et al. Profound Early Control of Highly Pathogenic SIV by an Effector Memory T-Cell Vaccine. Nature 2011, 473, 523–527. [Google Scholar] [CrossRef]
- Beltrami, S.; Rizzo, S.; Strazzabosco, G.; Gentili, V.; Alogna, A.; Narducci, M.; Bortolotti, D.; Schiuma, G.; Rizzo, R. Non-Classical HLA Class I Molecules and Their Potential Role in Viral Infections. Hum. Immunol. 2023, 84, 384–392. [Google Scholar] [CrossRef]
- Fulkerson, H.L.; Nogalski, M.T.; Collins-McMillen, D.; Yurochko, A.D. Overview of Human Cytomegalovirus Pathogenesis. In Human Cytomegaloviruses: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Muntasell, A.; Vilches, C.; Angulo, A.; López-Botet, M. Adaptive Reconfiguration of the Human NK-cell Compartment in Response to Cytomegalovirus: A Different Perspective of the Host-pathogen Interaction. Eur. J. Immunol. 2013, 43, 1133–1141. [Google Scholar] [CrossRef]
- Martín Almazán, N.; Sala, B.M.; Sandalova, T.; Sun, Y.; Resink, T.; Cichocki, F.; Söderberg-Nauclér, C.; Miller, J.S.; Achour, A.; Sarhan, D. Non-Classical HLA-E Restricted CMV 15-Mer Peptides Are Recognized by Adaptive NK Cells and Induce Memory Responses. Front. Immunol. 2023, 14, 1230718. [Google Scholar] [CrossRef]
- Romagnani, C.; Pietra, G.; Falco, M.; Mazzarino, P.; Moretta, L.; Mingari, M.C. HLA-E–Restricted Recognition of Human Cytomegalovirus by a Subset of Cytolytic T Lymphocytes. Hum. Immunol. 2004, 65, 437–445. [Google Scholar] [CrossRef]
- Jouand, N.; Bressollette-Bodin, C.; Gérard, N.; Giral, M.; Guérif, P.; Rodallec, A.; Oger, R.; Parrot, T.; Allard, M.; Cesbron-Gautier, A.; et al. HCMV Triggers Frequent and Persistent UL40-Specific Unconventional HLA-E-Restricted CD8 T-Cell Responses with Potential Autologous and Allogeneic Peptide Recognition. PLoS Pathog. 2018, 14, e1007041. [Google Scholar] [CrossRef] [PubMed]
- Rousselière, A.; Charreau, B. Persistent CD8 T Cell Marks Caused by the HCMV Infection in Seropositive Adults: Prevalence of HLA-E-Reactive CD8 T Cells. Cells 2023, 12, 889. [Google Scholar] [CrossRef]
- Tarragó, D.; González, I.; González-Escribano, M.F. HLA-E Restricted Cytomegalovirus UL40 Peptide Polymorphism May Represent a Risk Factor Following Congenital Infection. BMC Genom. 2022, 23, 455. [Google Scholar] [CrossRef]
- Kühner, L.M.; Berger, S.M.; Djinovic, M.; Furlano, P.L.; Steininger, L.M.; Pirker, A.-L.; Jaksch, P.; Puchhammer-Stöckl, E.; Vietzen, H. Immunomodulatory Soluble HLA-G and HLA-E Are Associated with Rapidly Deteriorating CLAD and HCMV Viremia after Lung Transplantation. J. Heart Lung Transplant. 2024, 43, 2036–2041. [Google Scholar] [CrossRef]
- Morandi, F.; Pistoia, V. Interactions between HLA-G and HLA-E in Physiological and Pathological Conditions. Front. Immunol. 2014, 5, 394. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.; Oger, R.; Vignard, V.; Percier, J.-M.; Fregni, G.; Périer, A.; Caignard, A.; Charreau, B.; Bernardeau, K.; Khammari, A.; et al. Serum Soluble HLA-E in Melanoma: A New Potential Immune-Related Marker in Cancer. PLoS ONE 2011, 6, e21118. [Google Scholar] [CrossRef]
- Morinaga, T.; Iwatsuki, M.; Yamashita, K.; Yasuda-Yoshihara, N.; Yamane, T.; Matsumoto, C.; Harada, K.; Eto, K.; Kurashige, J.; Ishimoto, T.; et al. Dynamic Alteration in HLA-E Expression and Soluble HLA-E via Interaction with Natural Killer Cells in Gastric Cancer. Ann. Surg. Oncol. 2023, 30, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Smail, S.W.; Saeed, M.; Twana alkasalias; Khudhur, Z.O.; Younus, D.A.; Rajab, M.F.; Abdulahad, W.H.; Hussain, H.I.; Niaz, K.; Safdar, M. Inflammation, Immunity and Potential Target Therapy of SARS-COV-2: A Total Scale Analysis Review. Food Chem. Toxicol. 2021, 150, 112087. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Ao, D.; Lan, T.; He, X.; Liu, J.; Chen, L.; Baptista-Hon, D.T.; Zhang, K.; Wei, X. SARS-CoV-2 Omicron Variant: Immune Escape and Vaccine Development. MedComm 2022, 3, e126. [Google Scholar] [CrossRef]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta Variant Replication and Immune Evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron Variant: Recent Progress and Future Perspectives. Signal Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef]
- Anzurez, A.; Naka, I.; Miki, S.; Nakayama-Hosoya, K.; Isshiki, M.; Watanabe, Y.; Nakamura-Hoshi, M.; Seki, S.; Matsumura, T.; Takano, T.; et al. Association of HLA-DRB1 *09:01 with Severe COVID-19. HLA 2021, 98, 37–42. [Google Scholar] [CrossRef]
- Schindler, E.; Dribus, M.; Duffy, B.F.; Hock, K.; Farnsworth, C.W.; Gragert, L.; Liu, C. HLA Genetic Polymorphism in Patients with Coronavirus Disease 2019 in Midwestern United States. HLA 2021, 98, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Ghasemi-Basir, H.R.; Majzoobi, M.M.; Rasouli-Saravani, A.; Hajilooi, M.; Solgi, G. HLA-DRB1*04 May Predict the Severity of Disease in a Group of Iranian COVID-19 Patients. Hum. Immunol. 2021, 82, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.J.; Bourke, S.C.; Lie, B.A.; Reiff, G.; Natu, S.; Darlay, R.; Burn, J.; Echevarria, C. The Influence of HLA Genotype on the Severity of COVID-19 Infection. HLA 2021, 98, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Suwalski, P.; Holtgrewe, M.; Rakitko, A.; Thibeault, C.; Müller, M.; Patriki, D.; Quedenau, C.; Krüger, U.; Ilinsky, V.; et al. Increased Risk of Severe Clinical Course of COVID-19 in Carriers of HLA-C*04:01. EClinicalMedicine 2021, 40, 101099. [Google Scholar] [CrossRef]
- Lee, M.J.; Leong, M.W.; Rustagi, A.; Beck, A.; Zeng, L.; Holmes, S.; Qi, L.S.; Blish, C.A. SARS-CoV-2 Escapes Direct NK Cell Killing through Nsp1-Mediated Downregulation of Ligands for NKG2D. Cell Rep. 2022, 41, 111892. [Google Scholar] [CrossRef]
- Lee, M.J.; Blish, C.A. Defining the Role of Natural Killer Cells in COVID-19. Nat. Immunol. 2023, 24, 1628–1638. [Google Scholar] [CrossRef]
- Jeng, W.-J.; Lok, A.S.F. What Will It Take to Cure Hepatitis B? Hepatol. Commun. 2023, 7, e0084. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, H.; Li, F.; Lan, L.; He, D.; Zhao, H.; Qi, D. Identification of Hub Genes and Potential Molecular Mechanisms in Patients with HBV-Associated Acute Liver Failure. Evol. Bioinform. Online 2020, 16, 1176934320943901. [Google Scholar] [CrossRef]
- Zidi, I.; Laaribi, A.B.; Bortolotti, D.; Belhadj, M.; Mehri, A.; Yahia, H.B.; Babay, W.; Chaouch, H.; Zidi, N.; Letaief, A.; et al. HLA-E Polymorphism and Soluble HLA-E Plasma Levels in Chronic Hepatitis B Patients. HLA 2016, 87, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kokiçi, J.; Arellano-Ballestero, H.; Hammond, B.; Preechanukul, A.; Hussain, N.; da Costa, K.; Davies, J.; Mukhtar, S.; Fernandez, T.; Kinloch, S.; et al. Expanded Adaptive NKG2C+ NK Cells Exhibit Potent ADCC and Functional Responses against HBV-Infected Hepatoma Cell Lines. bioRxiv 2025. [Google Scholar] [CrossRef]
- Guidotti, L.G.; Inverso, D.; Sironi, L.; Di Lucia, P.; Fioravanti, J.; Ganzer, L.; Fiocchi, A.; Vacca, M.; Aiolfi, R.; Sammicheli, S.; et al. Immunosurveillance of the Liver by Intravascular Effector CD8 + T Cells. Cell 2015, 161, 486–500. [Google Scholar] [CrossRef]
- Bertoletti, A.; Ferrari, C. Adaptive Immunity in HBV Infection. J. Hepatol. 2016, 64, S71–S83. [Google Scholar] [CrossRef]
- Tan, A.T.; Loggi, E.; Boni, C.; Chia, A.; Gehring, A.J.; Sastry, K.S.R.; Goh, V.; Fisicaro, P.; Andreone, P.; Brander, C.; et al. Host Ethnicity and Virus Genotype Shape the Hepatitis B Virus-Specific T-Cell Repertoire. J. Virol. 2008, 82, 10986–10997. [Google Scholar] [CrossRef] [PubMed]
- Laaribi, A.B.; Mehri, A.; Chaouch, H.; Babay, W.; Jbir, I.; Ouzari, H.-I.; Boukadida, J. Association of HLA-Ib (HLA-G, HLA-E and HLA-F) with Spontaneous HBV Clearance. Infect. Dis. 2025, 57, 839–849. [Google Scholar] [CrossRef]
- Burwitz, B.J.; Hashiguchi, P.K.; Mansouri, M.; Meyer, C.; Gilbride, R.M.; Biswas, S.; Womack, J.L.; Reed, J.S.; Wu, H.L.; Axthelm, M.K.; et al. MHC-E–Restricted CD8+ T Cells Target Hepatitis B Virus–Infected Human Hepatocytes. J. Immunol. 2020, 204, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.; Paterson, R.L.; Kulkarni, R.; Ilkow, V.; Suckling, R.J.; Connolly, M.M.; Karuppiah, V.; Pengelly, R.; Jadhav, A.; Donoso, J.; et al. Viral Sequence Determines HLA-E-Restricted T Cell Recognition of Hepatitis B Surface Antigen. Nat. Commun. 2024, 15, 10126. [Google Scholar] [CrossRef]
- Saag, M.S.; Gandhi, R.T.; Hoy, J.F.; Landovitz, R.J.; Thompson, M.A.; Sax, P.E.; Smith, D.M.; Benson, C.A.; Buchbinder, S.P.; del Rio, C.; et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults. JAMA 2020, 324, 1651. [Google Scholar] [CrossRef]
- Nattermann, J.; Nischalke, H.D.; Hofmeister, V.; Kupfer, B.; Ahlenstiel, G.; Feldmann, G.; Rockstroh, J.; Weiss, E.H.; Sauerbruch, T.; Spengler, U. HIV-1 Infection Leads to Increased HLA-E Expression Resulting in Impaired Function of Natural Killer Cells. Antivir. Ther. 2005, 10, 95–107. [Google Scholar] [CrossRef]
- Davis, Z.B.; Cogswell, A.; Scott, H.; Mertsching, A.; Boucau, J.; Wambua, D.; Le Gall, S.; Planelles, V.; Campbell, K.S.; Barker, E. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-Cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS Pathog. 2016, 12, e1005421. [Google Scholar] [CrossRef]
- van Stigt Thans, T.; Akko, J.I.; Niehrs, A.; Garcia-Beltran, W.F.; Richert, L.; Stürzel, C.M.; Ford, C.T.; Li, H.; Ochsenbauer, C.; Kappes, J.C.; et al. Primary HIV-1 Strains Use Nef To Downmodulate HLA-E Surface Expression. J. Virol. 2019, 93, e00719-19. [Google Scholar] [CrossRef]
- Laeremans, T.; den Roover, S.; Nezic, S.J.; Allard, S.D.; Aerts, J.L. Proteasome Inhibition Enhances Latency Reversal and Boosts NK Cell-Mediated Elimination of HIV-1 Infected Cells through HLA-E Downregulation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Jost, S.; Lucar, O.; Lee, E.; Yoder, T.; Kroll, K.; Sugawara, S.; Smith, S.; Jones, R.; Tweet, G.; Werner, A.; et al. Antigen-Specific Memory NK Cell Responses against HIV and Influenza Use the NKG2/HLA-E Axis. Sci. Immunol. 2023, 8, eadi3974. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Abad, M.; Warren, J.A.; Clutton, G.; Goonetilleke, N. CD8+ T Cell-Mediated Inhibition of HIV-1. J. Immunol. 2018, 200, 125.23. [Google Scholar] [CrossRef]
- Wallace, Z.; Heunis, T.; Paterson, R.L.; Suckling, R.J.; Grant, T.; Dembek, M.; Donoso, J.; Brener, J.; Long, J.; Bunjobpol, W.; et al. Instability of the HLA-E Peptidome of HIV Presents a Major Barrier to Therapeutic Targeting. Mol. Ther. 2024, 32, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Gehre, M.N.; Qin, K.; Sterrett, S.; Ali, A.; Dang, Y.; Abraham, S.; Costanzo, M.C.; Venegas, L.A.; Tang, J.; et al. HLA-E–Restricted HIV-1–Specific CD8+ T Cell Responses in Natural Infection. J. Clin. Investig. 2021, 131, JCI148979. [Google Scholar] [CrossRef]
- Hannoun, Z.; Lin, Z.; Brackenridge, S.; Kuse, N.; Akahoshi, T.; Borthwick, N.; McMichael, A.; Murakoshi, H.; Takiguchi, M.; Hanke, T. Identification of Novel HIV-1-Derived HLA-E-Binding Peptides. Immunol. Lett. 2018, 202, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Grotzke, J.E.; Harriff, M.J.; Siler, A.C.; Nolt, D.; Delepine, J.; Lewinsohn, D.A.; Lewinsohn, D.M. The Mycobacterium tuberculosis Phagosome Is a HLA-I Processing Competent Organelle. PLoS Pathog. 2009, 5, e1000374. [Google Scholar] [CrossRef]
- McMurtrey, C.; Harriff, M.J.; Swarbrick, G.M.; Duncan, A.; Cansler, M.; Null, M.; Bardet, W.; Jackson, K.W.; Lewinsohn, D.A.; Hildebrand, W.; et al. T Cell Recognition of Mycobacterium tuberculosis Peptides Presented by HLA-E Derived from Infected Human Cells. PLoS ONE 2017, 12, e0188288. [Google Scholar] [CrossRef]
- Harriff, M.J.; Wolfe, L.M.; Swarbrick, G.; Null, M.; Cansler, M.E.; Canfield, E.T.; Vogt, T.; Toren, K.G.; Li, W.; Jackson, M.; et al. HLA-E Presents Glycopeptides from the Mycobacterium tuberculosis Protein MPT32 to Human CD8+ T Cells. Sci. Rep. 2017, 7, 4622. [Google Scholar] [CrossRef]
- Mehanna, N.; Pradhan, A.; Kaur, R.; Kontopoulos, T.; Rosati, B.; Carlson, D.; Cheung, N.-K.; Xu, H.; Bean, J.; Hsu, K.; et al. Loss of Circulating CD8α + NK Cells during Human Mycobacterium tuberculosis Infection. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mehanna, N.; Pradhan, A.; Kaur, R.; Kontopoulos, T.; Rosati, B.; Carlson, D.; Cheung, N.-K.V.; Xu, H.; Bean, J.; Hsu, K.C.; et al. CD8α Marks a Mycobacterium tuberculosis-Reactive Human NK Cell Population with High Activation Potential. Sci. Rep. 2025, 15, 15095. [Google Scholar] [CrossRef]
- Ernst, J.D. Mechanisms of M. Tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe 2018, 24, 34–42. [Google Scholar] [CrossRef]
- Lewinsohn, D.M.; Alderson, M.R.; Briden, A.L.; Riddell, S.R.; Reed, S.G.; Grabstein, K.H. Characterization of Human CD8+ T Cells Reactive with Mycobacterium tuberculosis—Infected Antigen-Presenting Cells. J. Exp. Med. 1998, 187, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Heinzel, A.S.; Grotzke, J.E.; Lines, R.A.; Lewinsohn, D.A.; McNabb, A.L.; Streblow, D.N.; Braud, V.M.; Grieser, H.J.; Belisle, J.T.; Lewinsohn, D.M. HLA-E–Dependent Presentation of Mtb-Derived Antigen to Human CD8+ T Cells. J. Exp. Med. 2002, 196, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- van Meijgaarden, K.E.; Haks, M.C.; Caccamo, N.; Dieli, F.; Ottenhoff, T.H.M.; Joosten, S.A. Human CD8+ T-Cells Recognizing Peptides from Mycobacterium tuberculosis (Mtb) Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Mtb Inhibitory Phenotype and Represent a Novel Human T-Cell Subset. PLoS Pathog. 2015, 11, e1004671. [Google Scholar] [CrossRef] [PubMed]
- Voogd, L.; van Wolfswinkel, M.; Satti, I.; White, A.; Dijkman, K.; Gela, A.; van Meijgaarden, K.; Franken, K.; Marshall, J.; Ottenhoff, T.; et al. Mtb-Specific HLA-E-Restricted T Cells Are Induced during Mtb Infection but Not after BCG Administration in Non-Human Primates and Humans. Vaccines 2024, 12, 1129. [Google Scholar] [CrossRef]
- Ruibal, P.; Franken, K.L.M.C.; van Meijgaarden, K.E.; van Wolfswinkel, M.; Derksen, I.; Scheeren, F.A.; Janssen, G.M.C.; van Veelen, P.A.; Sarfas, C.; White, A.D.; et al. Identification of HLA-E Binding Mycobacterium tuberculosis –Derived Epitopes through Improved Prediction Models. J. Immunol. 2022, 209, 1555–1565. [Google Scholar] [CrossRef]
- Barber, C.; De Souza, V.A.; Paterson, R.L.; Martin-Urdiroz, M.; Mulakkal, N.C.; Srikannathasan, V.; Connolly, M.; Phillips, G.; Foong-Leong, T.; Pengelly, R.; et al. Structure-guided Stabilization of Pathogen-derived Peptide-HLA-E Complexes Using Non-natural Amino Acids Conserves Native TCR Recognition. Eur. J. Immunol. 2022, 52, 618–632. [Google Scholar] [CrossRef]
- Nguyen, A.T.; McSorley, S.J. Fighting the Enemy within: Systemic Immune Defense against Mucosal Salmonella Infection. Immunol. Lett. 2024, 270, 106930. [Google Scholar] [CrossRef]
- Salerno-Gonçalves, R.; Fernandez-Viña, M.; Lewinsohn, D.M.; Sztein, M.B. Identification of a Human HLA-E-Restricted CD8+ T Cell Subset in Volunteers Immunized with Salmonella Enterica Serovar Typhi Strain Ty21a Typhoid Vaccine. J. Immunol. 2004, 173, 5852–5862. [Google Scholar] [CrossRef]
- Salerno-Goncalves, R.; Wahid, R.; Sztein, M.B. Ex Vivo Kinetics of Early and Long-Term Multifunctional Human Leukocyte Antigen E-Specific CD8 + Cells in Volunteers Immunized with the Ty21a Typhoid Vaccine. Clin. Vaccine Immunol. 2010, 17, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.E.; McArthur, M.A.; Magder, L.S.; Barnes, R.S.; Chen, W.H.; Sztein, M.B. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front. Immunol. 2019, 10, 257. [Google Scholar] [CrossRef]
- Sullivan, L.C.; Westall, G.P.; Widjaja, J.M.L.; Mifsud, N.A.; Nguyen, T.H.O.; Meehan, A.C.; Kotsimbos, T.C.; Brooks, A.G. The Presence of HLA-E-Restricted, CMV-Specific CD8+ T Cells in the Blood of Lung Transplant Recipients Correlates with Chronic Allograft Rejection. PLoS ONE 2015, 10, e0135972. [Google Scholar] [CrossRef] [PubMed]
- Allard, M.; Tonnerre, P.; Nedellec, S.; Oger, R.; Morice, A.; Guilloux, Y.; Houssaint, E.; Charreau, B.; Gervois, N. HLA-E-Restricted Cross-Recognition of Allogeneic Endothelial Cells by CMV-Associated CD8 T Cells: A Potential Risk Factor Following Transplantation. PLoS ONE 2012, 7, e50951. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Xing, D.; Prior, S.; Corbel, M.J.; Parton, R.; Coote, J.G. Effect of Different Forms of Adenylate Cyclase Toxin of Bordetella Pertussis on Protection Afforded by an Acellular Pertussis Vaccine in a Murine Model. Infect. Immun. 2006, 74, 6797–6805. [Google Scholar] [CrossRef]
- Paterson, R.L.; La Manna, M.P.; Arena De Souza, V.; Walker, A.; Gibbs-Howe, D.; Kulkarni, R.; Fergusson, J.R.; Mulakkal, N.C.; Monteiro, M.; Bunjobpol, W.; et al. An HLA-E-Targeted TCR Bispecific Molecule Redirects T Cell Immunity against Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2024, 121, e2318003121. [Google Scholar] [CrossRef]
- Verweij, M.C.; Hansen, S.G.; Iyer, R.; John, N.; Malouli, D.; Morrow, D.; Scholz, I.; Womack, J.; Abdulhaqq, S.; Gilbride, R.M.; et al. Modulation of MHC-E Transport by Viral Decoy Ligands Is Required for RhCMV/SIV Vaccine Efficacy. Science 2021, 372, abe9233. [Google Scholar] [CrossRef]
- Picker, L.J.; Lifson, J.D.; Gale, M.; Hansen, S.G.; Früh, K. Programming Cytomegalovirus as an HIV Vaccine. Trends Immunol. 2023, 44, 287–304. [Google Scholar] [CrossRef]
- De Louche, C.D.; Roghanian, A. Human Inhibitory Leukocyte Ig-like Receptors: From Immunotolerance to Immunotherapy. JCI Insight 2022, 7, e151553. [Google Scholar] [CrossRef]
- Malouli, D.; Taher, H.; Mansouri, M.; Iyer, R.F.; Reed, J.; Papen, C.; Schell, J.B.; Beechwood, T.; Martinson, T.; Morrow, D.; et al. Human Cytomegalovirus UL18 Prevents Priming of MHC-E– and MHC-II–Restricted CD8 + T Cells. Sci. Immunol. 2024, 9, adp5216. [Google Scholar] [CrossRef]
- Hansen, S.G.; Hancock, M.H.; Malouli, D.; Marshall, E.E.; Hughes, C.M.; Randall, K.T.; Morrow, D.; Ford, J.C.; Gilbride, R.M.; Selseth, A.N.; et al. Myeloid Cell Tropism Enables MHC-E-Restricted CD8+ T Cell Priming and Vaccine Efficacy by the RhCMV/SIV Vaccine. Sci. Immunol. 2022, 7, eabn9301. [Google Scholar] [CrossRef]
- Hansen, S.G.; Schell, J.B.; Marshall, E.E.; Ojha, S.; Feltham, S.; Morrow, D.; Hughes, C.M.; Gilbride, R.M.; Ford, J.C.; Cleveland-Rubeor, H.C.; et al. Glycoprotein L–Deleted Single-Cycle Rhesus Cytomegalovirus Vectors Elicit MHC-E–Restricted CD8+ T Cells That Protect against SIV. J. Immunol. 2025, 214, 1969–1981. [Google Scholar] [CrossRef] [PubMed]
- Coppola, J.; Parren, M.; Bastidas, R.; Saye, K.; Malvin, J.; Jardine, J.G.; Gilbride, R.M.; Ojha, S.; Feltham, S.; Morrow, D.; et al. Combining a Rhesus Cytomegalovirus/SIV Vaccine with a Neutralizing Antibody to Protect against SIV Challenges in Rhesus Macaques. Front. Microbiol. 2025, 16, e1592647. [Google Scholar] [CrossRef] [PubMed]
- Maldini, C.R.; Coholan, L.J.; Karaca, C. Hypoimmunogenic HLA-E Single Chain Inhibits Alloreactive Immune Responses. J. Immunol. 2024, 213, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, J.R.; Wallace, Z.; Connolly, M.M.; Woon, A.P.; Suckling, R.J.; Hine, D.W.; Barber, C.; Bunjobpol, W.; Choi, B.; Crespillo, S.; et al. Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B–Infected Cells. Hepatology 2020, 72, 1528–1540. [Google Scholar] [CrossRef]
- Alekseeva, N.A.; Streltsova, M.A.; Vavilova, J.D.; Ustiuzhanina, M.O.; Palamarchuk, A.I.; Boyko, A.A.; Timofeev, N.D.; Popodko, A.I.; Kovalenko, E.I. Obtaining Gene-Modified HLA-E-Expressing Feeder Cells for Stimulation of Natural Killer Cells. Pharmaceutics 2024, 16, 133. [Google Scholar] [CrossRef]
- Hall-Swan, S.; Slone, J.; Rigo, M.M.; Antunes, D.A.; Lizée, G.; Kavraki, L.E. PepSim: T-Cell Cross-Reactivity Prediction via Comparison of Peptide Sequence and Peptide-HLA Structure. Front. Immunol. 2023, 14, 1108303. [Google Scholar] [CrossRef]
- Pan, M.; Tan, Y.; Tracy Wan, Y.; Hu, J.; Fleming, J.; Hu, H.; Yang, Z.; Zhan, X.; Li, B. Quantitative and Large-Scale Investigation of Human TCR-HLA Cross-Reactivity. Sci. Adv. 2025, 11, eadx1751. [Google Scholar] [CrossRef]



| Origin | Peptide Sequence | Length | Name | Reference |
|---|---|---|---|---|
| CMV | VMAPRTVLL | 9 | VLL | [31,49,61,62,117,118] |
| CMV | VTAPRTLLL | 9 | T2-LLL | |
| CMV | VTAPRTVLL | 9 | T2-VLL | |
| CMV | VMAPRTLLL | 9 | LLL | |
| CMV | VMAPRTLVL | 9 | LVL | |
| CMV | VMAPRTLIL | 9 | LIL | |
| SARS-CoV-2 | VMPLSAPTL | 9 | Nsp13 | [54] |
| SARS-CoV-2 | VMPLSAPTL | 9 | NSP13 | [23] |
| SARS-CoV-2 | VMYASAVVL | 9 | NSP6 | |
| SARS-CoV-2 | YLQPRTFLL | 9 | SPIKE | |
| SARS-CoV-2 | MMISAGFSL | 9 | NSP14 | |
| SARS-CoV-2 | YQPYRVVVL | 9 | SPIKE | |
| MTB | VLRPGGHFL | 9 | p68 | [35,48,102,109] |
| MTB | RMPPLGHEL | 9 | p62 | |
| MTB | VMATRRNVL | 9 | p55 | |
| MTB | FLLPRGLAI | 9 | p54 | |
| MTB | RLPAKAPLL | 9 | p44 | |
| MTB | VMTTVLATL | 9 | p34 | |
| MTB | EIEVDDDLIQK | 11 | Rv0634A19-29 | |
| HIV | TALSEGATP | 9 | TP9 | [100] |
| HIV | RIRTWKSLV | 9 | RV9 | |
| HIV | RMYSPVSIL | 9 | V6-RL9 | |
| HIV | PEIVIYDYM | 9 | PM9 | |
| HIV | RMYSPTSIL | 9 | RL9 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafieiyan, M.; La Manna, M.P.; Dieli, F.; Caccamo, N.; Badami, G.D. The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies. Cells 2025, 14, 1983. https://doi.org/10.3390/cells14241983
Rafieiyan M, La Manna MP, Dieli F, Caccamo N, Badami GD. The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies. Cells. 2025; 14(24):1983. https://doi.org/10.3390/cells14241983
Chicago/Turabian StyleRafieiyan, Mahsa, Marco Pio La Manna, Francesco Dieli, Nadia Caccamo, and Giusto Davide Badami. 2025. "The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies" Cells 14, no. 24: 1983. https://doi.org/10.3390/cells14241983
APA StyleRafieiyan, M., La Manna, M. P., Dieli, F., Caccamo, N., & Badami, G. D. (2025). The Expanding Role of HLA-E in Host Defense: A Target for Broadly Applicable Vaccines and Immunotherapies. Cells, 14(24), 1983. https://doi.org/10.3390/cells14241983

